PENERAPAN GENERALIZED PARTIAL CREDIT MODEL DALAM TEORI RESPON BUTIR UNTUK MENDUGA KEMAMPUAN HASIL TES URAIAN (Studi Kasus: Soal Ujian Tengah Semester Mata Kuliah Kalkulus Tingkat Persiapan Bersama Institut Pertanian Bogor Tahun Ajaran 2011/2012)
SARTIKA LESTARI
DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2012
RINGKASAN SARTIKA LESTARI. Penerapan Generalized Partial Credit Model dalam Teori Respon Butir untuk Menduga Kemampuan Hasil Tes Uraian (Studi Kasus: Soal Ujian Tengah Semester Mata Kuliah Kalkulus Tingkat Persiapan Bersama Institut Pertanian Bogor Tahun Ajaran 2011/2012). Dibimbing oleh BUDI SUSETYO dan TONI BAKHTIAR. Pada pelaksanaan tes uraian, penskoran biasanya dilakukan secara parsial bersadarkan langkahlangkah yang harus ditempuh untuk menjawab benar suatu butir soal. Penskoran dilakukan perlangkah dan skor perbutir soal diperoleh peserta dengan menjumlah skor tiap langkah, dan kemampuan diduga dengan skor mentah. Model penskoran seperti ini belum tentu tepat karena tingkat kesukaran tiap langkah tidak diperhitungkan. Pendekatan alternatif yang dapat digunakan yaitu pendekatan teori respon butir untuk penskoran politomi, salah satunya dengan generalized partial credit model (GPCM). Oleh karena itu, tujuan dari penelitian ini ialah menduga kemampuan peserta tes uraian mata kuliah Kalkulus Tingkat Persiapan Bersama (TPB) Tahun Ajaran 2011/2012 menggunakan GPCM. Tahapan yang dilakukan ialah pemeriksaan asumsi, pemeriksaan reliabilitas skor tes, pendugaan karakteristik butir soal dan kemampuan peserta, pemeriksaan nilai fungsi informasi, pemeriksaan kesesuaian model, dan kriteria butir soal. Berdasarkan hasil pendugaan parameter daya pembeda, soal nomor 1 dan 5 memerlukan revisi atau disisihkan, soal nomor 2 memerlukan revisi sedikit, soal nomor 3, 4, 6, 7, 8, dan 9 memiliki daya pembeda yang cukup baik, dan soal nomor 10 memiliki daya pembeda yang baik sekali artinya soal mampu membedakan kemampuan peserta tes. Berdasarkan hasil pendugaan parameter indeks kesukaran butir soal, soal nomor 1 termasuk kriteria soal mudah, soal nomor 2, 3, 4, 5, dan 6 termasuk kriteria soal sedang dan soal nomor 7, 8, 9, dan 10 termasuk kriteria soal sukar. Berdasarkan hasil, semua butir soal dapat dikategorikan soal dengan kualitas cukup baik. Total informasi yang dihasilkan sebesar 72.470%, artinya tes mampu memberikan informasi tentang pendugaan tingkat kemampuan peserta tes pada rentang kemampuan dari tingkat terendah hingga tertinggi sebesar 72.470% dan model GPCM cukup informatif mampu menjelaskan tingkat kemampuan peserta tes. Hasil uji kesesuain model menunjukkan bahwa 100% soal dapat digambarkan dengan model. Hal ini terlihat dari nilai khikuadrat empiris butir soal tidak melebihi nilai khi-kuadrat teoritis (nilai p > 0.05). Dari 10 butir soal mata kuliah Kalkulus tidak ada butir soal yang tidak dapat digambarkan oleh model. Kata kunci: Penskoran Politomi, Teori Respon Butir (IRT), Generalized Partial Credit Model (GPCM)
PENERAPAN GENERALIZED PARTIAL CREDIT MODEL DALAM TEORI RESPON BUTIR UNTUK MENDUGA KEMAMPUAN HASIL TES URAIAN (Studi Kasus: Soal Ujian Tengah Semester Mata Kuliah Kalkulus Tingkat Persiapan Bersama Institut Pertanian Bogor Tahun Ajaran 2011/2012)
Oleh: SARTIKA LESTARI
Skripsi sebagai salah satu syarat untuk memperoleh gelar Sarjana Statistika pada Departemen Statistika
DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2012
Judul
Nama NIM
: Penerapan Generalized Partial Credit Model dalam Teori Respon Butir untuk Menduga Kemampuan Hasil Tes Uraian (Studi Kasus: Soal Ujian Tengah Semester Mata Kuliah Kalkulus Tingkat Persiapan Bersama Institut Pertanian Bogor Tahun Ajaran 2011/2012) : Sartika Lestari : G14080020
Menyetujui: Pembimbing I,
Pembimbing II,
Dr. Ir. Budi Susetyo, M.S. NIP : 196211301986031003
Dr. Toni Bakhtiar, M.Sc. NIP : 197206271997021002
Mengetahui: Ketua Departemen Statistika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor
Dr. Ir. Hari Wijayanto, M.Si. NIP : 196504211990021001
Tanggal Lulus:
PRAKATA Alhamdulillah, segala puji hanya bagi Allah SWT yang telah melimpahkan segala nikmat dan karunia-Nya, sehingga penulis dapat menyelesaikan karya ilmiah. Karya ilmiah ini berjudul ”Penerapan Generalized Partial Credit Model dalam Teori Respon Butir untuk Menduga Kemampuan Hasil Tes Uraian (Studi Kasus: Soal Ujian Tengah Semester Mata Kuliah Kalkulus Tingkat Persiapan Bersama Institut Pertanian Bogor Tahun Ajaran 2011/2012)”. Karya ilmiah ini penulis susun sebagai salah satu kewajiban yang harus dipenuhi dan merupakan syarat untuk mendapatkan gelar Sarjana Statistika (S. Stat) pada Departemen Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor. Penulisan karya ilmiah ini dapat diselesaikan oleh penulis tidak lepas dari dukungan, bimbingan dan bantuan dari banyak pihak yang sangat berarti bagi penulis. Oleh karena itu, penulis mengucapkan terima kasih atas segala bantuan dan bimbingan yang diberikan kepada: 1. Bapak Dr. Ir. Budi Susetyo, M.S. dan Dr. Toni Bakhtiar, M.Sc. selaku dosen pembimbing telah memberikan bimbingan, masukan dan arahan selama penulisan karya ilmiah ini. 2. Bapak Dr. Ir. Hari Wijayanto, M.Si. selaku Ketua Departemen Statistika FMIPA IPB. 3. Bapak Ir. Bambang Sumantri selaku dosen penguji luar yang telah memberikan beberapa masukan dan arahan kepada penulis. 4. Seluruh Dosen Statistika yang telah memberikan ilmu dan wawasan selama penulis menuntut ilmu di Departemen Statistika serta seluruh staf Departemen Statistika yang telah banyak membantu penulis, terutama Ibu Markonah dan Ibu Tri yang telah memberikan pelayanan terbaik. 5. Seluruh Dosen dan Staf Departemen Matematika yang telah mengizinkan penulis menggunakan data ujian tengah semester mata kuliah Kalkulus Tingkat Persiapan Bersama. 6. Kedua orang tua, kakak, dan adik yang telah memberikan doa, kasih sayang serta dorongan baik moril maupun materil. 7. Dony Bayu Dewantoro yang telah memberikan doa, kasing sayang, serta dukungannya. 8. Oktaviani Prihatiningsih dan Umi Nur Chasanah sebagai teman satu bimbingan yang telah memberikan dukungan selama menyelesaikan karya ilmiah ini. 9. Dilla, Betha, Arima, Mia, Ratih, Vita, Gusti, Anni, Sella, dan teman-teman STK’45 atas dukungan dan kebersamaannya selama tiga tahun ini dalam segala suka maupun duka. 10. Teman-teman seperjuangan statistika yang telah bersama-sama menuntut ilmu di Departemen Statistika. Semoga bantuan yang telah diberikan kepada penulis mendapat balasan dari Allah SWT. Penulis menyadari bahwa karya ilmiah ini jauh dari sempurna. Oleh karena itu, Penulis memohon maaf atas segala kekurangan dan kesalahan yang terdapat di dalam penyusunan karya ilmiah ini. Semoga karya ilmiah ini dapat bermanfaat bagi pihak yang membutuhkan.
