MODERNÍ SVĚTELNÉ ZDROJE A JEJICH APLIKACE DOC. ING. MILOSLAV STEINBAUER, PH.D. UTEE FEKT VUT V BRNĚ KOLEJNÍ 2906/4 BRNO
OSNOVA • • • • • • •
O podstatě světla Vnímání světla Světelná technika Návrh osvětlení Světelné zdroje Dopady nařízení EU 244/2009 Porovnání závěrem
O PODSTATĚ SVĚTLA TROCHU FYZIKY NA ÚVOD…
FYZIKÁLNÍ PODSTATA SVĚTLA • Optické záření je elektromagnetické vlnění v definovaném intervalu vlnových délek 1 nm až 1 mm • Viditelná část optického záření (VIS) je přibližně v rozsahu vlnových délek λ = 380 až 790 nm
Druh záření
Označení
Vlnová délka (nm)
Ultrafialové (UV)
UV-C
100 – 280
UV-B
280 – 315
UV-A
315 – 380
Fialová
380 – 430
Modrá
430 – 490
Zelená
490 – 570
Žlutá
570 – 600
Oranžová
600 – 630
Červená
630 – 780
IR-A
780 – 1400
IR-B
1400 - 3·103
IR-C
3·103 – 104
Viditelné (VIS)
Infračervené (IR)
ZÁŘENÍ ČERNÉHO TĚLESA • Se zvyšováním teploty (jakéhokoliv) tělesa dochází k excitaci atomů materiálu, např. kovového vlákna žárovky • Spontánní emisí fotonů vzniká teplotní záření se spojitým spektrem. • Toto spektrum je definováno Planckovým vyzařovacím zákonem He ( λ )
2π hc 2
λ
5
1 e
hc λ kT
(W ⋅ m ) −2
−1
DENNÍ SVĚTLO • Zdrojem je Slunce s povrchovou teplotou asi 5800 K. • Spektrum je spojité s maximální intenzitou ve VIS. • Světlo se atmosférou pohlcuje a rozptyluje vlivem aerosolových částic a prachu. Absorpce záření také závisí na úhlu, pod kterým světlo dopadá na zemský povrch. • Teplota chromatičnosti denního světla se během dne významně mění. • Nejvíce se pohlcuje a rozptyluje krátkovlnná oblast VIS (Rayleighův rozptyl - modrá obloha). • Slunce se jeví při východu a západu červenější - světlo překonává větší dráhu.
BÍLÉ SVĚTLO A SPEKTRUM • Bílé světlo vzniká smíšením základních barev spektra • Podle poměru složek může mít různé odstíny - není bílá jako bílá…. • Je třeba posuzovat spektrum světla
Míšení tří základních barev
Diagram chromatičnosti mezinárodní kolorimetrické soustavy
BÍLÉ SVĚTLO A SPEKTRUM Žárovka
Metalhalogenidová výbojka
Zářivka teple bílá
VNÍMÁNÍ SVĚTLA JAK TO VIDÍME….
LIDSKÝ ZRAK Lidské oko obsahuje různé fotoreceptory • Tyčinky • • • •
Pro noční vidění (skotopické) Asi 125 miliónů Uplatní se při jasu méně než 0,001 cd/m2 Nejcitlivější na modrofialovou barvu
• Čípky • Pro denní barevné vidění (fotopické) • Asi 6,5 miliónů • Uplatní se při jasu více než 10 cd/m2 • Několik typů čípků, každý specializovaný na vnímání určité barvy. V rozmezí 0,001 až 10 cd/m2 jde o mezopické vidění
• Cirkadiánní čidla • •
Řídí mnoho biologických pochodů v 24hodinovém (cirkadiánním) cyklu Teplota, tlak, tep, metabolismus, psychika…
Zrakové nervy vedou do mozkové kůry a jsou provázány s dalšími „signály“ – světlo tedy nesouvisí jen se zrakovým vjemem, ale má na lidský organismus komplexní účinky
LIDSKÝ ZRAK K vývoji barevného vidění • Primitivní obratlovci měli v oku hned čtyři druhy čípkových buněk (s maximem citlivosti kolem 370 nm, 445 nm, 508 nm a 560 nm). Toto tzv. tetrachromické vidění přetrvává u mnoha ryb, želv, ještěrů a ptáků. • U savců došlo k ztrátě dvou typů čípkových buněk a většina savců má tedy dichromatické vidění (oranžová a fialová oblast). • U lidoopů však evolucí vznikl třetí typ čípků. Mají tedy čidla pro modrofialovou (cca 425 nm), zelenou (cca 530 nm) a oranžovou (cca 560 nm) barvu a trichromické vidění
•
Na povrch Země dopadá nejvíce záření právě ve VIS oblasti, proto se u lidského zraku vyvinula citlivost právě na tento obor vlnových délek.
•
Graf závislosti citlivosti lidského oka na vlnové délce je na obrázku.
