PERANCANGAN TURBIN ANGIN TIPE SAVONIUS DUA TINGKAT DENGAN KAPASITAS 100 WATT UNTUK GEDUNG SYARIAH HOTEL SOLO
SKRIPSI
Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik
Oleh: Satriya Riskiyanto NIM. I0411038
JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SEBELAS MARET 2015
i
ii
iii
PERANCANGAN TURBIN ANGIN TIPE SAVONIUS DUA TINGKAT DENGAN KAPASITAS 100 WATT UNTUK GEDUNG SYARIAH HOTEL SOLO Satriya Rizkiyanto Jurusan Teknik Mesin, Fakultas Teknik, Universitas Sebelas Maret, Surakarta, Indonesia
[email protected]
Abstrak Daerah perkotaan merupakan daerah yang memiliki tingkat konsumsi energi yang tinggi dibandingkan dengan daerah perdesaan. Semakin meningkatnya kebutuhan energi didaerah perkotaan akan meningkatkan pula kebutuhan energi. Kebutuhan energi yang tidak diiringi dengan produksi energi akan mengakibatkan kelangkaan energi. Upaya pemanfaatan energi yang ramah lingkungan dan terbarukan harus dilakukan untuk mengatasi masalah tersebut. Salah satunya dengan memanfaatkan turbin angin. Dalam skripsi ini akan dibahas mengenai perancangan turbin angin tipe Savonius berkapasitas 100 Watt yang nantinya dapat digunakan untuk produksi energi daerah perkotaan. Berdasarkan analisa hasil perhitungan menggunakan fungsi distribusi Weibull, didapatkan kecepatan rata-rata pertahun pada lokasi yaitu Gedung Syariah Hotel Solo sebesar 7,25 m/s. Nilai koefisien daya (Cp) dan rasio kecepatan pada ujung sudu (λ) yang digunakan masingmasing sebesar 0,18 dan 1, sedangkan nilai rasio antara tinggi dan diameter turbin (α) dan rasio jarak antara poros dan sudu (β) sebesar 2 dan 0,2. Dimensi luas sapuan turbin didapat sebesar 2,37 m2. Jumlah sudu yang digunakan sebanyak dua buah pada setiap tingkatnya. Sudu berbentuk semi circular dengan diameter sebesar 0,6 m dengan tinggi sebesar 1,076 m. Sehingga dimensi untuk tinggi (H) dan diameter rotor (D) turbin sebesar 2,16 m dan 1,08 m. Kata kunci : Daerah perkotaan; Energi terbarukan; Perancangan; Turbin angin; Savonius
ix
DESIGN OF THE 100 WATT DOUBLE STAGE SAVONIUS WIND TURBINE FOR THE SYARIAH HOTEL SOLO Satriya Rizkiyanto Department of Mechanical Engineering, Faculty of Engineering, Sebelas Maret University, Surakarta, Indonesia
[email protected]
Abstract The urban area is an area that has a high level of energy consumption compared to rural areas. Increasing the energy consumption in urban areas also increase the energy needs. When energy needs is higher than energy production it causes energy shortages. Applying green and renewable energy must be done to avoid these problems. The use of wind turbines is a good choice. This paper discussed how to design Savonius wind turbines with a capacity of 100 Watts that can be used for energy production in urban areas. Based on the analysis results have been carried out the annual mean speed at the location that is Syariah Hotel Solo is 7.25 m/s, the value of the power coefficient (Cp) and the tip speed ratio (λ) respectively of 0.18 and 1, and the value of the aspect ratio (α) and the overlap ratio (β) of 2 and 0.2. The sweep area of the turbine obtained of 2.37 m2. The wind turbine use double stage with two blades in each stage. The blades using a semi-circularshaped blade with blade diameter of the turbine is 0.6 m and the blade height is 1.076 m. So the dimensions for height (H) and diameter (D) of the turbine is 2.16 m and 1.08 m. Keywords : Urban area; Renewable energy; Design; Wind turbine; Savonius
x
DAFTAR ISI
HALAMAN JUDUL ..................................................................................... i HALAMAN SURAT PENUGASAN TUGAS AKHIR ................................... ii HALAMAN PENGESAHAN ........................................................................ iii HALAMAN PERNYATAAN KEASLIAN .................................................... iv HALAMAN MOTTO ..................................................................................... v HALAMAN PERSEMBAHAN ...................................................................... vi KATA PENGANTAR ................................................................................... vii ABSTRAK ..................................................................................................... ix ABSTRACT ................................................................................................... x DAFTAR ISI ................................................................................................. xi DAFTAR TABEL .......................................................................................... xiv DAFTAR GAMBAR ..................................................................................... xv DAFTAR LAMPIRAN ................................................................................... xvii DAFTAR NOTASI ......................................................................................... xviii BAB I PENDAHULUAN ............................................................................... 