Bogor, 2012
Sartika Lestari
RIWAYAT HIDUP Penulis dilahirkan di Sumedang pada tanggal 25 Januari 1990 sebagai anak ke tiga dari lima bersaudara dari pasangan Dedi Supriadi, S.Pd. dan W. Rohyawati, S.Pd. Pada tahun 2002 penulis berhasil menyelesaikan pendidikan sekolah dasar di SD Negeri 1 Selaawi, kemudian melanjutkan di SMP Negeri 1 Sumedang dan lulus pada tahun 2005. Penulis menyelesaikan pendidikannya di SMA Negeri 3 Sumedang pada tahun 2008. Kemudian, pada tahun yang sama, penulis diterima sebagai mahasiswa Departemen Statistika melalui jalur Undangan Seleksi Masuk IPB (USMI) dengan minor Matematika Keuangan dan Aktuaria Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor. Selama di IPB penulis aktif di Organisasi Kemahasiswaan diantaranya adalah Masyarakat Rumput sebagai staf seni drama periode 2008/2009, Organisasi Mahasiswa Daerah (OMDA) Sumedang staf divisi seni dan olahraga, Himpunan Profesi Mahasiswa Statistika Gamma Sigma Beta sebagai staf divisi Human Resources Development tahun 2010, koordinator divisi Data Analysis tahun 2011, Koordinator divisi akademik Organisasi Mahasiswa Daerah (OMDA) Sumedang tahun 2010, dan consultant data tahun 2011. Selain itu, penulis juga aktif dalam kegiatan kepanitiaan seperti PORSTAT 2010, Statistics in Art tahun 2010, Statistika Ria 2010 dan 2011, Welcome Ceremony Statistics (WCS) 2010 dan 2011, Lomba Jajak Pendapat Statistika tahun 2010 dan 2011, dan lain-lain. Penulis berkesempatan menjadi Asisten Dosen Mata Kuliah Metode Statistika pada tahun ajaran 2010/2011 dan 2011/2012 dan Asisten Dosen Mata Kuliah Analisis Multivariat tahun ajaran 2011/2012. Penulis berkesempatan menjadi Surveyor di PT. AGB Nielsen Indonesia tahun 2010 dan 2011. Penulis melaksanakan praktik lapang pada bulan Februari-April 2012 di PT Astra International Tbk.
DAFTAR ISI Halaman DAFTAR GAMBAR .................................................................................................................. viii DAFTAR TABEL ....................................................................................................................... viii DAFTAR LAMPIRAN ............................................................................................................. viii PENDAHULUAN ..................................................................................................................... Latar Belakang ..................................................................................................................... Tujuan ..................................................................................................................................
1 1 1
TINJAUAN PUSTAKA ............................................................................................................ Teori Respon Butir ................................................................................................................ Reliabilitas Skor Tes.............................................................................................................. Generalized Partial Credit Model (GPCM) .......................................................................... Pendugaan Parameter ............................................................................................................ Grafik Categorical Response Function (CRF) ..................................................................... Fungsi Informasi ................................................................................................................... Uji Kesesuaian Model .......................................................................................................... Kriteria Butir Soal ................................................................................................................
1 1 2 2 4 4 4 5 5
METODOLOGI ........................................................................................................................ Data ..................................................................................................................................... Metode .................................................................................................................................
6 6 6
HASIL DAN PEMBAHASAN ................................................................................................. Eksplorasi Data ...................................................................................................................... Asumsi-asumsi Model IRT .................................................................................................... Reliabilitas Skor Tes .............................................................................................................. Model Teori Respon Butir GPCM ......................................................................................... Fungsi Informasi ........................................................................................................................
6 6 7 7 7 9
KESIMPULAN DAN SARAN ................................................................................................... 9 Kesimpulan ............................................................................................................................ 9 Saran ...................................................................................................................................... 10 DAFTAR PUSTAKA ............................................................................................................... 10 LAMPIRAN .............................................................................................................................. 11
DAFTAR GAMBAR Halaman 1. Bagan klasifikasi model IRT ......................................................................................................... 2 2. Grafik CRF pada 4 kategori .......................................................................................................... 4 3. Scree plot hasil analisis faktor ....................................................................................................... 7 4. Grafik CRF butir soal nomor 10.................................................................................................... 9 5. Grafik fungsi informasi ................................................................................................................. 9
DAFTAR TABEL Halaman 1. Kriteria indeks kesukaran butir soal ............................................................................................. 3 2. Kriteria daya pembeda butir soal .................................................................................................. 4 3. Materi soal UTS TPB IPB mata kuliah Kalkulus ......................................................................... 6 4. Statistik skor mahasiswa UTS TPB IPB mata kuliah Kalkukus ................................................... 6 5. Reliabilitas skor tes butir soal mata kuliah Kalkulus ................................................................... 7 6. Hasil pendugaan dan kriteria indeks daya pembeda butir soal ..................................................... 8 7. Hasil pendugaan dan kriteria indeks kesukaran butir soal ............................................................ 8 8. Kriteria butir soal ......................................................................................................................... 8 9. Statistik parameter kemampuan peserta tes mata kuliah Kalkulus pada model GPCM ............... 8 10.Fungsi informasi model GPCM mata kuliah Kalkulus .............................................................. 9
DAFTAR LAMPIRAN Halaman 1. Tabulasi data mata kuliah Kalkulus UTS TPB IPB Tahun Ajaran 2011/2012 ........................... 12 2. Proporsi peserta tes menjawab benar per kategori soal .............................................................. 13 3. Nilai parameter butir soal Ujian Tengah Semester mata kuliah Kalkulus model GPCM ........... 15 4. Grafik CRF butir soal ................................................................................................................. 16
1
PENDAHULUAN Latar Belakang Pada bidang pendidikan, kegiatan penilaian hasil belajar peserta didik merupakan salah satu tugas penting yang harus dilakukan oleh pendidik. Penilaian keberhasilan studi semester dilakukan pada tiap pertengahan dan akhir semester. Ujian Tengah Semester merupakan salah satu upaya untuk mengetahui kemajuan mahasiswa terhadap kurikulum yang telah diajarkan. Proses pengukuran hasil belajar sangat penting dilakukan mahasiswa Tingkat Persiapan Bersama (TPB) yang merupakan langkah awal bagi mahasiswa sebelum memasuki departemen. Penilaian keberhasilan studi semester dilakukan dengan pemberian soal kepada peserta tes. Akan tetapi, pemberian soal yang terlalu sukar dan mudah menyebabkan pendidik sulit membedakan kemampuan mahasiswa. Oleh karena itu, diperlukan analisis terhadap soal ujian dengan harapan hasil ujian dapat merepresentasikan kemampuan mahasiwa. Peningkatan mutu pendidikan tidak terlepas dari penerapan penilaian yang dapat secara tepat mengukur hasil akhir dari suatu proses pembelajaran. Artinya untuk menilai hasil akhir dalam pembelajaran diperlukan alat penilaian yang berkualitas. Tes merupakan salah satu alat penilaian yang sering digunakan. Kegiatan evaluasi dilakukan menyeluruh terhadap berbagai aspek, yaitu aspek kognitif, afektif, dan psikomotorik. Evaluasi terhadap aspek kognitif dalam pendidikan khususnya pembelajaran Kalkulus akan memerlukan instrumen diantaranya berupa tes. Tes dapat diklasifikasikan dalam beberapa macam tergantung dari bentuk, tipe, dan ragamnya (Zainul & Nasution 2011). Fungsi tes hasil belajar adalah sebagai alat untuk penempatan, fungsi formatif, fungsi diagnostik, dan fungsi sumatif. Berdasarkan bentuknya, tes hasil belajar dapat dikelompokkan menjadi tiga jenis yaitu objektif pilihan ganda dua pilihan, objektif pilihan ganda lebih dari dua pilihan dan uraian (Gronlund & Linn 1990). Tes uraian biasa dilakukan dengan model politomi. Pada model ini, penskoran dilakukan dengan melihat tahap-tahap peserta tes dalam menyelesaikan soal. Penskoran dengan menggunakan skor menjawab benar pada jawaban peserta tes dengan model politomi tidak sepenuhnya tepat. Hal ini disebabkan oleh tingkat kesukaran tiap langkah tidak diperhitungkan.