• Největší citlivost lidského oka pro fotopické vidění je pro λ = 555 nm a pro skotopické vidění λ = 507 nm • Je zobrazen i posun pro mezopické vidění v rozmezí jasu 0,001 až 10 cd/m2
ÚČINKY SVĚTLA NA ČLOVĚKA Fotochemické změny • tvorba vitamínu D3 ozářením v horní vrstvě kůže ozářením UV-B • nedostatek vitamínu D3 vede k poruchám metabolismu, křivici a osteromalacii) Psychovegetativní a psychosomatické vlivy • normalizuje nervový systém • působí na oběhové funkce, krevní tlak, srdeční puls, plicní ventilaci a zvýšení svalové síly • navozuje pocit svěžesti a výkonnosti • působí na psychickou pohodu člověka
VLIV BAREV NA ČLOVĚKA Teplé barvy (žlutá, červená, oranžová) • zrychlují puls • zvyšují krevní tlak • podporují chuť k jídlu a sexuální apetit • stupňují vnímání hluku Studené barvy (modrá, zelená) • tlumí tělesné funkce • obecně uklidňují
SVĚTELNÁ TECHNIKA DALŠÍ TROCHA TEORIE…
RADIOMETRICKÉ A FOTOMETRICKÉ VELIČINY Radiometrické veličiny popisují přenos energie zářením. Nejdůležitější jsou: • Zářivý tok Φe (W) - zářivá energie za jednotku času procházející určitou plochou • Spektrální zářivý tok Φeλ (W) - množství energie jedné vlnové délky, které na určitou plochu dopadne za jednotku času • Ozářenost Ee (W/m2) - výkon dopadající na plochu - udává plošnou hustotu světelného toku.
dΦ Φ eλ = e dλ
Ee =
dΦ e dS
RADIOMETRICKÉ A FOTOMETRICKÉ VELIČINY Fotometrické veličiny jsou vztažené pouze k viditelnému světlu (VIS) a kvantitativně hodnotí tohoto záření velikostí možného vizuálního vjemu lidským okem. Nejdůležitější jsou: • Svítivost I (cd - kandela) - základní jednotka SI pro bodové zdroje • Světelný tok Φ (lm - lumen) – světelná energie za jednotku času procházející Φ = určitou plochou; vyjadřuje tok zdroje o svítivosti I do prostorového úhlu Ω Bodový světelný zdroj má svítivost 1 cd, vyzařuje-li do prostorového úhlu 1 sr světelný tok 1 lm. Pro kulový zářič 1 (cd) = 4π = 12,6 (lm)
∫ IdΩ
RADIOMETRICKÉ A FOTOMETRICKÉ VELIČINY Fotometrické veličiny : dI L = • Jas L (cd/m2) - používá se pro plošné zdroje dS • Spektrální světelný tok Φλ (lm) - množství dΦ světelné energie jedné vlnové délky, které na Φ λ = dλ určitou plochu dopadne za jednotku času • Osvětlení E (lx - lux) – světelný výkon dΦ E= dopadající na plochu - udává plošnou dS hustotu světelného toku. Světelný tok 1 lm dopadající rovnoměrně na plochu 1 m2 vytvoří osvětlení 1 lx.
JAS A OSVĚTLENÍ NĚKTERÝCH ZDROJŮ Zdroj světla
Jas L (cd/m2)
Zdroj osvětlení
Osvětlení E (lx)
Slunce
2·109
Vlákno žárovky při 2700 K
2·107
Osvětlení v noci při úplňku
0,2
Bílý papír na slunci
2,5·104
Osvětlení k pohodlnému čtení
50
Zářivka
6·103
Kancelářské osvětlení 300
Plamen svíčky
5·103
Měsíc
3·103
Výborné osvětlení v místnosti
Oblačná obloha
3·103
700
Sluneční světlo, 1 000 hodinu před západem Denní světlo, zataženo 3 000 Slunný den ve stínu stromu
10 000
Ostrý sluneční svit v poledne
100 000
RADIOMETRICKÉ A FOTOMETRICKÉ VELIČINY Vzájemný vztah mezi fotometrickými a radiometrickými veličinami vychází z definice kandely: • Kandela (cd) je svítivost světelného zdroje, který emituje monochromatické záření o frekvenci 540·1012 Hz (λ = 555 nm) a jehož zářivost je 1/683 W/sr • Vztah mezi světleným a zářivým tokem Φ ( λ= ) Km ⋅V ( λ ) ⋅Φ e ( λ ) Zde je Km = 683 lm/W a V(λ) je poměrná spektrální citlivost zraku (viz graf)
Příklad: Zdroj zeleného monochromatického světla λ = 550 nm (V=0,995) o zářivém výkonu 1 W má světelný tok 683·0,995·1= 680 lm. Zdroj červeného monochromatického světla λ = 650 nm (V=0,107) o zářivém výkonu opět 1 W má světelný tok pouze 683·0,107·1= 73 lm.
