Seminar Nasional Mesin dan Industri (SNMI X) 2016 Riset Multidisiplin untuk Menunjang Pengembangan Industri Nasional Jakarta, 21-22 April 2016
PENENTUAN INTERVAL PERAWATAN DENGAN MENGGUNAKAN MODEL AGE REPLACEMENT DI PT. “X” Rizki Wahyuniardi, Arumsari H., Rizki Triana Teknik Industri Fakultas Teknik Universitas Pasundan Bandung Jl. Dr. Setiabudi No.193 Bandung - 40153 Telp/Fax: 022-2019335, e-mail:
[email protected] Abstrak PT. “X” (Persero) adalah perusahaan yang bergerak dibidang pembuatan pesawat terbang di Indonesia dan memiliki kompetensi dalam perancangan, produksi dan pengembangan produk. Untuk memroduksi pesawat terbang dibutuhkan banyak part/komponen dari bagian produk tersebut yang membutuhkan banyak mesin dalam pembuatannya. Untuk itu, dibutuhkan sistem perawatan mesin yang tepat. Sistem perawatan mesin di PT. “X” terdiri dari sistem perawatan perbaikan (corrective maintenance) dan pencegahan (preventive maintenance). Namun sistem perawatan preventive maintenance tidak dilakukan pada semua komponen, yang memungkinkan mesin rusak dalam pembuatan sebuah komponen kritis. Pada penelitian ini akan dibuat sistem perawatan preventive untuk komponen kritis yang terdapat pada mesin kritis di PT. “X” yaitu komponen Coller Thrust pada mesin milling AABD06, dengan menghitung interval penggantian pencegahan komponen, sehingga diharapkan dapat mencegah terjadinya kerusakan komponen secara tiba-tiba dan dapat meminimasi downtime. Dari hasil penelitian diperoleh interval waktu penggantian pencegahan yang optimal untuk komponen kritis Collar Thrust adalah setiap 450 jam. Sedangkan interval waktu pemeriksaan optimal untuk komponen tersebut adalah 412 jam. Terjadi penurunan total downtime yang diakibatkan kerusakan komponen dari 54,50 jam menjadi 6,94 jam. Dihasilkan pula penurunan total biaya dengan perawatan dari Rp. 197.427.088,94 menjadi Rp. 119.902.134,59. Kata kunci: minimasi downtime, age replacement, preventive maintenance
PENDAHULUAN PT. “X” (Persero) adalah sebuah perusahaan yang bergerak dibidang produksi dan perawatan pesawat terbang di Indonesia. Penelitian ini dilaksanakan di departemen Facility Maintenance. Departemen ini memiliki tugas untuk melakukan perawatan pada mesinmesin yang ada di perusahaan. Sistem perawatan di perusahaan ini terdiri dari sistem perawatan perbaikan (corrective maintenance) dan sistem perawatan pencegahan (preventive maintenance). Namun sistem perawatan pencegahan yang ada dinilai masih kurang efektif karena tidak semua komponen memiliki penjadwalan preventive. Dengan kerusakan mesin secara tiba-tiba sehingga memerlukan perbaikan, maka sistem akan berhenti. Padahal, untuk komponen kritis yang sedang dibuat, kerusakan mesin secara tibatiba akan menyebabkan kerugian perusahaan yang tidak sedikit. Oleh karen itu, perumusan masalah yang dihadapi pada penelitian ini adalah bagaimana menentukan interval perawatan pencegahan komponen kritis di mesin milling tertentu guna meminimasi downtime dan bagaimana menghitung biaya perawatan pencegahan kerusakan komponen kritis di mesin milling tertentu tersebut. PENDEKATAN PEMECAHAN MASALAH Dalam penelitian ini digunakan model age replacement (Barlow, R.E. and Proschan, F., 1965, Jardine, 2006). Data yang dikumpulkan dilakukan dengan wawancara dan observasi langsung terhadap sistem perawatan di PT. “X”. Data terkumpul diolah dengan pendekatan model age replacement untuk mendapatkan interval perawatan TI-174
