11/5/2008
Modeling & Decision Analysis DR. MOHAMMAD ABDUL MUKHYI, SE., MM.
Rabu, 05 Nopember 2008
METODE KUANTITATIF
1
Metode Kuantitatif Spektrum situasi keputusan: - Terstruktur/terprogram - Tak terstruktur/tak terprogram - Sebagian terstruktur Pembagian masalah : - Certainty : semua alternatif tindakan diketahui dan hanya terdapat satu konsekuansi untuk masing-masing tindakan. - Risk : apabila terdapat lebih dari satu konsekuensi atau alternatif dan pengambil keputusan mengetahui probabilitas konsekuensinya. - Ucertainty :apabila jumlah kemungkinan konsekuensi tidak diketahui oleh pengambil keputusan. Rabu, 05 Nopember 2008
METODE KUANTITATIF
2
1
11/5/2008
• We face numerous decisions in life & business. • We can use computers to analyze the potential outcomes of decision alternatives. • Spreadsheets are the tool of choice for today’s managers.
Rabu, 05 Nopember 2008
METODE KUANTITATIF
3
What is Management Science? • A field of study that uses computers, statistics, and mathematics to solve business problems. • Also known as: – Operations research – Decision science
Rabu, 05 Nopember 2008
METODE KUANTITATIF
4
2
11/5/2008
Introduction We all face decision about how to use limited resources such as: – Oil in the earth – Land for dumps – Time – Money – Workers
Rabu, 05 Nopember 2008
METODE KUANTITATIF
5
Home Runs in Management Science • Motorola – Procurement of goods and services account for 50% of its costs – Developed an Internet-based auction system for negotiations with suppliers – The system optimized multi-product, multivendor contract awards – Benefits: $600 million in savings Rabu, 05 Nopember 2008
METODE KUANTITATIF
6
3
11/5/2008
Home Runs in Management Science • Waste Management – Leading waste collection company in North America – 26,000 vehicles service 20 million residential & 2 million commercial customers – Developed vehicle routing optimization system – Benefits: Eliminated 1,000 routes Annual savings of $44 million
Rabu, 05 Nopember 2008
METODE KUANTITATIF
7
Mathematical Programming MP is a field of management science that finds the optimal, or most efficient, way of using limited resources to achieve the objectives of an individual of a business. • Optimization
Rabu, 05 Nopember 2008
METODE KUANTITATIF
8
4
11/5/2008
Applications of Optimization • • • •
Determining Product Mix Manufacturing Routing and Logistics Financial Planning
Rabu, 05 Nopember 2008
METODE KUANTITATIF
9
What is a “Computer Model”? • A set of mathematical relationships and logical assumptions implemented in a computer as an abstract representation of a real-world object of phenomenon. • Spreadsheets provide the most convenient way for business people to build computer models.
Rabu, 05 Nopember 2008
METODE KUANTITATIF
10
5
11/5/2008
The Modeling Approach to Decision Making • Everyone uses models to make decisions. • Types of models: – Mental (arranging furniture) – Visual (blueprints, road maps) – Physical/Scale (aerodynamics, buildings) – Mathematical (what we’ll be studying)
Rabu, 05 Nopember 2008
METODE KUANTITATIF
11
Characteristics of Models • Models are usually simplified versions of the things they represent • A valid model accurately represents the relevant characteristics of the object or decision being studied
Rabu, 05 Nopember 2008
METODE KUANTITATIF
12
6
11/5/2008
Benefits of Modeling • Economy - It is often less costly to analyze decision problems using models. • Timeliness - Models often deliver needed information more quickly than their real-world counterparts. • Feasibility - Models can be used to do things that would be impossible. • Models give us insight & understanding that improves decision making. Rabu, 05 Nopember 2008
METODE KUANTITATIF
13
Example of a Mathematical Model Profit = Revenue - Expenses or Profit = f(Revenue, Expenses) or Y = f(X1, X2)
Rabu, 05 Nopember 2008
METODE KUANTITATIF
14
7
11/5/2008
A Generic Mathematical Model Y = f(X1, X2, …, Xn) Where:
Y = dependent variable (aka bottom-line performance measure) Xi = independent variables (inputs having an impact on Y) f(.) = function defining the relationship between the Xi & Y Rabu, 05 Nopember 2008
METODE KUANTITATIF
15
Mathematical Models & Spreadsheets • Most spreadsheet models are very similar to our generic mathematical model: Y = f(X1, X2, …, Xn) Most spreadsheets have input cells (representing Xi) to which mathematical functions ( f(.)) are applied to compute a bottom-line performance measure (or Y). Rabu, 05 Nopember 2008
METODE KUANTITATIF
16
8
11/5/2008
Categories of Mathematical Models Model Category Prescriptive
Form of
Independent Variables
f(.)