Selain itu, peluang menjawab benar seorang peserta tes berdasarkan respon tertentu tidak dapat diduga. Terkait dengan hal tersebut, perlunya pendekatan lain, diantaranya menggunakan teori respon butir Generalized Partial Credit Model (GPCM). Pada GPCM, tingkat kesulitan tiap langkah diperhitungkan untuk menduga kemampuan peserta tes. Tujuan Tujuan yang ingin dicapai dalam penelitian ialah: 1. Menerapkan GPCM untuk menduga kemampuan peserta tes uraian Ujian Tengah Semester mata kuliah Kalkulus Tingkat Persiapan Bersama Institut Pertanian Bogor (UTS TPB IPB) tahun ajaran 2011/2012 dengan pendekatan pensokran politomi teori respon butir. 2. Memberikan masukan kepada Departemen Matematika IPB terhadap soal UTS Kalkulus TPB IPB tahun ajaran 2011/2012. TINJAUAN PUSTAKA Teori Respon Butir Teori respon butir merupakan metode pengukuran modern yang biasa digunakan dalam analisis butir soal. Teori respon butir dilihat dari karakteristik butir soal ditentukan oleh respon para peserta tes (baik yang berkemampuan tinggi maupun rendah). Teori respon butir dikenal juga dengan nama seperti Item Response Theory (IRT) atau Latent Trait Theory (LTT). Nama yang paling banyak digunakan adalah Item Response Theory atau Teori Respon Butir. Pengembangan IRT didasarkan kepada dua ciri yaitu latent trait atau abilities dan Item Characteristics Curve (ICC). Latent trait adalah kemampuan peserta tes pada suatu butir soal dapat diduga oleh seperangkat faktor yaitu kemampuan verbal, kemampuan psikomotor, kemampuan kognitif, dan sebagainya. ICC menunjukan hubungan antara kemampuan peserta tes pada suatu butir soal dan perangkat kemampuan laten yang mendasarinya (Hambleton & Swaminathan 1985). Ciri-ciri umum IRT adalah karakteristik butir soal tidak bergantung pada peserta tes, skor yang digambarkan peserta tes tidak bergantung pada tes, model lebih menekankan pada tingkat butir soal dari pada tingkat tes, model tidak mensyaratkan secara ketat tes paralel untuk menaksir reliabilitas, dan model menguraikan sebuah ukuran keputusan untuk
2
setiap skor kemampuan yakni ada hubungan fungsional antara peserta tes terhadap tingkat kemampuan yang dimiliki. Model-model karakteristik butir soal bergantung pada bentuk matematis fungsi karakteristik butir soal dan banyaknya parameter yang dilibatkan dalam model yang digunakan. Hal ini dikarenakan tidak semua model IRT cocok untuk perangkat data tes yang lain (Widhiararso 2010).
tinggi koefisien reliabilitas suatu tes (mendekat 1), makin tinggi pula ketepatannya. Reliabilitas dapat dihitung dengan koefisien yang dalam Crocker & Algina (1986) didefinisikan sebagai berikut: n 2 n i 1 i , 1 2 n 1 X
dengan n = jumlah butir soal, = ragam skor per butir soal, = ragam skor total.
Gambar 1 Bagan klasifikasi model IRT Keterangan UIRT : Unidimensional IRT MIRT : Multidimensional IRT Berdasarkan Gambar 1, model IRT dibagi menjadi dua, yaitu IRT satu dimensi (UIRT) dan IRT multidimensi (MIRT). UIRT hanya menganalisis satu karakteristik soal dengan satu dimensi kemampuan yang dominan. UIRT ini menggunakan data dikotomi seperti benar (1) dan salah (0), dan data politomi untuk data berskala ordinal. UIRT data dikotomi bisa menggunakan model logistik satu parameter, model logistik dua parameter, dan model logistik tiga parameter. Sedangkan untuk UIRT data politomi, model yang bisa digunakan adalah graded response model (GRM), modified graded response model (MGRM), partial credit model (PCM), generalized partial credit model (GPCM), dan rating scale model (RSM). Dalam penelitian ini digunakan data politomi dengan metode generalized partial credit model (GPCM). Reliabilitas Skor Tes Tujuan utama menghitung reliabilitas skor tes adalah untuk mengetahui tingkat ketepatan dan kekonsistenan skor tes. Indeks reliabilitas berkisar antara 0 − 1. Semakin
GPCM Model yang lebih dikenal pada awal perkembangan teori respon butir politomi ialah Partial Credit Model (PCM). PCM merupakan model penskoran politomi yang merupakan perluasan dari model dengan menggunakan dua parameter logistik pada data dikotomi (model Rasch). Asumsi pada PCM adalah setiap butir soal memunyai daya beda butir soal yang sama. Pengembangan lebih lanjut penskoran politomi adalah GPCM. Muraki & Bock (1997) mendefinisikan GPCM sebagai bentuk umum dari PCM, mengembangkan kembali model kredit parsial yang memungkinkan butir soal di dalam skala memiliki perbedaan dalam hal parameter kemiringan. Dalam Hambleton & Swaminathan (1985), dalam metode GPCM asumsi yang harus dipenuhi adalah asumsi dimensi tunggal (unidimensional) dan kebebasan lokal (local independence). Asumsi dimensi tunggal dapat diperiksa dengan akar ciri dalam analisis faktor, menghitung rasio antara akar ciri yang pertama dan kedua. Jika rasionya tinggi, maka modelnya bersifat unidimensional. Kebebasan lokal (local independence) merupakan respon peserta tes terhadap suatu butir soal tidak berhubungan dengan butir soal lainnya dalam tes tersebut. IRT membebaskan peserta tes dan butir soal dari interdependensi, sehingga taraf sukar butir soal tidak lagi bergantung kepada kemampuan peserta tes, kemampuan peserta tes tidak lagi bergantung kepada taraf sukar butir soal. GPCM memiliki kemiripan dengan PCM hanya berbeda pada pelibatan parameter kemiringan (slope) yang disimbolkan dengan D. Dalam satu butir soal hanya ada satu parameter kemiringan, dan j buah parameter persimpangan garis.
3
Berikut fungsi karakteristik operasi (Operating Characteristic Functions/OCF). Pjk Pjk |k -1,k Pj ,k -1 Pjk
1 exp Da j b jk
exp
Kategori k
k v 0 Da j b jv
exp Da j b j1
mj c 1 exp Da j b jv v 0 c 0
,
,
k v 0 Da j b jv Pjk m . j k exp Da j b jv v 0 c 0 exp
,
k 0,1, 2,..., m j
bj dv D mj
1 mj c 1 exp Da j b jv v0 c 0
Kategori 1 Pj1
θ aj bjk
Pj 0
exp Da j b jk
Pjk m j c exp D b jv v 0 c 0 k exp Da j b j d v v 0 m j c exp D b j d v v 0 c 0
di mana ( )
Kategori 0:
= peluang peserta berkemampuan θ memperoleh skor kategori k butir soal ke-j ( ) = peluang peserta berkemampuan θ memperoleh skor kategori k butir soal ke-j jika peluang peserta berkemampuan θ memperoleh skor kategori k-1 sudah didapatkan = kemampuan peserta = indeks daya beda butir soal ke-j = indeks kesukaran kategori k butir soal ke-j = indeks kesukaran butir soal ke-j = parameter kategori = parameter kemiringan (D = 1.7) = skor kategori
Parameter bjk merupakan parameter tahap butir soal. Parameter ini merupakan titik ( ) dengan Pj,k-1(θ). potong antara kurva Kedua kurva hanya berpotongan di satu titik pada skala θ. Jika θ = bjk, maka (θ) = Pj,k-1(θ) Jika θ > bjk, maka (θ) > Pj,k-1(θ) Jika θ < bjk, maka (θ) < Pj,k-1(θ), dengan k = 0,1,2,3,..., mj. Persamaan peluang peserta dapat dijabarkan berdasarkan jumlah kategori di dalam butir soal. Jika sebuah skala memiliki k kategori dengan skor 0,1,2,...,mj, maka akan didapatkan k buah persamaan dengan peluang individu peserta tes pada setiap kategori.