Seminar Nasional Mesin dan Industri (SNMI X) 2016 Riset Multidisiplin untuk Menunjang Pengembangan Industri Nasional Jakarta, 21-22 April 2016
pencegahan. Berikut ditampilkan flowchart yang merupakan resume dari tahapan penelitian yang diperlihatkan pada Gambar 1. Mulai
A
Studi Lapangan Menentukan Parameter Distribusi Waktu Antar Kerusakan Studi Pustaka Uj Kecocokan Distribusi Kolmogorov-Smirnov Weibull 2 Parameter
Identifikasi Perumusan Masalah
Menghitung Mean Time To Failure (MTTF) dan Mean Time To Repair (MTTR)
Pengumpulan Data: 1. Data Umum Perusahaan 2. Data jenis-jenis mesin milling 3. Data Komponen mesin milling AABD06 4. Data kerusakan komponen mesin milling AABD06 5. Data estimasi waktu penggantian pencegahan dan waktu penggantian kerusakan komponen mesin milling AABD06
Menentukan Interval Waktu Penggantian Pencegahan
Perhitungan Downtime Penggantian Pencegahan
Pengolahan Data
Menentukan Interval Waktu Pemeriksaan Komponen
Mengidentifikasi Mesin Kritis Pada Mesin Milling Menggunakan Analisis ABC
Menghitung Total Biaya Sesudah Tindakan Preventive Maintenance
Mengidentifikasi Komponen Kritis Pada Mesin Milling AABD06 Menggunakan Analisis ABC
Analisa dan Pembahasan
Perhitungan Time To Failure (TTF)
Kesimpulan dan Saran
A
Selesai
Gambar 1. Langkah-langkah Penelitian HASIL PENELITIAN DAN PEMBAHASAN Perhitungan interval perawatan pencegahan menggunakan model age replacement dengan kriteria minimasi downtime adalah untuk mencegah terjadinya kerusakan pada komponen mesin dengan menghitung umur komponen mesin untuk kemudian dilakukan penggantian pencegahan. Adapun langkah-langkah perhitungan interval perawatan pencegahan adalah sebagai berikut: 1. Identifikasi Mesin Kritis Data yang digunakan adalah data selama kurun waktu 1 (satu) tahun yaitu dari Januari 2014 - Desember 2014. Berdasarkan perhitungan mesin kritis dengan menggunakan metode ABC, maka dapat diketahui bahwa mesin yang termasuk dalam kategori mesin kritis ada 7 mesin, namun pada penelitian ini hanya akan meneliti 1 mesin saja yaitu mesin milling 1 dengan persentase kritis 36,10% dan berada pada kategori kelas A. Pada Tabel 1 dapat dilihat identifikasi mesin kritis.
TI-175
Seminar Nasional Mesin dan Industri (SNMI X) 2016 Riset Multidisiplin untuk Menunjang Pengembangan Industri Nasional Jakarta, 21-22 April 2016
Tabel 1. Identifikasi mesin kritis Kodefikasi 1 2 3 4 5 6 7 8 9 10 11 12
Total Frekuensi 32 19 17 15 15 18 17 17 17 24 17 7
Total Biaya Rp Rp Rp Rp Rp Rp Rp Rp Rp Rp Rp Rp Rp
Kumulatif Total Biaya
664.474.771,27 148.983.789,23 146.884.513,31 130.832.314,16 123.524.686,45 118.158.823,54 112.610.555,50 102.648.140,40 95.386.550,11 93.511.428,18 63.440.344,03 40.110.639,00 1.840.566.555,17
Rp Rp Rp Rp Rp Rp Rp Rp Rp Rp Rp Rp
664.474.771,27 813.458.560,50 960.343.073,81 1.091.175.387,97 1.214.700.074,42 1.332.858.897,96 1.445.469.453,46 1.548.117.593,86 1.643.504.143,97 1.737.015.572,15 1.800.455.916,17 1.840.566.555,17
% Total Biaya 36,10 8,09 7,98 7,11 6,71 6,42 6,12 5,58 5,18 5,08 3,45 2,18 100,00
% Kumulatif Total Biaya 36,10 44,20 52,18 59,28 66,00 72,42 78,53 84,11 89,29 94,37 97,82 100,00
Kategori % Kelas A A A 78,53 A A A A B 15,84 B B C 5,63 C
Sumber: Departemen “Z”, PT. “X”, 2014, diolah