PARAMETRY ZDROJŮ SVĚTLA • Index podání barev Ra (CRI – color rendering index)
• Bezrozměrné číslo nabývající hodnot 0 – 100 • CRI = 100 znamená zcela věrné barevné podání (toho dosahují žárovky) • CRI = 0 znamená, že nelze barvy rozlišit (monochromatický zdroj, např. LPS – nízkotlaká sodíková výbojka)
• Teplota chromatičnosti Tc • • • •
Charakterizuje spektrum bílého světla Kalibrace na černé těleso s teplotou Tc Tc = 2700 K žárovka, západ a východ slunce 3000 K teplá, 4000 K neutrální a 6500 K chladná bílá
PARAMETRY ZDROJŮ SVĚTLA
TEORETICKÁ ÚČINNOST ZDROJE SVĚTLA • Pro fotopicky nejúčinnější monochromatické světlo (555 nm) odpovídá 1 W zářivého výkonu 683 lm. • Je-li záření zdroje složeno z více vlnových délek, je k určení světelné účinnosti K třeba znát spektrum záření, tedy rozložení výkonu mezi jednotlivé vlnové délky (spektrální hustotu zářivého toku). • Zářivý výkon He černého tělesa je třeba korigovat citlivostí oka V(λ) a tento světelný výkon integrovat přes všechny vlnové délky • Dostaneme světelnou účinnost zdroje: ∞
K = 683∫ He ( λ )V ( λ ) dλ 0
• Je vidět, že světelný účinek má jen malá část zářivého spektra
He =
2π hc 2
λ5
1 e
hc λ kT
−1
V (λ )
TEORETICKÁ ÚČINNOST ZDROJE SVĚTLA • Světelná účinnost černého tělesa závisí na jeho teplotě • Nejvyšší hodnota K = 95 lm/W je pro T = 6500 K a to je asi 14 % maximální účinnosti • Žárovky s teplotou 2700 K mají účinnost asi 10 lm/W • Jiné zdroje (s jiným spektrem) budou vykazovat jinou světelnou účinnost • Např. pro bílé zdroje, nevyzařující mimo VIS, vychází teoretická účinnost v rozmezí 250 - 450 lm/W
∞
K = 683∫ He ( λ )V ( λ ) dλ 0
ÚČINNOST POUŽÍVANÝCH ZDROJŮ • Zdroje světla se musí označovat podle Směrnice komise 98/11/ES • Netýká se zdrojů: • • • •
< 4W > 6500 lm reflektorových žárovek pro jiné světlo než VIS
NÁVRH OSVĚTLENÍ JAK SI NA TO POSVÍTIT…
KRITÉRIA NÁVRHU OSVĚTLENÍ Požadavky na osvětlení • jsou odvozovány od charakteristik zrakové činnosti s přihlédnutím k dalším funkcím osvětlovaných objektů. Základní kritéria pro návrh osvětlení: • zrakový výkon • zraková pohoda Základní charakteristiky osvětlení: • kvantitativní zrakový výkon je úměrný intenzitě E osvětlení zrakového úkolu • kvalitativní zrakový výkon je úměrný rovnoměrnosti rozložení intenzity osvětlení
KRITÉRIA NÁVRHU OSVĚTLENÍ Kategorie osvětlení podle druhu vykonávané činnosti: • A - s velkými požadavky na zrakový výkon, např. operační sály E > 3300 lx • B - s průměrnými požadavky na zrakový výkon, např. rýsovny E = (500 - 3300) lx • C - s malými požadavky na zrakový výkon např. sklady, WC,… E = (20 - 500) lx • D - s přednostními požadavky na vnímání prostoru, tvaru a barev, např. odpočinkové místnosti, kina, divadla, tělocvičny, … E = (20 - 500) lx
POŽADOVANÉ ÚROVNĚ OSVĚTLENÍ (ČSN EN 12464) Prostory a činnost
Osvětlení E (lx)
Osvětlení venkovních prostor bezprostředně provozně souvisejících s obytným objektem
10-30
Vnitřní prostory pro činnosti, při nichž postačí jednoduchá orientace, nebo pro krátkodobý pobyt (garáže, pomocné prostory apod.)