(Muraki & Bock 1997) Parameter yang digunakan dalam GPCM yaitu indeks kesukaran butir soal (bjk) dan (bj), indeks daya beda butir soal (aj), dan kemampuan peserta tes ( ) (Hambleton & Swaminathan 1985). a. Indeks Kesukaran Butir Soal Indeks kesukaran butir soal merupakan salah satu faktor yang mempengaruhi peluang peserta tes untuk merespon butir soal dengan cara tertentu. Butir soal yang memiliki indeks kesukaran yang tinggi akan cenderung diisi dengan benar daripada butir soal yang memiliki tingkat kesukaran yang rendah. Perhitungan indeks tingkat kesukaran ini dilakukan untuk setiap nomor soal menurut Hambleton & Swaminathan (1985). Tabel 1 Kriteria indeks kesukaran butir soal Indeks kesukaran Kriteria 0 ≤ b < 0.3 Soal Sukar 0.3 ≤ b ≤ 0.7 Soal Sedang 0.7 < b ≤ 1 Soal Mudah b. Indeks Daya Pembeda Butir Soal Tujuan tes adalah untuk membedakan kelompok peserta tes yang memiliki kemampuan yang relatif tinggi dari kelompok peserta tes yang memiliki tingkat kemampuan rendah. Tes memberikan informasi yang baik ketika secara akurat dapat mendeteksi perbedaan antara peserta tes pada tingkat kemampuan yang berbeda. Daya pembeda butir soal mengindikasikan nilai indeks yang menunjukkan kemampuan butir soal untuk membedakan kelompok peserta tes yang berkemampuan tinggi dan berkemampuan
4
rendah. Daya pembeda suatu butir soal ini didasarkan pada hasil tes suatu kelompok sehingga daya pembeda tersebut belum tentu berlaku pada kelompok yang lain. Indeks daya pembeda soal berkisar antara −1 sampai dengan 1. Semakin tinggi nilai daya pembeda soal, maka semakin baik soal tersebut menurut Hambleton & Swaminathan (1985). Tabel 2 Kriteria daya pembeda butir soal Indeks Daya Kriteria Pembeda 0.7 ≤ aj ≤ 1.0 memiliki daya pembeda baik sekali 0.4 ≤ aj ≤ 0.69 memiliki daya pembeda cukup baik 0.3 ≤ aj ≤ 0.39 memerlukan revisi sedikit atau tidak 0.2 ≤ aj ≤ 0.29 memerlukan revisi atau disisihkan −1 ≤ aj ≤ 0.19 disisihkan atau revisi total c. Kemampuan peserta ( ) Kemampuan peserta tes pada suatu butir soal dapat diprediksi oleh seperangkat faktor yaitu kemampuan verbal, kemampuan psikomotor, kemampuan kognitif, dan sebagainya.
, jika memperoleh skor kategori k pada butir soal ke-j 0, jika selainnya Dengan definisi yang telah dijelaskan maka fungsi nisbah kemungkinan (L) dapat dinotasikan sebagai berikut:
P xi | Pi x jk | mj n x Pi x jk | Pjk jki j 1 k 0
,.., f x jki ;
Muraki & Wang (1992) mendefinisikan fungsi likelihood untuk model IRT adalah sebagai berikut:
m n j L x1k , x2k ,..., x jk | Pjk j 1 k 0
x jki
l x | ln L x1ki , x2 ki , ..., x jki |
1 x jki
1 Pjk
n mj x 1 x jki ln Pjk jki 1 Pjk j 1k 0 mj n x jki ln Pjk 1 x jki ln 1 Pjk j 1 k 0
dengan l 0, a , b , b j j jk di mana
Pendugaan Parameter Langkah pertama dan paling penting dalam aplikasi IRT adalah pendugaan parameter, baik parameter kemampuan peserta tes (θ) maupun parameter karakteristik butir soal ( , ). Pendekatan yang dapat digunakan untuk pendugaan parameter butir soal yaitu metode kemungkinan maksimum (maximum likelihood estimation, MLE) (Matthew 2007). Prinsip dasar dari metode MLE dalam Hogg & Craig (1978) adalah jika terdapat contoh acak x1, x2, ..., xn dari sebuah sebaran yang memiliki suatu fungsi kepekatan peluang f(x;θ), θ ϵ Ω. Fungsi kepekatan peluang bersama dari x1, x2, ..., xn adalah f(x1;θ), f(x2;θ), ..., f(xn;θ). Fungsi kepekatan peluang bersama ini dipandang sebagai fungsi dari θ. Muraki & Wang (1992) mendefinisikan fungsi kepekatan peluang bersama untuk model IRT GPCM adalah sebagai berikut:
L ; x1ki , x2ki ,..., x jki f x1ki ; , f x2ki ;
,
adalah parameter butir soal.
Grafik Categorical Response Function (CRF) Grafik Categorical Respone Function (CRF) dalam du Toit (2003) adalah hubungan antara peluang menjawab benar memperoleh skor kategori k pada butir ke-j dengan kemampuan peserta tes (θ). Semakin tinggi kemampuan peserta tes, maka peluang untuk menjawab benar sebuah butir soal dengan benar akan semakin meningkat.
Gambar 2 Grafik CRF pada 4 kategori Gambar 2 merupakan ilustrasi CRF yang diambil dari Bjorner (2007) terdiri dari 4 skor kategori yaitu 1, 2, 3, dan 4. Grafik CRF disajikan per butir soal, pada gambar dapat
5
dilihat untuk butir soal ke-j memiliki daya pembeda (aj) sebesar 2.0 dan tingkat kesukaran pada kategori menjawab sebesar (bj1= −0.5, bj2= 0.5, bj3= 1.5). Fungsi Informasi Fungsi Informasi (IF) adalah sebuah fungsi yang mengukur sampai sejauh mana model yag dipilih mampu memberikan informasi tentang pendugaan tingkat kemampuan sepanjang skala latent kemampuan. Semakin tinggi puncak IF, semakin informatif model yang dipilih mampu menjelaskan traits-level para peserta tes. Fungsi informasi (IF) memenuhi persamaan sebagai berikut: mj I j Pjk k 0
2
2
ln Pjk
dengan Pjk(θ) merupakan proporsi menjawab benar butir soal ke-j memperoleh kategori k pada tingkat kemampuan θ. Sebagai akumulasi keseluruhan fungsi informasi butir soal, maka akan diperoleh fungsi informasi tes atau test information (TI), yang secara matematis formulanya adalah: n TI I j j 1 Informasi tes menjelaskan sejauh mana tes mampu mengukur tingkat kemampuan tertentu dengan cermat. Apakah tes yang dikembangkan mampu mengukur dengan baik kelompok peserta tes dengan kemampuan rendah, sedang, dan tinggi saja atau justru mampu mengukur dengan semua tingkat kemampuan. Nilai informasi yang besar menunjukkan bahwa kemampuan kelompok peserta tes dengan kemampuan tertentu dapat diduga dengan baik, yaitu semua hasil pendugaan akan memiliki nilai yang cukup dekat dengan nilai sebenarnya. Jika nilai informasi yang didapatkan kecil, maka kemampuan tidak dapat diduga dengan tepat dan nilai pendugaan akan tersebar luas pada semua tingkat kemampuan (Baker 2001). Sedangkan untuk simpangan baku pengukuran (SE) dapat dihitung untuk tiaptiap kemampuan θ, dengan formula: SE
1 TI
Simpangan baku pengukuran merupakan fungsi yang berkebalikan dengan IF. Makin tinggi IF, maka makin rendah simpangan baku pengukuran (Widhiararso 2010).