2. Mengidentifikasi Komponen Kritis Setelah mengetahui mesin kritis, maka dengan menggunakan metode ABC dapat diketahui komponen yang termasuk komponen kritis, yaitu komponen Collar Thrust dengan persentase kritis 72,90% dan berada pada kategori kelas A. Identifikasi komponen kritis dapat dilihat pada Tabel 2. Tabel 2. Identifikasi komponen kritis Nama Komponen Collar Thrust Hydraulic Pump Hose Hydraulic Manometer Pressure Hydraulic Connector RS 232 Fuse Mechanical Seal Jumlah
Frekuensi Kerusakan 5 6 3 3 5 2 3 2 29
Harga / unit
Total Biaya
Biaya Kumulatif
Rp 11.180.675,00 Rp 55.903.375,00 Rp 55.903.375,00 Rp 2.500.000,00 Rp 15.000.000,00 Rp 70.903.375,00 Rp 908.300,00 Rp 2.724.900,00 Rp 73.628.275,00 Rp 476.000,00 Rp 1.428.000,00 Rp 75.056.275,00 Rp 280.000,00 Rp 1.400.000,00 Rp 76.456.275,00 Rp 60.000,00 Rp 120.000,00 Rp 76.576.275,00 Rp 18.000,00 Rp 54.000,00 Rp 76.630.275,00 Rp 25.000,00 Rp 50.000,00 Rp 76.680.275,00 Rp 76.680.275,00
% Total % Kumulatif Kategori Biaya Total Biaya % Kelas 72,9045 72,9045 72,90 A 19,5617 92,4663 19,56 B 3,5536 96,0198 C 1,8623 97,8821 C 1,8258 99,7079 C 7,53 0,1565 99,8644 C 0,0704 99,9348 C 0,0652 100,0000 C 100,0000
Sumber: Departemen “Z”, PT. “X”, 2014, diolah
3. Perhitungan Time To Failure (TTF) Time To Failure (TTF) merupakan interval waktu antar kerusakan yang dihitung dari selisih antara waktu kerusakan komponen yang telah selesai diperbaiki dengan waktu kerusakan komponen berikutnya. Adapun data Time To Failure dapat dilihat di Tabel 3. Tabel 3. Time To Failure Komponen Collar Thrust No 1 2 3 4 5
Kerusakan 08-Jan-14 23-Mei-14 02-Jul-14 07-Okt-14 08-Des-14
(Hari)
(Jam)
93 29 71 45
1488 464 1136 720
4. Perhitungan Parameter Distribusi Waktu Antar Kerusakan Parameter distribusi waktu antar kerusakan menggunakan distribusi Weibull dilakukan untuk menentukan dua parameter yaitu θ dan β. Untuk mengetahui nilai parameter θ dan β dilakukan dengan cara regresi linier. Dalam persamaan regresi linier TI-176
Seminar Nasional Mesin dan Industri (SNMI X) 2016 Riset Multidisiplin untuk Menunjang Pengembangan Industri Nasional Jakarta, 21-22 April 2016
akan didapatkan koefisien-koefisien regresi yaitu a dan b, maka kemudian dapat dicari distribusi parameter θ dan β. Perhitungan parameter distribusi Weibull dilakukan dengan menggunakan rumus: ( ) (1) (2) Dari perhitungan parameter distribusi waktu antar kerusakan untuk distribusi Weibull didapatkan nilai θ (parameter skala) = 1.106,84 dan β (parameter bentuk) = 1,95. 5. Uji Kecocokan Distribusi Pengujian ini dilakukan dengan tujuan untuk mengetahui data berdistribusi Weibull. Pengujian ini dilakukan menggunakan uji statistik yaitu uji distribusi non parametrik Kolmogorov-Smirnov. Adapun formulasi uji hipotesis pengujian ini adalah: Distribusi waktu antar kerusakan mengikuti distribusi Weibull. Distribusi waktu antar kerusakan tidak mengikuti distribusi Weibull Tabel 4. Uji kecocokan distribusi No 1 2 3 4 S
xi (Jam) 464 720 1136 1488
fi 1 1 1 1 4
fk 1 2 3 4
fo 0,25 0,50 0,75 1,00
fe 0,1672 0,3505 0,6508 0,8318 Dn max = D(α=0,01)=
Dn 0,0828 0,1495 0,0992 0,1682 0,1682 0,783
Hasil pengujian kolmogorov-smirnov dengan taraf signifikansi (a=1%) menunjukkan bahwa diterima, artinya data TTF yang ada sesuai dengan distribusi Weibull dengan ≤ ( ) 6. Perhitungan Mean Time To Failure (MTTF) dan Mean Time To Repair (MTTR) Untuk menentukan rata-rata waktu antar kerusakan (MTTF) didasarkan pada distribusi yang terbentuk dari data yang terkumpul berkenaan waktu kerusakan. Untuk menghitung nilai MTTF distribusi weibull adalah sebagai berikut: ( ) (3) ( ( Dimana nilai (
) )
) didapat dari tabel fungsi gamma dengan nilai 0,88659.