20-50
Celkové nebo odstupňované osvětlení obytných místností vybavených místním osvětlením
50-100
Celkové nebo odstupňované osvětlení domovního vybavení a příslušenství bytů (koupelny, WC, spíže, haly, prádelny …)
100-200
Celkové nebo odstupňované osvětlení pracovních prostorů, které nemají místní osvětlení (pracovny, domácí dílny, ateliéry …)
200-500
Osvětlení místa pro činnosti zrakově náročné (jemné ruční práce, rýsování, modelářství …)
300-750
Osvětlení místa pro činnosti zrakově velmi náročné
500-1000
KRITÉRIA NÁVRHU OSVĚTLENÍ Kromě intenzity osvětlení E je důležité vzít při návrhu v úvahu: • rovnoměrnost rozložení osvětlení • barvu světla (vyjadřovanou teplotou chromatičnosti Tc) • jasové poměry • estetické hledisko • celkový čas osvětlení (svítí stále, občas, …) • typ prostoru interiér / exteriér • životnost zdrojů • finanční náklady
SVĚTELNÉ ZDROJE A ČÍM SI POSVÍTIT…
SVĚTELNÉ ZDROJE - ROZDĚLENÍ Teplotní • žárovky vakuované • plněné plynem klasické • halogenové Speciální • LED • • • • •
lasery UV, IR projektorové kalibrační …
Výbojové • nízkotlaké zářivky • kompaktní zářivky • indukční výbojky • sodíkové výbojky • vysokotlaké rtuťové • halogenidové • xenonové • plazmové
SVĚTELNÉ ZDROJE - PŘEHLED
KLASICKÉ ŽÁROVKY • • • • • • • • • • • •
Vlákno z W drátu, dvojitě vinutá spirála Vyzařování světla tepelným buzením Spojité spektrum (černé těleso) Nízká cena Okamžité zapnutí Možnost stmívání CRI 100 Životnost 1.000 – 2.000 h (klesá s U3,5) Značný pokles světelného toku s U Měrný světelný tok 5 - 18 lm/W Do 25 W vnitřní prostor baňky vyčerpán Nad 25 W je náplní směs N a Ar nebo Kr, kvůli snížení naprašování W na baňku
HISTORICKÉ ŽÁROVKY
15. 5. 1947 tříletý Dickey Jackson s žárovkou o výkonu 50 kW Foto: Smithsonian Institution
HISTORICKÉ ŽÁROVKY Heinrich Goebel, 1858 T. A. Edison, komerční provedení žárovky s uhlíkovým vláknem, 1881
HALOGENOVÉ ŽÁROVKY •
• •
•
•
Plní se většinou plní směsí dusíku a argonu, kryptonem a v poslední době i xenonem Baňky žárovek, které jsou plněné Xe, nečernají. Do náplně je přidán halogen (jód, bróm) nejčastěji ve formě organické sloučeniny (methyljodid, bromofosfonitrit, methylenbromid atd.) Baňky halogenových žárovky se vyrábí většinou z křemenného skla nebo jiných těžkotavitelných materiálů. Znečištění povrchu baňky může mít za následek prasknutí baňky v důsledku rekrystalizačního procesu Úprava přináší při zvýšení světelného toku asi o 30% a přibližně 2× delší životnost oproti klasické žárovce
Tungsram: Halogenová žárovka 5000 W plněná jódem, ve své době revoluční unikát. Nafialovělá barva náplně je způsobena parami jódu. Žárovka proto svítila fialově. Foto: Muzeum pražské energetiky
HALOGENOVÉ ŽÁROVKY • Atomy wolframu, které se uvolní z vlákna, se dostávají ke stěně baňky, kde je nižší teplota. U obyčejné žárovky by se wolfram usadil na skle, ale v halogenové žárovce se naváže na halogen. • Vzniklý halogenid wolframu se díky difúzi dostává zase zpět k vláknu, kde se opět rozloží a wolfram se usadí zpátky na vlákno a halogen difunduje ke stěně baňky a může opět reagovat. • Halogenové žárovky dosahují teploty vlákna až 3 200 °C, teplota tání wolframu je 3653 °C
HALOGENOVÉ ŽÁROVKY • Existují halogenové žárovky s UV filtrem (pro speciální účely např., v muzeích, reflektorech aut atp.) • Zvláštní druh - s dichroitickým zrcadlem
• zajišťuje max. světelný tok v daném směru • omezuje až o 60% nežádoucí IR záření • osvětlovaný předmět je vystaven nižšímu tepelnému zatížení než u žárovky s klasickým Al reflektorem
PŘEHLED VÝVOJE ŽÁROVKY Typ
Rok
Světelná účinnost (lm/W)
Životnost (h)
Vakuová s uhlíkovým vláknem
1879
2
600
Vakuová s vláknem s osmia
1900
3
600
Vakuová s wolframovým vláknem
1906
6–8
1000
Plynem plněná, wolframová spirála
1913
9
1000
Plynem plněná, dvojitá wolframová spirála
1934
12 – 14
1000
Halogenová
1959
20
2000
ZDOKONALENÉ HALOGENOVÉ ŽÁROVKY TŘÍDY C • U halogenových žárovek nové generace jsou kromě xenonové náplně ostatní charakteristiky jako objímka a rozměry stejné jako u klasických halogenových žárovek, a proto je lze používat pouze ve svítidlech pro halogenové žárovky určených – tj. ve svítidlech se speciální halogenovou objímkou. • Tyto halogenové žárovky zůstanou na trhu i po roce 2016, aby bylo možno svítidla s halogenovou objímkou používat.