1 1.1. Latar Belakang ................................................................................ 1 1.2. Rumusan Masalah ........................................................................... 2 1.3. Batasan Masalah .............................................................................. 2 1.4. Tujuan Penelitian ............................................................................. 3 1.5. Manfaat Penelitian............................................................................ 3 1.6. Sistematika Penulisan ...................................................................... 3 BAB II DASAR TEORI.................................................................................. 5 2.1. Tinjauan Pustaka .............................................................................. 5 2.2. Dasar Teori ...................................................................................... 6 2.2.1. Daya Dalam Energi Angin .................................................... 6 2.2.2. Distribusi Weibull Untuk Kecepatan Angin ........................... 8 2.2.3. Estimasi Energi Angin ........................................................... 9 2.2.4. Kecepatan Angin pada Gedung Bertingkat ............................ 10 2.2.5. Turbin Angin Savonius .......................................................... 14 2.2.6. Daya Turbin .......................................................................... 19
xi
2.2.7. Torsi...................................................................................... 20 2.2.8. Power Coefficient dan Tip Speed Ratio .................................. 21 2.2.9. Poros ..................................................................................... 22 2.2.10. Pasak ................................................................................... 24 2.2.11. Bantalan Atau Bearing ........................................................ 25 2.2.12. Basic Static Load Rating dan Dynamic Load Rating Pada Bantalan .............................................................................. 27 2.2.13. Sistem Transmisi Daya ........................................................ 28 2.2.14. Sistem Konversi Energi ke Energi Listrik ............................ 28 2.2.15. Proses Perancangan ............................................................. 29 BAB III METODOLOGI PERANCANGAN .................................................. 32 3.1. Identifikasi Permasalahan ................................................................. 32 3.1.1. Latar Belakang dan Perumusan Masalah ............................... 32 3.1.2. Tujuan dan Manfaat .............................................................. 32 3.1.3. Studi Literatur ....................................................................... 32 3.2. Pengumpulan dan Pengolahan Data .................................................. 32 3.2.1. Pengumpulan Data Kecepatan Angin..................................... 33 3.2.2. Perhitungan Data Kecepatan Angin ....................................... 33 3.3. Perancangan Turbin Angin ............................................................... 33 3.3.1. Penetapan Fungsi dan Spesifikasi Turbin Angin Tipe Savonius .............................................................................. 33 3.3.2. Pengembangan dan Pemilihan Konsep Turbin Angin ............ 33 3.3.3. Membuat Rancangan Turbin Angin ...................................... 34 3.3.4. Analisa dan Evaluasi Desain Turbin Angin ........................... 34 3.4. Kesimpulan dan Saran ..................................................................... 34 3.5. Diagram Alir Perancangan ............................................................... 34 BAB IV ANALISA DAN PERANCANGAN ................................................. 37 4.1. Potensi Kecepatan Angin.................................................................. 37 4.1.1. Tempat Penelitian ................................................................. 37 4.1.2. Perhitungan Data Kecepatan Angin....................................... 37 4.1.3. Perhitungan Kecepatan Angin di Lokasi Penelitian ............... 38
xii