Untuk menentukan waktu rata-rata yang diperlukan untuk melakukan perbaikan (MTTR) adalah sebagai berikut: (4) ( )
7. Penentuan Interval Waktu Penggantian Pencegahan Perhitungan interval waktu penggantian pencegahan ini menggunakan model age replacement dengan tujuan meminimalisasi downtime, diperlihatkan pada Tabel 5.
TI-177
Seminar Nasional Mesin dan Industri (SNMI X) 2016 Riset Multidisiplin untuk Menunjang Pengembangan Industri Nasional Jakarta, 21-22 April 2016
Tabel 5. Perhitungan Interval Penggantian Pencegahan No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
tp(Jam) 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
F(tp) 0,1279 0,1583 0,1908 0,2251 0,2609 0,2977 0,3354 0,3734 0,4116 0,4495 0,4870 0,5238 0,5596 0,5943 0,6277 0,6596 0,6900 0,7187 0,7457 0,7710 0,7946 0,8164 0,8365
R(tp) 0,8721 0,8417 0,8092 0,7749 0,7391 0,7023 0,6646 0,6266 0,5884 0,5505 0,5130 0,4762 0,4404 0,4057 0,3723 0,3404 0,3100 0,2813 0,2543 0,2290 0,2054 0,1836 0,1635
M(tp) D(tp) Availability 7671,5796 0,00164513 0,9983549 6200,5192 0,00164233 0,9983577 5143,9714 0,00164683 0,9983532 4359,7577 0,00165806 0,9983419 3761,9338 0,00167551 0,9983245 3296,0440 0,00169874 0,9983013 2926,2144 0,00172734 0,9982727 2628,0249 0,00176095 0,9982390 2384,3804 0,00179925 0,9982007 2183,0205 0,00184193 0,9981581 2014,9645 0,00188868 0,9981113 1873,5099 0,00193920 0,9980608 1753,5709 0,00199321 0,9980068 1651,2306 0,00205038 0,9979496 1563,4309 0,00211038 0,9978896 1487,7552 0,00217288 0,9978271 1422,2719 0,00223751 0,9977625 1365,4209 0,00230387 0,9976961 1315,9299 0,00237154 0,9976285 1272,7519 0,00244011 0,9975599 1235,0178 0,00250912 0,9974909 1202,0004 0,00257812 0,9974219 1173,0866 0,00264663 0,9973534
Probabilitas total downtime per unit waktu adalah: D (tp) = (
( ) (
)
)
(
( ( (
)
)) )(
(
))
(5)
Keterangan: tp = Interval penggantian pencegahan Tf = Waktu untuk melakukan perbaikan kerusakan Tp = Waktu untuk melakukan penggantian pencegahan F(tp) = Fungsi kepadatan peluang dari waktu kerusakan R (tp) = Probabilitas terjadinya siklus pencegahan M (tp) = Nilai ekspektasi panjang siklus kerusakan jika penggantian perbaikan dilakukan D (tp) = Probabilitas total downtime per unit waktu untuk penggantian pencegahan Dari perhitungan interval waktu penggantian pencegahan, maka dapat diketahui bahwa penggantian komponen dilakukan setiap umur komponen Collar Thrust mencapai 450 jam dilihat dari D(tp)minimum yaitu 0,00164233. Adapun availability untuk komponen Collar thrust pada saat tp 450 jam adalah 0,9983577. Nilai availability penggantian pencegahan didapat dengan rumus: ( ) (6) ( ) 8. Perhitungan Downtime Penggantian Pencegahan Total downtime sesudah penggantian pencegahan didapat melalui perhitungan sebagai berikut: ( ) (7)
TI-178
Seminar Nasional Mesin dan Industri (SNMI X) 2016 Riset Multidisiplin untuk Menunjang Pengembangan Industri Nasional Jakarta, 21-22 April 2016