• U zdokonalených halogenových žárovek je vylepšená halogenová kapsle umístěna ve skleněné baňce, která má tvar klasické žárovky s kovovým vláknem a s klasickou objímkou. Představují tudíž přímou náhradu klasických žárovek s kovovým vláknem. • Zdokonalené žárovky s kovovým vláknem třídy C budou od roku 2016 dále zdokonalovány na třídu B nebo A.
ZDOKONALENÉ HALOGENOVÉ ŽÁROVKY TŘÍDY B • Díky speciálnímu infračervenému povlaku došlo u žárovek s vlákny k dalšímu zvýšení energetické účinnosti. • Infračervený povlak na žárovce zvyšuje její energetickou účinnost o více než 45 % ve srovnání s klasickými žárovkami. • Toto zdokonalení lze ale použít pouze u nízkonapěťových žárovek. • K tomu, aby bylo technologii možno použít i u žárovek síťového napětí, je nutný transformátor. Transformátor se ukrývá v patici • Žárovku lze vyměnit zvlášť
NÍZKOTLAKÉ RTUŤOVÉ VÝBOJKY ZÁŘIVKY UV záření výboje se transformuje vrstvou luminoforu na VIS Luminofor - různé spektrální složení světla a různý měrný výkon Životnost: 10.000 h s tlumivkou a až 16.000 h s el. předřadníkem Měrný světelný tok 50 až 106 lm·W-1 Teplota chromatičnosti Tc = 2.700 - 6.500 K CRI 70 – 95 Obtížně stmívatelné U starších typů s elektromagnetickým předřadníkem je stroboskopický jev • Obsahují rtuť – nebezpečný odpad • • • • • • • •
HISTORIE ZÁŘIVKY Pokusy se zářivkami proběhly v průběhu 30. let v USA, Anglii, Německu a v bývalém Sovětském svazu. Na fotografii jsou první prakticky použitelné zářivky. Tehdejší luminofory nebyly příliš dokonalé. Nicméně již první pokusy ukázaly zvýšené využití elektrické energie, a to až na čtyřnásobek proti žárovkám, při delší životnosti světelného zdroje. Foto: Smithsonian Institute
KONSTRUKCE ZÁŘIVKY Energetická bilance: • světlo 21 % • infračervené záření 24 % • odvedené teplo 55 % argon + páry rtuti 400 + 0,6 Pa kontakty
luminofor
bimetal žhavené elektrody W + oxidy Ba,Sr,Ca
230 V / 50 Hz
startér
odrušovací kondenzátor
kompenzační kondenzátor tlumivka
KONSTRUKCE ZÁŘIVKY • Zářivky jsou označovány trojčíslím, například 840, v němž první číslo prozrazuje index barevného podání, zde CRI > 80, další dvojice čísel značí teplotu chromatičnosti, zde 4000 K (neutrální bílá) • Pro intimní osvětlení se hodí zdroj s teplejší barvou světla (do 3000 K, označení např. 827, 830). • Na pracovní stůl použijeme neutrální až studené světlo (4000 až 6500 K, označení např. 840, 854, 865).
KOMPAKTNÍ ZÁŘIVKY (CFL) • Menší rozměry než lineární zářivky • Větší výkon v daném prostoru, ale menší měrný výkon • Výkonová řada od cca 5 do 55 W • Nemají stroboskopický jev • Nižší povrchová teplota • Neoslňují jako žárovky • Mnoho provedení Jednopaticová zářivka, potřebuje pro svůj provoz předřadník
Náhrada žárovky, s elektronickým předřadníkem v patici E27 nebo E14
SROVNÁNÍ CFL A ŽÁROVKY Příkon
Světelný tok
Příkon CFL
40 W
400 lm
7W
60 W
600 lm
12 W
75 W
850 lm
15 W
100 W
1200 lm
20 W
NÍZKOTLAKÉ SODÍKOVÉ VÝBOJKY (LPS) • Spektrum čárové ve viditelné části optického spektra blízko maximální citlivosti lidského oka (555 nm) • Není nutná přeměna UV na VIS luminoforem • Vysoký měrný světelný tok až 200 lm/W • Díky nízkému CRI (< 30) se u nás tyto výbojky příliš nerozšířily
VYSOKOTLAKÉ SODÍKOVÉ VÝBOJKY (HPS) • Zvýšení tlaku sodíkových par na 2·104 Pa znamená vysokou koncentraci výkonu i vzrůst pracovní teploty • Vlastnosti vysokotlakého výboje mohly být využity až s vyvinutím průsvitného korundu (Al2O3). • Měrný světelný tok až 150 lm/W • CRI až 70, lepší oproti LPS • životnost až 28.000 h • osvětlení veřejných komunikací a prostranství i výrobních hal
VYSOKOTLAKÉ RTUŤOVÉ VÝBOJKY • Vysoký tlak rtuťových par = zvýšení proudové hustoty oproti zářivkám • Posun maxima vyzařované energie k větším vlnovým délkám • Růst měrného výkonu, vznik spojitého spektra • Velký měrný světelný tok (32 - 60 lm/W) • Životnost až 15.000 hodin • Ve spektru světla úplně chybí červená složka • Špatné podání barev Snaha o odstranění nedostatku • Transformace UV záření luminoforem - rtuťové výbojky s luminoforem • Kombinace modro-zeleného záření rtuťových výbojek se zářením žárovek – směsové výbojky • Přidání příměsí (halogenidů) do rtuťové náplně - halogenidové výbojky • CRI 40 až 80
VYSOKOTLAKÉ RTUŤOVÉ VÝBOJKY Tlumivka
Nosníky patice E 40 nebo E 27
U
Kompenzační kondenzátor N
Výbojka
odpor
pomocn á elektrod a
hlavní elektrody
• Tlak 300 Pa vzroste až na 900 kPa • Teplota výboje 5200 oC
VYSOKOTLAKÉ RTUŤOVÉ VÝBOJKY S LUMINOFOREM • Tyto výbojky jsou dnes vytlačovány účinnějšími halogenidovými a vysokotlakými sodíkovými výbojkami.