Uji Kesesuaian Model IRT merupakan pemodelan terhadap respon-respon para peserta tes. Berdasarkan model yang dipilih, model manakah yang paling mampu menjelaskan data respon tersebut. Oleh karena itu, diperlukan uji kesesuaian model. Uji kesesuaian model IRT digunakan untuk menguji karakteristik butir soal setelah direspon oleh berbagai kemampuan peserta tes. Uji kesesuaian (goodness of fit test) model IRT dilakukan untuk setiap butir soal yang direspon oleh berbagai kemampuan peserta tes. Pengujian menggunakan statistika yang berdistribusi khi-kuadrat (chi-square) (Hambleton & Swaminathan 1985). Dengan rumus kesesuaian model sebagai berikut: Pjk E k | Z jk
1 N jk
E k | 1 E k |
mj n E k | kPjk j 1 k 0 m 2 2 dengan Z jk ~ m x , j 1
di mana Pjk (θ) = peluang peserta berkemampuan θ memperoleh skor kategori k pada butir soal ke-j E(k|θ) = nilai harapan Njk = banyaknya peserta tes memperoleh skor kategori k pada butir soal ke-j x = banyaknya parameter dalam model m = banyaknya kategori kemampuan yang bergantung pada pendugaan kemampuan peserta tes. Hipotesis nol dalam pengujian ini menyatakan bahwa kurva CRF sesuai untuk data respon butir soal ke-j. Kesesuaian model untuk suatu butir soal ditunjukkan oleh nilai khi-kuadrat empiris butir soal yang tidak melebihi nilia khi-kuadrat teoritis. Kriteria Butir Soal Pemilihan kriteria butir soal dilihat berdasarkan besarnya nilai parameter butir soal dan uji kesesuaian model. Menurut Lord (1980) dalam teori respon butir, butir soal yang ideal adalah butir soal yang memiliki nilai daya pembeda berkisar 1 (satu). Berikut kriteria untuk kualitas butir soal:
6
1. Soal yang baik adalah model setiap soal yang sesuai dengan model jika nilai khikuadrat empiris butir soal tidak melebihi nilai khi-kuadrat teoritis (nilai-p > 0.05), memiliki nilai daya pembeda lebih dari 0.5, dan tingkat kesukaran butir soal berada di antara −2 sampai dengan 2. 2. Soal cukup baik adalah soal yang sesuai model jika nilai khi-kuadrat empiris butir soal tidak melebihi nilai khi-kuadrat teoritis (nilai-p > 0.05) dan salah satu kriteria soal baik tidak dipenuhi. 3. Soal yang belum dapat digambarkan adalah soal yang tidak sesuai dengan model yang digambarkan jika nilai khikuadrat empiris butir soal lebih besar nilai khi- kuadrat teoritis (nilai-p < 0.05). METODOLOGI Data Penelitian ini menggunakan data yang diperoleh dari hasil jawaban Ujian Tengah Semester (UTS) mata kuliah Kalkulus TPB IPB yang dilaksanakan pada tanggal 3 April 2012. Jumlah peserta ujian sebanyak 1702 mahasiswa. Jumlah butir soal sebanyak 10 butir soal uraian. Penilaian dilakukan dengan pemberian skor maksimal untuk masingmasing butir soal, skor 10 untuk jawaban benar kecuali untuk nomor 8 memiliki skor 15 jika butir soal dijawab dengan benar berdasarkan urutan atau langkah dalam menjawab butir soal. Total nilai maksimum yaitu 105 jika butir soal terjawab dengan benar dan lengkap sesuai langkah menjawab soal. Penyajian data mata kuliah Kalkulus dapat dilihat pada Lampiran 1. Soal UTS TPB IPB mata kuliah Kalkulus terdiri dari 10 soal: Tabel 3 Materi soal UTS TPB IPB mata kuliah Kalkulus Nomor Soal 1 2 3 4 5 6 7 8 9 10
Materi Nilai minimum maksimum Rumus turunan Turunan implisit Aturan rantai Turunan sebagai fungsi Turunan fungsi trigonometri Laju terkait Limit takhingga, asimtot Teorema nilai rata-rata Aplikasi Turunan (pengoptimuman)
Metode Tahapan-tahapan yang dilakukan dalam penelitian ini adalah: 1. Penyiapan data hasil jawaban peserta UTS TPB IPB untuk mata kuliah Kalkulus pada tahun ajaran 2011/2012 2. Melakukan eksplorasi data, statistika deskriptif terhadap skor yang diperoleh mahasiswa 3. Melakukan pengujian asumsi teori respon butir terhadap skor yang diperoleh mahasiswa, meliputi uji asumsi dimensi tunggal dengan melihat akar ciri dalam analisis faktor dan uji asumsi kebebasan lokal antara butir soal 4. Menghitung reliabilitas skor tes 5. Menghitung parameter karakteristik butir soal: a. indeks daya pembeda butir soal ke-j (aj ) b. indeks kesukaran butir soal ke-j (bj) c. indeks kesukaran kategorik k butir soal ke-j (bjk ) 6. Menghitung parameter kemampuan ( ) 7. Penaksiran Generalized Partial Credit Model disajikan dalam grafik Categorical Response Function (CRF) untuk masingmasing butir soal 8. Menghitung nilai Fungsi Informasi (IF) 9. Uji kesesuaian model untuk menguji karakteristik setiap butir soal 10. Pengklasifikasian kriteria butir soal 11. Interpretasi hasil yang telah didapatkan. Perangkat lunak yang digunakan dalam penelitian adalah PARSCALE 4 dan R.2.15.0.
HASIL DAN PEMBAHASAN Eksplorasi Data Nilai statistik skor mahasiswa dalam UTS TPB IPB mata kuliah Kalkulus dapat dilihat pada Tabel 4. Skor maksimum yang diperoleh peserta tes adalah 97 dan skor minimum peserta tes adalah 1. Rata-rata skor peserta tes dalam menjawab soal adalah 45. 593. Tabel 4 Statistik skor mahasiswa UTS TPB IPB mata kuliah Kalkulus Statistik Rataan Skor Standar Deviasi Nilai Minimum Nilai Maksimum Median
Skor Nilai Mahasiswa 45.593 20.286 1 97 50
7
Dilihat dari proporsi mahasiswa dalam menjawab soal, untuk soal nomor 1 dari 1702 mahasiswa, kategori skor yang dihasilkan mahasiswa lebih banyak mendapatkan skor kategori nilai 10 yaitu sebanyak 75.210%, begitupun untuk nomor 2, 3, 4, dan 5, mahasiswa lebih banyak mendapatkan skor kategori nilai 10 yaitu sebanyak 45.060%, 50.590%, 37.600%, 35.310%. Soal nomor 6, mahasiswa lebih banyak mendapatkan skor kategori nilai 6 yaitu sebanyak 18.040%. Soal nomor 7, mahasiswa lebih banyak mendapatkan skor kategori nilai 1 sebanyak 49.880%. Soal nomor 8, 9, dan 10, mahasiswa lebih banyak mendapatkan skor kategori nilai 0 yaitu sebanyak 18.160%, 27.260%, dan 56.690%. Untuk selengkapnya dapat dilihat pada Lampiran 2. Asumsi-asumsi Model IRT Asumsi dimensi tunggal dapat diperiksa dengan melihat akar ciri dalam analisis faktor, menghitung rasio antara akar ciri yang pertama dan kedua. Jika rasionya tinggi, maka modelnya bersifat dimensi tunggal.