Adapun perbandingan total downtime sebelum dan sesudah penggantian pencegahan dapat dilihat pada Tabel 6. Tabel 6. Perbandingan total downtime sebelum dan sesudah penggantian pencegahan Komponen Collar Thrust
Total Downtime Sebelum Penggantian pencegahan (Jam) 54,50
Total Downtime Sesudah Penggantian pencegahan (Jam) 6,94
9. Penentuan Interval Waktu Pemeriksaan Komponen Untuk menentukan interval waktu pemeriksaan komponen berdasarkan waktu produksi yang ada dilakukan tahap-tahap berikut: 1) Rata-rata jam kerja perbulan: Rata-rata jam kerja per bulan = Hari kerja perbulan x jam kerja setiap hari (8) = (22 x 16) = 352 jam 2) Jumlah Kerusakan Jumlah kerusakan selama 12 bulan = 5 kerusakan 3) Waktu rata-rata perbaikan (9)
(10) jam 4) Waktu rata-rata pemeriksaan (11)
(12) jam 5) Rata-rata kerusakan (13)
6) Frekuensi Pemeriksaan √
(14)
√ 7) Interval waktu pemeriksaan (15) jam
TI-179
Seminar Nasional Mesin dan Industri (SNMI X) 2016 Riset Multidisiplin untuk Menunjang Pengembangan Industri Nasional Jakarta, 21-22 April 2016
8) Downtime pemeriksaan ( )
(16)
( ) ( ) 10. Menghitung Total Biaya Sesudah Tindakan Perawatan Pencegahan Perhitungan total biaya sebelum dan sesudah tindakan perawatan pencegahan (preventive maintenance) dapat digunakan untuk mengetahui efektif atau tidaknya tindakan perawatan pencegahan ini untuk mengurangi biaya perawatan. Berikut ini adalah perbandingan total biaya sebelum dan sesudah tindakan perawatan pencegahan selama 12 bulan. Tabel 7. Perbandingan total biaya sebelum dan sesudah tindakan perawatan pencegahan Biaya Biaya Tenaga Kerja Rp Biaya Pembelian Komponen Rp Biaya Kehilangan Produksi Rp Total Biaya Rp Selisih Total Biaya Rp
Sebelum 1.400.000,00 55.903.375,00 140.123.713,94 197.427.088,94
Rp Rp Rp Rp
Sesudah 1.440.000,00 100.626.075,00 17.836.059,59 119.902.134,59 77.524.954,35
KESIMPULAN Berdasarkan tujuan pemecahan masalah serta hasil pengumpulan dan pengolahan data serta analisa dan pembahasan hasil penelitian dapat ditarik kesimpulan yang berdasarkan pada permasalahan yang telah dirumuskan dan dapat mencapai tujuan pemecahan masalah. Kesimpulan yang dapat diambil dari hasil penelitian di PT. “X” adalah sebagai berikut 1. Berdasarkan hasil penelitian dapat diketahui bahwa penentuan interval perawatan ini menggunakan model age replacement. Model tersebut digunakan untuk mengetahui interval penggantian pencegahan komponen dengan kriteria minimasi downtime. Berdasarkan hasil perhitungan dengan kriteria ini, dihasilkan interval waktu penggantian pencegahan dan interval waktu pemeriksaan, dimana interval penggantian pencegahan komponen Collar Thrust dilakukan pada saat komponen mencapai umur 450 jam, sedangkan interval pemeriksaan komponen Collar Thrust dilakukan setiap 412 jam. 2. Untuk total biaya sebelum dan sesudah dilakukan