VYSOKOTLAKÉ RTUŤOVÉ SMĚSOVÉ VÝBOJKY • Úpravy spektra rtuťového výboje přidáním záření W vlákna, které doplňuje spektrum v červené části. • Do série se rtuťovým hořákem je zapojeno W vlákno, plnící i funkci předřadníku, odpadá nutnost použít tlumivku. • Hořák i vlákno jsou namontovány do společné baňky s běžnou závitovou paticí. Směsové výbojky tady nepotřebují předřadník a montují se jako žárovky • CRI = 60 až 70 • Tc = 3.600 až 4.100 K • Měrný světelný tok 20 až 30 lm/W • Pro přímou náhradu žárovek 200 až 500 W bez zvýšených nároků na kvalitu podání barev.
METALHALOGENIDOVÉ VÝBOJKY • Vnesením kovů do výboje dojde k rozšíření spektra záření doplňujících spektrum rtuti (Na, Tl, In, Sc, Dy, Tm, Ho… používá se celkem asi 50 kovů) • Nejvhodnější jsou sloučeniny - halogenidy (jodidy, popř. bromidy) • K zapalování slouží vysokonapěťový zapalovač s amplitudou impulsu až 4,5 kV • Výboj nejprve probíhá v parách rtuti a v inertním plynu, s nárůstem teploty se zvyšuje koncentrace kovů ve výboji • Větší změna kolorimetrických parametrů v průběhu života • Používá se keramickým hořák z polykrystalického oxidu hlinitého nebo klasický ze speciálního křemenného skla
INDUKČNÍ VÝBOJKY • Nízkotlaký výbojový zdroj • Využívá principu indukce • Pohyb elektronů není funkčně svázán s elektrodami ve výbojovém prostoru, ale je dosahován pomocí magnetického pole (indukce) s kmitočtem cca 2,5 MHz a speciální geometrií výbojového prostoru • Životnost asi 60.000 hodin • Možnost znovuzapnutí v horkém stavu • Okamžitý náběh (< 2 s) • Uplatnění v aplikacích se složitou a nákladnou výměnou světelných zdrojů např. do tunelů, výrobních hal
XENONOVÉ VÝBOJKY • Vysokotlaký výbojový zdroj (Xe až 7.500 kPa) • Při výměně je nutno dbát nebezpečí hrozící exploze při nevhodné manipulaci
• Zapaluje se vn až 60 kV • Životnost jen několik tisíc hodin • Uplatnění v aplikacích s nároky na barevné podání (CRI > 90) • Použití zejména v automobilovém průmyslu a pro projektory kin
Xe výbojka pro kinopromítačku, příkon 3 kW
SVĚTLOEMITUJÍCÍ DIODY (LED) • Principiálně jde o monochromatické zdroje • Bílá barva se dosahuje luminoforem přímo na čipu • Vysoká světelná účinnost • Životnost až 50.000 hodin • Malé rozměry, vysoká mechanická odolnost • Cena neustále klesá • Problém s chlazením • Neobsahuje rtuť
HISTORIE LED •
• • •
První LED se podařilo vyrobit v roce 1962 v laboratořích General Electric. První LED byly červené a měly svítivost < 1 cd Až od 1971 vznikají další barevné varianty Modrá LED v roce1993 „Bílá“ luminoforová LED vznikla v roce 1995
BÍLÉ LED Bílá barva se dosahuje • Kombinací modré LED a luminoforu emitujícího žlutě • Vysoká světelná účinnost, nízké CRI
• Kombinací UV LED a směsného luminoforu • Nízká světelná účinnost, vysoké CRI
• Kombinací RGB LED • Průměrná světelná účinnost, vysoké CRI • Neobsahuje plné spektrum (pouze 3 monochromatické čáry)
CHLAZENÍ LED ZDROJŮ • LED zdroje musí odvádět značné množství tepla z čipu velkého jen milimetry čtvereční. • I když je LED velmi účinným zdrojem, je účinnost asi jen 30 % ze spotřebované elektrické energie. Zbytek se mění na teplo. • Provozní teplota čipu nesmí překročit cca 150 °C, proto musí být použity masivní chladiče (na pracovní teplotu asi 70 °C) • Bez chlazení klesá prudce životnost zdroje - výrazné kovové žebrování je viditelný prvek napovídající, že jde o kvalitní výrobek.