4.1.4. Perhitungan kecepatan rata-rata angin dan standar deviasi di lokasi .................................................................................... 40 4.1.5. Perhitungan fungsi probabilitas dan kumulatif distribusi Weibull................................................................................ 41 4.1.6. Perhitungan Energi Angin ..................................................... 42 4.1.7. Penentuan Arah dan Kecepatan Angin Lokasi ....................... 43 4.2. Perancangan Turbin Angin ............................................................... 45 4.2.1. Perhitungan Dimensi Rotor ................................................... 46 4.3. Pemilihan Bantalan .......................................................................... 54 4.3.1. Analisa Gaya Pada Bantalan ................................................. 54 4.3.2. Penentuan Basic Static Load Rating dan Dynamic Load Rating .................................................................................. 57 4.3.3. Pemilihan Bantalan ............................................................... 58 4.4. Perancangan Sistem Transmisi Turbin .............................................. 59 4.5. Pemilihan Generator ......................................................................... 61 4.6. Perancangan Rangka ........................................................................ 62 4.7. Prediksi Performa Turbin ................................................................. 65 4.7.1. Perhitungan Saat Kondisi Start .............................................. 65 4.7.2. Perhitungan Saat Kondisi Charging ....................................... 66 4.7.3. Perhitungan Saat Kondisi Stop ............................................... 67 4.8. Perhitungan Annual Energy Turbin................................................... 68 BAB V KESIMPULAN DAN SARAN........................................................... 70 5.1. Kesimpulan ..................................................................................... 70 5.2. Saran ............................................................................................... 70 DAFTAR PUSTAKA .................................................................................... 72 LAMPIRAN .................................................................................................. 76
xiii
DAFTAR TABEL
Tabel 2.1. Klasifikasi daya angin .................................................................... 7 Tabel 2.2. Klasifikasi kecepatan angin ............................................................ 11 Tabel 2.3. Nilai koefisien kekasaran dan layer thickness berdasarkan lokasi yang berbeda ................................................................................... 13 Tabel 2.4. Faktor Km dan Kt ........................................................................... 24 Tabel 2.5. Ukuran pasak berdasarkan diameter poros ...................................... 25 Tabel 2.6. Pemilihan faktor koreksi pada bantalan........................................... 28 Tabel 4.1. Hasil perhitungan kecepatan angin lokasi Januari 2013 ................... 38 Tabel 4.2. Frekuensi kecepatan angin pada tahun 2013 hingga tahun 2014 ...... 40 Tabel 4.3. Nilai safety factor ........................................................................... 48 Tabel 4.4. Dimensi bantalan 5208 ................................................................... 59 Tabel 4.5. Data teknik generator NE – 100S.................................................... 61
xiv
DAFTAR GAMBAR
Gambar 2.1. Profil kecepatan angin berdasarkan ketinggian ............................ 12 Gambar 2.2. Prinsip kerja rotor Savonius ........................................................ 14 Gambar 2.3. Turbin angin tipe Savonius dengan biaya rendah ......................... 15 Gambar 2.4. Aspect ratio ................................................................................ 16 Gambar 2.5. Grafik pengaruh end-plates terhadap performa turbin ................. 17 Gambar 2.6. Skema rotor Savonius, (a) pandangan depan; (b) pandangan atas 17 Gambar 2.7. Pengaruh overlap ratio ............................................................... 18 Gambar 2.8. Pengaruh jumlah sudu (a) Posisi angular terhadap momen; (b) Pengaruh terhadap nilai Cp dan TSR .......................................... 18 Gambar 2.9. Turbin Savonius bertingkat ......................................................... 19 Gambar 2.10. Perbandingan koefisien daya dan tip speed ratio ....................... 22 Gambar 2.11. Pasak ....................................................................................... 24 Gambar 2.12. Radial ball bearing ................................................................... 26 Gambar 2.13. Proses perancangan berdasarkan Hampel .................................. 30 Gambar 3.1. Diagram alir metodologi perancangan ......................................... 35 Gambar 3.2. Diagram alir metodologi perancangan (lanjutan) ......................... 36 Gambar 4.1. Syariah Hotel Solo ...................................................................... 37 Gambar 4.2. Grafik fungsi distribusi Weibull (a) Distribusi probabilitas; (b) Distribusi kumulatif .................................................................... 