perawatan pencegahan, didapatkan hasil bahwa total biaya sebelum perawatan pencegahan pada komponen Collar Thrust adalah Rp. 197.427.088,94. Sedangkan total biaya sesudah perawatan pencegahan pada komponen Collar Thrust adalah Rp. Rp. 119.902.134,59. Maka terjadi penurunan total biaya perawatan dengan selisih dari total biaya sebelum dan sesudah dilakukan penggantian pencegahan adalah Rp. 77.524.954,35. DAFTAR PUSTAKA 1. Assauri. Sofjan. (2004). Manajemen Produksi dan Operasi. Lembaga Fakultas Ekonomi Universitas Indonesia. Jakarta. 2. Aristiono. F.A. Purwaningsih. Isti. & Dania W.A.P. (2011). Aplikasi Optimal Preventive Replacement Age Model Untuk Menentukan Jadwal Penggantian Komponen Dumping Grate Pada Mesin Ketel Uap. Jurnal Teknologi Pertanian.
TI-180
Seminar Nasional Mesin dan Industri (SNMI X) 2016 Riset Multidisiplin untuk Menunjang Pengembangan Industri Nasional Jakarta, 21-22 April 2016
(Online). Vol. 12. No. 1. (http://jtp.ub.ac.id/index.php/jtp/article/download/332/ 420. diakses 21 April 2015). 3. Barlow, R.E. and Proschan, F. (1965). Mathematical Theory of Reliability. Wiley, New York. 4. Campbell. J.D. & Jardine. A.K.S. (2001). Maintenance Excellence Optimizing Eqipment Life-Cycle Decisions. Marcel Dekker. New York. 5. Corder. A. 1992. Teknik Manajemen Pemeliharaan. Erlangga. Jakarta. 6. Ebeling. Charles E. (1997). An Introduction to Reliability and Maintainability Engineering. McGrow-Hill Book Co. Singapura. 7. Firmansyah. A. Siregar. K. & Sinaga. T.S. (2013). Analisis Waktu Antar Kerusakan Mesin Electric Motor Menggunakan Metode Failure Finding Interval (Studi Kasus Di PT. XYZ). E-Journal Teknik Industri FT USU. (Online). Vol. 1. No 1. (http://download.portalgaruda.org/article.php?article=58667&val=4128. diakses 29 Desember 2014). 8. Gaspersz. Vincent. (2002). Total Quality Management. PT. Gramedia. Jakarta 9. Hamdala. Ihwan. (2011). Perencanaan Preventive Maintenance Komponen Cane Cutter I Dengan Pendekatan Age Replacement (Studi Kasus di PG Kebon Agung Malang). (Online). (http://jrmsi.studentjournal.ub.ac.id/index.php/jrmsi/article/ view/92. diakses 18 Mei 2015). 10. Iriani. Yani. & Rahmadi. E.S. (2011). Usulan Waktu Perawatan Berdasarkan Keandalan Suku Cadang Kritis Bus di Perum Damri Bandung. Proceedings 6th National Industrial Engineering Conference (NIEC-6). (Online). (http://repository.widyatama.ac.id/xmlui/bitstream/handle/123456789/2119/KIN.HC.07 3.pdf? sequence=1. diakses 1 April 2015). 11. Jardine. A.K.S. (2006). Maintenance, Replacement and Reliability. Taylor and Francis Group. New York 12. Ristono. Agus. (2009). Manajemen Persediaan. Ed. 1. Graha Ilmu. Yogyakarta. 13. Russel. R. S. dan Taylor. B. W. (2000). Operation Management. Prentice Hall. New Jersey. 14. Sudradjat. Ating. (2011). Pedoman Praktis Manajemen Perawatan Mesin Industri. PT Refika Aditama. Bandung.
TI-181