Gambar 3 Scree plot hasil analisis faktor Hasil analisis faktor dapat dilihat pada Gambar 3. Faktor pertama memiliki akar ciri sebesar 4.302. Akar ciri pada faktor kedua sebesar 1.045. Faktor-faktor lainnya memiliki akar ciri kurang dari satu. Berdasarkan hasil analisis faktor, perbandingan akar ciri pertama dengan akar ciri kedua lebih besar yaitu 4.117. Hal ini sudah cukup mengindikasikan bahwa ada satu faktor yang dianggap paling dominan yang mendasari para peserta tes memberikan respon pada butir soal atau asumsi dimensi tunggal terpenuhi. Kebebasan lokal antara butir soal sudah diasumsikan dari awal oleh pakar pembuat soal bahwa tidak ada satu pun soal yang memberikan petunjuk menjawab untuk soal yang lain. Artinya antara butir soal sudah diasumsikan saling bebas.
Reliabilitas Skor Tes Reliabilitas skor tes dengan 10 butir soal dapat dilihat pada Tabel 5. Semakin tinggi koefisien reliabilitas skor tes (mendekati 1), makin tinggi pula ketepatan dan kekonsistenan skor tes. Reliabilitas skor tes dilihat menggunakan koefisien . Berdasarkan Tabel 5 dapat dilihat bahwa setiap butir soal memiliki nilai koefisien yang mendekati satu, dengan nilai koefisien sebesar 0.846 untuk semua butir soal. Hal ini menunjukkan bahwa butir soal mata kuliah Kalkulus memiliki tingkat ketepatan dan kekonsistenan peserta tes dalam menjawab soal sudah cukup baik. Tabel 5 Reliabilitas skor tes butir soal mata kuliah Kalkulus Reliabilitas Skor Tes Koefisien Nomor Soal 1 0.847 2 0.840 3 0.829 4 0.819 5 0.825 6 0.836 7 0.823 8 0.840 9 0.824 10 0.829 Semua butir soal 0.846 Model Teori Respon Butir GPCM Hasil pendugaan parameter karakteristik butir soal ujian mata kuliah Kalkulus menggunakan model GPCM (Lampiran 3) menunjukkan bahwa soal-soal mata kuliah Kalkulus mempunyai nilai daya pembeda dan tingkat kesukaran butir soal yang beragam. Hasil pendugaan dan kriteria daya pembeda soal disajikan pada Tabel 6. Berdasarkan Tabel 6, nilai aj (daya pembeda) berkisar di antara 0.238 sampai dengan 0.721. Berdasarkan hasil pendugaan parameter aj (daya pembeda), soal nomor 1 dan 5 memiliki nilai daya pembeda sebesar 0.278 dan 0.238 yang nilainya berada diantara 0.2 sampai 0.29, artinya soal memerlukan revisi atau disisihkan. Soal nomor 2 memiliki nilai daya pembeda sebesar 0.374 yang nilainya berada diantara 0.3 sampai 0.39, artinya soal memerlukan revisi sedikit atau tidak. Soal nomor 3, 4, 6, 7, 8, dan 9 memiliki nilai daya pembeda diantara 0.4 sampai 0.69, artinya soal memiliki daya pembeda yang cukup baik. Soal nomor 10, memiliki nilai daya pembeda 0.721 yang nilainya berada diantara 0.7 sampai 1.0, artinya soal memiliki
8
nilai daya pembeda baik sekali. Sehingga soal nomor 10 mengindikasikan nilai indeks yang dapat membedakan kelompok peserta tes yang berkemampuan tinggi dan berkemampuan rendah. Tabel 6 Hasil pendugaan dan kriteria daya pembeda butir soal Soal 1
aj 0.278
2
0.374
3
0.492
4
0.400
5
0.238
6
0.430
7
0.407
8
0.547
9
0.587
10
0.721
Kriteria Daya Pembeda
memerlukan revisi atau disisihkan memerlukan revisi sedikit / tidak memiliki daya pembeda cukup baik memiliki daya pembeda cukup baik memerlukan revisi atau disisihkan memiliki daya pembeda cukup baik memiliki daya pembeda cukup baik memiliki daya pembeda cukup baik memiliki daya pembeda cukup baik memiliki daya pembeda baik sekali
Hasil pendugaan dan kriteria indeks kesukaran butir soal disajikan pada Tabel 7. Berdasarkan Tabel 7, soal nomor 1 memiliki nilai indeks kesukaran sebesar 0.886 yang nilainya lebih dari 0.7, artinya soal memiliki kriteria mudah. Soal nomor 2, 3, 4, 5, dan 6 memiliki nilai indeks kesukaran berada diantara 0.3 sampai 0.7, artinya soal memiliki kriteria sedang. Sedangkan untuk soal nomor 7, 8, 9, dan 10 memiliki nilai indeks kesukaran kurang dari 0.3, artinya soal memiliki kriteria sukar. Tabel 7 Hasil pendugaan dan kriteria indeks kesukaran butir soal Butir Soal 1 2 3 4 5 6 7 8 9 10
Indeks Kesukaran 0.886 0.698 0.681 0.533 0.627 0.539 0.208 0.240 0.259 0.069
Hasil pendugaan parameter daya pembeda, indeks kesukaran butir soal, dan nilai-p (chisquare) disajikan pada Tabel 8. Berdasarkan Tabel 8, tipe soal dibedakan menjadi tiga yaitu soal baik, cukup baik, dan belum dapat digambarkan. Berdasarkan hasil pendugaan parameter model GPCM, semua butir soal memiliki kriteria soal yang cukup baik. Dengan nilai khi-kuadrat empiris butir soal tidak melebihi nilai khi-kuadrat teoritis (nilai-p > 0.05). Soal nomor 1, 2, 3, 4, 5, 6, dan 7 memiliki nilai daya pembeda yang kurang dari 0.5 dan nilai indeks kesukaran per kategori butir soal (b11, b12, b13, ..., b710) tidak berada pada rentang −2 sampai dengan 2. Soal nomor 8, 9, dan 10 memiliki nilai daya pembeda yang lebih dari 0.5 dan nilai indeks kesukaran per kategori butir soal (b81, b82, b83, ..., b108) tidak berada pada rentang −2 sampai dengan 2. Tabel 8 Kriteria butir soal Indeks Soal 1 2 3 4 5 6 7 8 9 10
Kesukaran 0.886 0.698 0.681 0.533 0.627 0.539 0.208 0.240 0.259 0.069
0.278 0.374 0.492 0.400 0.238 0.430 0.407 0.547 0.587 0.721
Nilaip
Kriteria Soal
0.720 0.710 0.670 0.610 0.680 0.640 0.470 0.500 0.440 0.260
CB CB CB CB CB CB CB CB CB CB
Keterangan CB : Cukup baik Sedangkan statistik nilai dugaan parameter kemampuan disajikan pada Tabel 9. Rataan kemampuan peserta tes sebesar 0.032 dengan kemampuan diantara −2.680 sampai dengan 2.248. Tabel 9 Statistik parameter kemampuan peserta tes mata kuliah Kalkulus pada model GPCM Nilai Statistik
Kriteria Mudah Sedang Sedang Sedang Sedang Sedang Sukar Sukar Sukar Sukar
Daya pembeda
Rataan Ragam Standar Deviasi Minimum Maksimum
Kemampuan Peserta Tes 0.032 0.745 0.863 −2.680 2.248
Penaksiran GPCM disajikan dalam grafik Categorical Response Function (CRF) untuk masing-masing butir soal. Gambar dibawah ini merupakan penaksiran GPCM untuk butir soal ke-10.