LED V AUTOMOBILECH Studie kupé Opel GTC Concept • LED od firmy OSRAM Opto Semiconductors • Pro parkovací světla a denní světlo jsou použity LED typu Golden Dragon • Pro potkávací světla jsou v každém světlometu použity dvě LED OSTAR, pro dálkové světlo tři tyto diody • Mlhová světla obsahují jeden OSTAR LED • Červené svítivé diody TOPLED byly použity pro stylové osvětlení do stejné barvy laděného interiéru. • Výhodou diodového osvětlení je rychlost účinku, doba života LED přes 50.000 hodin a proti klasickým světelným zdrojům větší volnost pro designéry automobilu.
SVĚTELNÁ ÚČINNOST LED • Dosažitelná účinnost (lm/W) závisí na spektru bílé LED • V LED je dosažitelná účinnost přeměny elektrické energie na zářivou asi 67 % • V praxi dosažitelná hodnota světelné účinnosti je tedy 67 % teoretické hodnoty
PLAZMOVÁ MIKROVLNNÁ VÝBOJKA (PLS) Mikrovlnná plazmová výbojka s parami síry • Zdrojem světla je rotující křemenná kulička velikosti pingpongového míčku se stopkou, naplněná argonem a malým množstvím síry. Je umístěna v ohnisku mikrovlnného zdroje. • Vyzařuje spojité spektrum s barevnou teplotou 6.000 K • Index barevného podání CRI >80 • Světelný tok je možno regulovat v rozmezí 20 - 100 % • Životnost světelného zdroje je 60.000 hodin s malým poklesem světelného toku • Je zatím velmi málo rozšířena pro vysokou cenu
PLAZMOVÁ MIKROVLNNÁ VÝBOJKA (PLS) Srovnání spektra PLS a metalhalogenidové výbojky
Srovnání poklesu světelného toku a doby života
NAŘÍZENÍ EU 244/2009 A CO DÁL?
NAŘÍZENÍ EU 244/2009 Evropská komise vydala 18. března 2009 nařízení č. 244/2009, které stanovuje do roku 2012 postupně ukončit prodej klasických žárovek. • Světelné zdroje s neprůhlednou (matnou, bílou, mléčnou...) baňkou jsou zakázány od 1. září 2009, pokud nespadají do energetické třídy A. • Od stejného data jsou zakázány také čiré (průhledné) světelné zdroje, které mají buď příkon 100 W a vyšší a patří do horší energetické třídy než C, anebo mají nižší příkon, ale patří do horší třídy než E. • V ročních intervalech se zákaz posouvá ke světelným zdrojům nižších příkonů (v roce 2010 zákaz pro čiré žárovky o příkonu 75 W a vyšším, v roce 2011 60 W) a v září 2012 pak zákaz pro veškeré světelné zdroje pro běžné osvětlování, které patří do horší třídy než C. • Od září 2013 vstoupí v účinnost další úroveň funkčních požadavků uvedených v nařízení. • Od září 2016 budou zakázány světelné zdroje spadající do energetických tříd horších než B (kromě výjimek - speciálních halogenových žárovek, které budou spadat do třídy C).