OR/MS Techniques
known, well-defined
known or under decision maker’s control
LP, Networks, IP, CPM, EOQ, NLP, GP, MOLP
Predictive
unknown, ill-defined
known or under decision maker’s control
Regression Analysis, Time Series Analysis, Discriminant Analysis
Descriptive
known, well-defined
unknown or uncertain
Simulation, PERT, Queueing, Inventory Models
Rabu, 05 Nopember 2008
METODE KUANTITATIF
17
The Problem Solving Process
Identify Problem
Formulate & Implement Model
Analyze Model
Test Results
Implement Solution
unsatisfactory results
Rabu, 05 Nopember 2008
METODE KUANTITATIF
18
9
11/5/2008
The Psychology of Decision Making • Models can be used for structurable aspects of decision problems. • Other aspects cannot be structured easily, requiring intuition and judgment. • Caution: Human judgment and intuition is not always rational!
Rabu, 05 Nopember 2008
METODE KUANTITATIF
19
Anchoring Effects • Arise when trivial factors influence initial thinking about a problem. • Decision-makers usually under-adjust from their initial “anchor”. • Example: – What is 1x2x3x4x5x6x7x8 ? – What is 8x7x6x5x4x3x2x1 ?
Rabu, 05 Nopember 2008
METODE KUANTITATIF
20
10
11/5/2008
Framing Effects • Refers to how decision-makers view a problem from a win-loss perspective. • The way a problem is framed often influences choices in irrational ways… • Suppose you’ve been given $1000 and must choose between: – A. Receive $500 more immediately – B. Flip a coin and receive $1000 more if heads occurs or $0 more if tails occurs Rabu, 05 Nopember 2008
METODE KUANTITATIF
21
Framing Effects (Example) • Now suppose you’ve been given $2000 and must choose between: – A. Give back $500 immediately – B. Flip a coin and give back $0 if heads occurs or give back $1000 if tails occurs
Rabu, 05 Nopember 2008
METODE KUANTITATIF
22
11
11/5/2008
A Decision Tree for Both Examples
Payoffs $1,500
Alternative A Initial state Heads (50%) Alternative B (Flip coin)
Rabu, 05 Nopember 2008
Tails (50%)
$2,000 $1,000
METODE KUANTITATIF
23
Good Decisions vs. Good Outcomes • Good decisions do not always lead to good outcomes...
A structured, modeling approach to decision making helps us make good decisions, but can’t guarantee good outcomes. Rabu, 05 Nopember 2008
METODE KUANTITATIF
24
12
11/5/2008
2. Perumusan PL Ada tiga unsur dasar dari PL, ialah: 1. Fungsi Tujuan 2. Fungsi Pembatas (set ketidak samaan/pembatas strukturis) 3. Pembatasan selalu positip. Bentuk umum persoalan PL Cari : x1 , x2 , x3 , …………… , xn. Fungsi Tujuan : Z = c1x1 + c2x2 + c3x3 + …… + cnxn optimum (max/min) (srs) Fungsi Kendala : a11x1 + a12x2 + a13x3 + …………… + a1nxn >< h1. (F. Pembatas) a21x1 + a22x2 + a23x3 + …………… + a2nxn >< h2. (dp) a31x1 + a32x2 + a33x3 + …………… + a3nxn >< h3. ↓
…. ↓
…. ↓
...…………
↓
.. ↓
am1x1 + am2x2 + am3x3 + ….……… + amnxn >< hm. xj > 0 Rabu, 05 Nopember 2008
j = 1 , 2, 3 ………n nonnegativity consraint METODE KUANTITATIF
25