9
1.0
Item Response Category Characteristic Curves - Item: No10
0.6 0.4
9
0.2
Probability
0.8
1
0.0
2 3 -4
4
-2
6
5
8
7
0
2
4
Ability
Gambar 4 Grafik CRF butir soal nomor 10 Grafik CRF pada butir soal nomor 10, pada gambar dapat dilihat untuk butir soal ke10 memiliki daya pembeda (a10) sebesar 0.721 dan tingkat kesukaran pada kategori menjawab sebesar (b10(1)= 1.153, b10(2)= 2.117, b10(3)= 1.832, b10(4)=2.189, b10(5)= 1.299, b10(6)= 4.231, b10(7)=2.479, b10(8)= 0.225). Untuk nomor 1, 2, 3, 4, 5, 6, 7, 8, dan 9 dapat dilihat pada lampiran 4. Berdasarkan hasil uji kesesuaian model yang disajikan pada lampiran 3, menunjukkan bahwa 100% soal dapat digambarkan dengan model. Hal ini terlihat dari kriteria butir soal yang dihasilkan. Dari 10 butir soal mata kuliah Kalkulus, soal tidak ada yang menunjukkan butir soal tidak dapat digambarkan oleh model, hal ini terlihat dari nilai khi-kuadrat empiris butir soal tidak melebihi nilai khi-kuadrat teoritis (nilai-p > 0.05). Fungsi Informasi Nilai informasi yang dapat dihitung untuk setiap level kemampuan pada rentang kemampuan dari tingkat terendah hingga tertinggi. Karena kemampuan merupakan peubah kontinu, maka nilai informasi juga akan menjadi peubah kontinu. Jika jumlah informasi diplot terhadap kemampuan tertentu, hasilnya adalah grafik fungsi informasi seperti ditunjukkan di bawah ini.
0.0
0.1
Density
0.2
0.3
0.4
Kernel Density Estimation for Ability Estimates
-3
-2
-1
0
1
2
Ability
Gambar 5 Grafik fungsi informasi
3
Gambar 5 menunjukkan bahwa dari rentang kemampuan dari tingkat terendah hingga tertinggi, nilai informasi yang diberikan oleh tes mata kuliah Kalkulus telah menghasilkan nilai informasi maksimum pada level kemampuan 0.5. Dalam rentang ini, kemampuan peserta tes telah diperkirakan dengan tingkat ketepatan atau presisi tertentu. Di luar rentang ini, nilai informasi yang diberikan oleh tes cenderung menurun dengan drastis. Hasil fungsi informasi yang dapat dihitung untuk setiap level kemampuan pada rentang kemampuan dari tingkat terendah hingga tertinggi disajikan pada Tabel 10. Tabel 10 Fungsi informasi model GPCM mata kuliah Kalkulus Fungsi Informasi Tes Informasi Simpangan Baku Total Informasi (%)
45.790 0.148 72.470
Berdasarkan Tabel 10 nilai tes informasi (IF) sebesar 45.790 dan simpangan baku pengkukuran sebesar 0.148. Tes informasi (IF) memiliki fungsi yang berkebalikan dengan simpangan baku pengukuran, semakin tinggi nilai IF maka semakin rendah nilai simpangan baku pengukuran. Total informasi yang dihasilkan sebesar 72.470%, artinya tes mampu memberikan informasi tentang pendugaan tingkat kemampuan peserta tes pada rentang kemampuan dari tingkat terendah hingga tertinggi sebesar 72.470 % dan model GPCM cukup informatif mampu menjelaskan tingkat kemampuan peserta tes.
KESIMPULAN DAN SARAN Kesimpulan Berdasarkan hasil analisis, parameter daya pembeda dan indeks kesukaran butir soal memiliki nilai yang beragam. Hasil pendugaan parameter daya pembeda, soal nomor 1 dan 5 memerlukan revisi atau disisihkan, soal nomor 2 memerlukan revisi sedikit, soal nomor 3, 4, 6, 7, 8, dan 9 memiliki daya pembeda yang cukup baik, dan soal nomor 10 memiliki daya pembeda yang baik sekali artinya soal mampu membedakan kemampuan peserta tes. Berdasarkan hasil pendugaan parameter indeks kesukaran, soal nomor 1 termasuk kriteria soal mudah, soal nomor 2, 3, 4, 5, dan 6 termasuk kriteria soal sedang dan soal nomor 7, 8, 9, dan 10 termasuk kriteria soal sukar. Berdasarkan
10
hasil, semua butir soal dapat dikategorikan soal dengan kualitas cukup baik Total informasi yang dihasilkan sebesar 72.470%, artinya tes mampu memberikan informasi tentang pendugaan tingkat kemampuan peserta tes pada rentang kemampuan dari tingkat terendah hingga tertinggi sebesar 72.470% dan model GPCM cukup informatif mampu menjelaskan tingkat kemampuan peserta tes. Berdasarkan hasil uji kesesuain model, menunjukkan bahwa 100% soal dapat digambarkan dengan model. Hal ini terlihat dari nilai-p > 0.05. Dari 10 butir soal mata kuliah Kalkulus tidak ada butir soal tidak dapat digambarkan oleh model. Saran Kasus tes uraian dengan data politomi menggunakan metode Teori Respon Butir (IRT), selain menggunakan metode Generalized Partial Credit Model (GPCM) bisa dilakukan dengan pendekatan lain yaitu dengan metode Partial Credit Model (PCM) dengan diasumsikan memiliki daya pembeda soal yang sama.
DAFTAR PUSTAKA Baker FB. 2001. The Basic of Item response Theory. University of Maryland: ERIC Clearinghouse on asessment and Evaluation. Bjorner JB. 2007. A Macro for Item Fit and Local Dependence Test under IRT Model. School of Education University of Pittsburgh: Quality Metric Incorporated. Crocker L, Algina J. 1986. Introduction to Classical and Modern Test Theory. New York: Holt Rinehart and Winston, Inc.. Du Toit M. 2003. IRT from SSi: BILOG-MG, MULTILOG, PARSCALE, TESTFACT. Lincolnwood: Scientific Software International. Inc. Gronlund NE, Linn RL. 1990. Measurement and evaluation in teaching (6th ed). New York: Collier Macmillan Publishers. Hambleton RK, Swaminathan H. 1985. Item Response Theory. Boston, MA: Kluwer Inc. Hogg RV, Craig AT. 1978. Introduction to Mathematical Statistics. New York: Macmillan Publishing Co Inc. Lord ML. 1980. Application of Item Response
Theory to practical testing problems. New Jersey: Lawrence Erlbaum Assosiates, Publisher,. Matthew SJ. 2007. Marginal Maximum Likelihood Estimation of Item Response Model in R. Journal of Statistical Software. http://www.jstatsoft.org/ [27 April 2012]. Muraki E, Bock RD. 1997. Parscale 3: IRT based test scoring and item analysis for graded items and rating scales. Chicago: Scientific Software International, Inc. Muraki E, Wang M. 1992. Issues relating to the marginal maximum likelihood estimation of the partial credit model. San Francisco CA: Paper presented at the annual meeting of the American Educational Research Association. Widhiararso W. 2010. Model Politomi dalam Teori Respon Butir. Yogyakarta: Fakultas Psikologi, UGM. Zainul A, Nasution N. 2001. Penilaian hasil belajar. Jakarta: PAU-PPAI, UT.
LAMPIRAN
Lampiran 1 Tabulasi data mata kuliah Kalkulus UTS TPB IPB Tahun Ajaran 2011/2012 NRP Mahasiswa
Soal No.1
Soal No.2
Soal No.3
Soal No.4
Soal No.5
Soal No.6
Soal No.7
Soal No.8
Soal No.9
Soal No.10
A14090001
6
4
7
2
2
1
0
0
0
0
22
A14090089
0
5
1
0
2
0
1
0
0
0
9
A14090093
4
7
1
0
5
0
0
0
0
0
17
A14100005
0
0
0
0
0
0
1
0
0
0
1
A14100038
7
0
3
0
10
0
1
0
0
0
21
A24090124
10
0
1
2
1
0
1
0
0
0
15
A24090171
10
4
10
10
9
6
0
4
3
0
56
A24090192
10
5
0
0
2
0
1
0
0
0
18
A24100010
10
0
2
0
1
0
1
0
0
0
14
A34090017
4
5
4
2
2
0
0
0
0
0
17
A34090049
10
5
1
0
6
1
1
0
1
0
25
A44090001
5
0
6
0
5
2
1
0
0
0
19
...
...
...
...
...
...
...
...
...