NAŘÍZENÍ EU 244/2009
NAŘÍZENÍ EU 244/2009 - ALTERNATIVY • Halogenové žárovky s třídou účinnosti alespoň C (nízkonapěťové, Xenonem plněné, s IR odraznou vrstvou) • Kompaktní zářivky (CFL) • LED zdroje
OZNAČOVÁNÍ SVĚTELNÝCH ZDROJŮ Příkon klasické žárovky
CFL
Halogonové žárovky
LED
15 W
125 lm
119 lm
136 lm
25 W
229 lm
217 lm
249 lm
40 W
432 lm
410 lm
470 lm
60 W
741 lm
702 lm
806 lm
75 W
970 lm
920 lm
1055 lm
100 W
1398 lm
1326 lm
1521 lm
150 W
2253 lm
2137 lm
2452 lm
200 W
3172 lm
3009 lm
3452 lm
Zdroj: nařízení EK 244/2009
Povinné údaje • Energetický štítek • Světelný tok (lm) • Srovnání se žárovkou (W) • Životnost (h), ekvivalent (roků) pro 2,7 h/d • Počet spínacích cyklů • Rychlost náběhu • Obsah rtuti Hg (mg) • Stmívatelnost • Rozměry • Provozní teplota
JEVONSŮV PARADOX • Anglický ekonom William Jevons v 60. letech 19. století upozornil, že dlouhá série technologických zlepšení u parních strojů a dalších zařízení zvýšila efektivnost využití uhlí, což vedlo ke zvýšení jeho celkové spotřeby a k rozšiřování využití uhlí do dalších odvětví. • Moderní ekonomové tento paradox potvrdili a upřesnili, že zvýšená účinnost zdroje snižuje náklady jeho využití proti jiným zdrojům, což zvyšuje poptávku po něm a ruší jakýkoli vliv úspor na snížení jeho spotřeby. Zvýšená efektivnost zdroje navíc urychluje ekonomický růst, který dál zvyšuje poptávku po všem a zejména po energii. • Existuje studie, ze které vyplývá, že zavedením úsporných zdrojů světla se spotřeba energie na svícení (je to v současnosti asi 6,5% celkové spotřeby) nesníží, ale zvýší. Poptávka po světle není nasycena - interiéry obydlí a pracovišť jsou osvětleny obvykle jen na deset procent venkovního světla při zatažené obloze. Studie předpovídá, že všeobecné zavedení energeticky úsporných zdrojů světla může zvýšit spotřebu světla v lumenhodinách během dvou desetiletí na desetinásobek. To by znamenalo, že v případě zachování reálné ceny elektřiny po odpočtení inflace na současné úrovni vzroste spotřeba energie na osvětlení na více než dvojnásobek.
Úsporné inovace zvyšují celkovou spotřebu energie.
POROVNÁNÍ ZÁVĚREM
SROVNÁNÍ SVĚTELNÝCH ZDROJŮ Světelný zdroj
Index CRI
Měrný výkon (lm/W)
Životnost (h)
Žárovka obyčejná
90 -100
5 – 18
1.000 – 2.000
Žárovka halogenová
90 -100
20 – 30
2.000 – 3.000
Zářivka lineární
70-95
50 – 106
8.000 – 16.000
Zářivka kompaktní (CFL)
80-95
42 – 87
5.000 – 15.000
Výbojka metalhalogenidová
60-90
75 – 130
8.000 – 12.000
Výbojka rtuťová
40-80
32 – 60
8.000 – 15.000
Výbojka sodíková vysokotlaká (HPS)
20-70
70 – 150
10.000 – 28.000
Výbojka sodíková nízkotlaká (LPS)
<30
100 – 200
10.000 – 15.000
Indukční výbojka (LVD)
>80
70 – 80
60.000
Sirná výbojka (PLS)
>80
80 – 130
60.000
Xenonová výbojka
>90
30 – 40
1.500 – 3.000
LED (bílá s luminoforem)
80
30 – 160
50.000
SROVNÁNÍ SVĚTELNÝCH ZDROJŮ Srovnání světelné účinnosti 250
150 100 50
Srovnání doby života
0 70000 60000 50000 hodin
lm/W
200
40000 30000 20000 10000 0
VÝVOJ SVĚTELNÉ ÚČINNOSTI ZDROJŮ
ÚSPORY ENERGIE Srovnání ročních nákladů na provoz zdroje světla odpovídajícího 60 W žárovce Parametr Orientační cena značkového zdroje světla [Kč] Příkon [W] Světelný tok [lm] Životnost [h] Životnost zdroje [roků] Roční cena za spotřebu [Kč] Roční cena za zdroj [Kč] Náklady za rok [Kč]
Klasická žárovka
Halogenová žárovka 15
Kompaktní zářivka
50
60 42 741 640 1000 2000 při 3 hodinách svícení denně
LED žárovka
100
600
12 740 12000
10 810 25000
0,9
1,8
11,0
22,8
305
213
61
51
16 321
27 241
9 70
26 77
Ceny zdrojů na podzim 2012 Cena energie 4,64 Kč/kWh
LIKVIDACE STARÝCH ZDROJŮ • Recyklovat je nutné všechny zářivky, neboť každá obsahuje malé množství toxické rtuti (2 až 5 mg). • Pokud se zářivka rozbije, rtuť se uvolní. I tak malé množství by mohlo znečistit až 10 000 litrů vody. • Se zářivkou je dobré zacházet jako s elektroodpadem. • Sběrných míst je více než tři tisíce. • Zářivku můžete odevzdat v obchodě s elektronikou, ve sběrných dvorech a do malých sběrných nádob. • Jako s elektroodpadem je třeba zacházet s lineárními a kompaktními zářivkami, halogenidovými, sodíkovými a rtuťovými výbojky světelné zdroje s LED diodami. • Do popelnice můžeme vyhodit běžné žárovky a také reflektorové a halogenové žárovky.
DĚKUJI ZA POZORNOST UTEE FEKT VUT KOLEJNÍ 2906/4 612 00 BRNO
T: +420 541 149 510 F: +420 541 149 512 E:
[email protected]