41 Gambar 4.3. Potensi energi angin .................................................................... 43 Gambar 4.4. Arah angin berdasarkan kecepatan angin ..................................... 44 Gambar 4.5. Frekuensi arah angin kumulatif .................................................. 44 Gambar 4.6. Hasil perhitungan nilai VEmax ...................................................... 45 Gambar 4.7. Analisa momen akibat gaya drag angin....................................... 49 Gambar 4.8. Pasak ......................................................................................... 51 Gambar 4.9. Dimensi rotor turbin (a) Tampak depan; (b) Tampak atas ........... 52 Gambar 4.10. Rotor turbin tipe Savonius 3D ................................................... 53 Gambar 4.11. Analisa gaya pada bantalan ....................................................... 54 Gambar 4.12. Bantalan bolt flange mounted bearing ...................................... 59 Gambar 4.13. Generator model NE – 100S ..................................................... 61
xv
Gambar 4.14. Rancangan rangka ..................................................................... 62 Gambar 4.15. Analisa gaya yang terjadi pada turbin ........................................ 63 Gambar 4.16. Gambar turbin angin tipe Savonius ........................................... 64 Gambar 4.17. Gambar 3D turbin angin tipe Savonius (a) Tampak depan; (b) Tampak isometrik .................................................................... 65 Gambar 4.18. Prediksi daya output turbin Savonius ........................................ 68 Gambar 4.19. Faktor kapasitas berdasarkan kecepatan angin rata-rata ............. 69 Gambar 4.20. Energi tahunan .......................................................................... 69
xvi
DAFTAR LAMPIRAN
Lampiran 1. Tabel data kecepatan angin.......................................................... 77 Lampiran 2. Tabel hasil perhitungan VEmax perbulan ....................................... 89 Lampiran 3. Tabel hasil perhitungan pertahun ................................................. 89 Lampiran 4. Tabel hasil perhitungan arah angin .............................................. 89 Lampiran 5. Tabel standar ukuran pasak ......................................................... 90 Lampiran 6. Tabel standar ukuran bantalan ..................................................... 91 Lampiran 7. Tabel standar ukuran sabuk v ...................................................... 92 Lampiran 8. Ilustrasi peletakan turbin angin Savonius ..................................... 93 Lampiran 9. Nilai koefisien drag..................................................................... 94 Lampiran 10. Tabel hasil perhitungan annual energy ...................................... 94 Lampiran 11. Tabel kekuatan material ............................................................ 95 Lampiran 12. Gambar 2D turbin angin tipe Savonius ...................................... 96 Lampiran 13. Gambar 2D end plate tengah ..................................................... 97 Lampiran 14. Gambar 2D end plate ................................................................ 98 Lampiran 15. Gambar 2D poros ...................................................................... 99 Lampiran 16. Gambar 2D sudu turbin angin .................................................... 100 Lampiran 17. Gambar 2D rangka .................................................................... 101
xvii
DAFTAR NOTASI
A
= Swept area rotor (m2)
N
= Putaran rotor (rpm)
ɑ
= Kekasaran permukaan
P
= Daya (Watt)
C
= Basic dynamic load rating (N)
ρ
= Massa jenis udara (kg/m3)
C0
= Basic static load rating (N)
Sy
= Yield strength (MPa)
CD
= Koefisien drag
Sf
= Faktor keamanan
CF
= Faktor kapasitas
T
= Torsi (Nm)
CP
= Koefisien performa turbin
Te
= Momen akibat torsi (Nm)
c
= Parameter skala Weibull (m/s)
v
= Kecepatan angin (m/s)
D
= Diameter rotor (m)
Vm
= Kecepatan angin rata-rata (m/s)
Df
= Diameter end-plates (m)
VEmax
= Kecepatan rerata tahunan (m/s)
d
= Diameter sudu (m)
VFmax
= Kecepatan terbanyak (m/s)
dp
= Diameter poros (m)
W
= Beban ekuivalen dinamik (N)
EA
= Energi tahunan (kWj/tahun)
WA
= Gaya aksial (N)
ED
= Densitas energi angin (kW/m2)
WR
= Gaya radial (N)
EI
= Intensitas energi (kW/m2/bulan)
X
= Faktor radial
e
= Overlap (m)
Y
= Faktor aksial
FD
= Gaya drag (N)
Zg
= Tebal lapis batas (m)
f
= Frekuensi
α
= Aspect ratio
g
= Percepatan gravitasi (m/s2)
β
= Overlap ratio
H
= Tinggi rotor (m)
σ
= Tegangan tarik ijin (Mpa)
KM
= Faktor beban akibat bending
σv
= Standar deviasi (m/s)
KT
= Faktor beban akibat torsi
λ
= Tip speed ratio
k
= Parameter bentuk Weibull
τ
= Tegangan geser ijin (MPa)
L
= Umur kerja bantalan (rev)
ω
= Kecepatan sudut (rad/s)
LH
= Waktu kerja bantalan (jam)
M
= Gaya momen (Nm)
Me
= Momen akibat bending (Nm)
xviii