...
...
...
I34100138
7
0
2
0
1
1
1
0
0
0
Tolal skor
12
12
Lampiran 2 Proporsi peserta tes menjawab benar per kategori skor Soal No 1 Soal No 2 Kategori Proporsi Kategori Proporsi 0 0.710% 0 5.880% 1 2.700% 1 2.000% 2 2.760% 2 0.760% 3 0.820% 3 2.230% 4 2.880% 4 3.700% 5 1.880% 5 33.670% 6 1.180% 6 1.000% 7 2.940% 7 0.940% 8 5.930% 8 1.470% 9 3.000% 9 3.290% 10 75.210% 10 45.060% 100% 100% Total
Soal No 3 Kategori Proporsi 0 6.170% 1 9.400% 2 7.050% 3 2.410% 4 2.350% 5 7.640% 6 9.400% 7 1.650% 8 1.350% 9 2.000% 10 50.590% 100%
Soal No 4 Kategori Proporsi 0 22.090% 1 7.870% 2 12.870% 3 0.410% 4 5.990% 5 0.060% 6 3.940% 7 0.240% 8 8.230% 9 0.710% 10 37.600% 100%
Soal No 5 Kategori Proporsi 0 3.410% 1 12.930% 2 10.990% 3 3.880% 4 6.520% 5 5.520% 6 4.000% 7 1.590% 8 3.700% 9 12.160% 10 35.310% 100%
13
Lampiran 2 (Lanjutan) Proporsi peserta tes menjawab benar perkategori skor Soal No 6 Soal No 7 Soal No 8 Kategori Proporsi Kategori Proporsi Kategori Proporsi 0 8.520% 0 18.450% 0 18.160% 1 13.810% 1 49.880% 1 16.980% 2 6.640% 2 5.410% 2 10.750% 3 3.110% 3 1.880% 3 11.280% 4 1.650% 4 1.290% 4 8.340% 5 2.880% 5 15.920% 5 8.520% 6 18.040% 6 3.000% 6 6.930% 7 17.570% 7 0.710% 7 5.760% 8 9.690% 8 0.290% 8 4.050% 9 8.400% 9 0.120% 9 3.170% 10 9.690% 10 3.060% 10 2.530% 11 0.880% 12 1.470% 13 0.470% 14 0.410% 15 0.290% 100% 100% 100%
Soal No 9 Kategori Proporsi 0 27.260% 1 23.440% 2 13.810% 3 8.810% 4 5.990% 5 3.350% 6 2.120% 7 3.580% 8 6.170% 9 1.060% 10 4.410%
Soal No 10 Kategori Proporsi 0 59.690% 1 25.790% 2 7.700% 3 3.410% 4 1.410% 5 1.350% 6 0.240% 7 0.120% 8 0.000% 9 0.000% 10 0.290%
100%
100%
14
Lampiran 3 Nilai Parameter butir soal Ujian Tengah Semester mata kuliah Kalkulus untuk model GPCM Soal 1 2 3 4 5 6 7 8 9 10
Deskripsi Soal
Daya Pembeda aj Nilai minimum maksimum 0,278 Rumus turunan 0,374 Turunan implisit 0,492 Aturan rantai 0,400 Turunan sebagai fungsi 0,238 Turunan fungsi trigonometri 0,430 Laju terkait 0,407 Limit takhingga, asimtot 0,547 Teorema nilai rata-rata 0,587 Aplikasi Turunan (pengoptimuman) 0,721 Nilai maksimum 0,721 Nilai minimum 0,238
bj 0,886 0,698 0,681 0,533 0,627 0,539 0,208 0,240 0,259 0,069 0,886 0,069
bj1 -6,441 1,385 -2,152 1,651 -6,366 -2,190 -2,882 -0,542 -0,228 1,153 1,651 -6,441
bj2 -1,682 1,153 -0,401 -1,558 -0,080 0,903 5,343 0,409 0,881 2,117 5,343 -1,682
bj3 2,461 -3,550 1,383 6,819 3,615 1,212 2,740 -0,156 0,938 1,832 6,819 -3,550
bj4 -5,014 -2,052 -0,477 -5,382 -2,326 1,122 1,170 0,737 1,016 2,189 2,189 -5,382
Model GPCM Tingkat Kesukaran bj5 bj6 bj7 bj8 0,559 0,814 -3,444 -2,647 -6,182 8,800 0,491 -0,960 -2,668 -0,565 3,450 0,552 7,107 -5,997 5,238 -6,453 0,515 1,346 3,509 -2,920 -1,374 -4,122 0,398 1,840 -5,297 4,759 4,289 3,120 0,283 0,835 1,014 1,460 1,495 1,430 -0,050 0,062 1,299 4,231 2,479 0,225 7,107 8,800 5,238 3,120 -6,182 -5,997 -3,444 -6,453
Nilai-p Kriteria Soal bj9 2,017 -1,850 -0,544 5,255 -4,454 0,953 2,141 1,387 3,981
bj10 bj11 bj12 bj13 bj14 bj15 -10,939 -6,465 -5,916 -7,782 -3,894 0,465 -5,014 1,471 3,062 0,406 3,632 1,841 2,137 -1,020
0,720 0,710 0,670 0,610 0,680 0,640 0,470 0,500 0,440 0,260
CB CB CB CB CB CB CB CB CB CB
5,255 1,471 3,062 0,406 3,632 1,841 2,137 -4,454 -10,939 3,062 0,406 3,632 1,841 2,137
Keterangan aj : indeks daya pembeda butir soal ke-j bj : indeks kesukaran butir soal ke-j bjk : indeks kesukaran kategorik k butir soal ke-j CB : Cukup Baik*
15
Lampiran 4 Grafik CRF butir soal Item Response Category Characteristic Curves - Item: No1 1.0
1.0
Item Response Category Characteristic Curves - Item: No2 11
0.8 0.6 0.4
0.4
Probability
0.6
1
6
0.2
2 3
0.0
1
2
4 -4
5
-2
6
9
8
7
0
0.0
0.2
Probability
0.8
11
10 2
4
-4
5
4
3
7
-2
1.0
1.0
0.8 0.6 0.2
2
1
0.4
Probability
0.6 0.4
3 6 4
5
2
7 8
0 Ability
10
9 2
3 5
0.0
Probability
0.8
11
1
0.2
4
Item Response Category Characteristic Curves - Item: No4 11
0.0
2
Ability
Item Response Category Characteristic Curves - Item: No3
-2
10
9
0
Ability
-4
8
4
4 -4
-2
6 0
7
9 10
8 2
4
Ability
16
Lampiran 4 (Lanjutan) Grafik CRF butir soal Item Response Category Characteristic Curves - Item: No5
0.8
7
10 5
-2
6
7
8
9
0
10
8 9
3 0.0
0.0
4 -4
2
4
4 -4
6
5
-2
0
2
4
Item Response Category Characteristic Curves - Item: No7
Item Response Category Characteristic Curves - Item: No8
0.8
11
2
0.4
1
0.6
Probability
0.6
1
0.4
0.8
1.0
Ability
1.0
Ability
0.2
0.2
16 2
15
13 3 -4
-2
4
7
5 0 Ability
8
10
9 2
3
0.0
6
0.0
Probability
0.6
Probability
3
1
2
0.2
2
11 1
0.4
0.4
0.6
11
0.2
Probability
0.8
1.0
1.0
Item Response Category Characteristic Curves - Item: No6
4
-4
4 -2
5
6
7
9
8 0
10
11
14
12 2
4
Ability
17
Lampiran 4 (Lanjutan) Grafik CRF butir soal
1.0
Item Response Category Characteristic Curves - Item: No10
1.0
Item Response Category Characteristic Curves - Item: No9
0.8
0.8
1 1
-4
-2
5
6 0 Ability
10
7 2
2
0.0
4
0.6 0.2
8 3
9
0.4
Probability
0.6 0.4 0.2
9 2
0.0
Probability
11
4
3 -4
-2
4
5 0
6
8
7 2
4
Ability
18