srs : sedemikian rupa sehingga dp : dengan pembatas ada n macam barang yg akan diproduksi masing2 sbesar x1,x2, … , xn xj : banyaknya barang yang diproduksi ke j , j = 1, 2, 3, …. , n cj : harga per satuan barang ke j , j = 1, 2, 3, ……………. , n ada m macam bahan mentah, masing2 tersedia h1 , h2 , h3 , …., hm hi : banyaknya bahan mentah ke i , i = 1, 2, 3, ……………. , m aij : banyaknya bahan mentah ke i yg digunakan utk memproduksi 1 satuan barang ke j xj > 0 , j = 1, 2,…,n ; cj tdk boleh neg, paling kecil 0 (nonnegativity consraint) Maksimum dp < h1 artinya, pemakaian input tidak boleh melebihi h1 Minimum dp > h1 artinya, pemakaian input paling tidak dipenuhi h1
Rabu, 05 Nopember 2008
METODE KUANTITATIF
26
13
11/5/2008
3. Langkah-langkah dan teknik pemecahan Dasar dari pemecahan PL adalah suatu tindakan yang berulang (Inter-active search) dengan sekelompok cara untuk mencapai suatu hasil optimal. Tidakan dilakukan dengan cara sistimatis. Selanjutnya langkah2 dari tindakan berulang adl sebagai: 1. Tentukan kemungkinan2 kombinasi yang baik dari sumber daya al-am yang terbatas atau fasilitas yang tersedia, yang disebut se-bagai initial feasible solution. 2. Selesaikan persamaan pembatasan strukturil untuk mendapatkan titik2 ekstreem (dis sebagai ‘basic feasible solution’). 3. Tentukanlah nilai dari titik2 ekstreem yang akan merupakan nilai2 pilihan, yang telah disesuaikan dengan nilai tujuan dari permasalahan. 4. Ulanglah langkah 3 hingga tercapai tujuan optimal (hanya satu yang bernilai tertinggi atau terendah). Rabu, 05 Nopember METODE KUANTITATIF 27 2008
Ada 3 (tiga) cara pemecahan PL 1. Cara dengan menggunakan grafik 2. Cara dengan substitusi (cara matematik/Aljabar) 3. Cara simplex
Rabu, 05 Nopember 2008
METODE KUANTITATIF
28
14
11/5/2008
General Form of an Optimization Problem MAX (or MIN): f0(X1, X2, …, Xn) Subject to: f1(X1, X2, …, Xn)<=b1 : fk(X1, X2, …, Xn)>=bk : fm(X1, X2, …, Xn)=bm Note: If all the functions in an optimization are linear, the problem is a Linear Programming (LP) problem Rabu, 05 Nopember 2008
METODE KUANTITATIF
29
Linear Programming (LP) Problems MAX (or MIN): c1X1 + c2X2 + … + cnXn Subject to:
Rabu, 05 Nopember 2008
a11X1 + a12X2 + … + a1nXn <= b1 : ak1X1 + ak2X2 + … + aknXn >=bk : am1X1 + am2X2 + … + amnXn = bm
METODE KUANTITATIF
30
15
11/5/2008
An Example LP Problem Blue Ridge Hot Tubs produces two types of hot tubs: Aqua-Spas & Hydro-Luxes. Pumps Labor Tubing Unit Profit
Aqua-Spa 1 9 hours 12 feet $350
Hydro-Lux 1 6 hours 16 feet $300
There are 200 pumps, 1566 hours of labor, and 2880 feet of tubing available. Rabu, 05 Nopember 2008
METODE KUANTITATIF
31
5 Steps In Formulating LP Models: 1. Understand the problem. 2. Identify the decision variables. X1=number of Aqua-Spas to produce X2=number of Hydro-Luxes to produce
3. State the objective function as a linear combination of the decision variables. MAX: 350X1 + 300X2
Rabu, 05 Nopember 2008
METODE KUANTITATIF
32
16
11/5/2008
5 Steps In Formulating LP Models (continued)
4. State the constraints as linear combinations of the decision variables. } pumps 1X1 + 1X2 <= 200 9X1 + 6X2 <= 1566 } labor 12X1 + 16X2 <= 2880 } tubing 5. Identify any upper or lower bounds on the decision variables. X1 >= 0 X2 >= 0 Rabu, 05 Nopember 2008
METODE KUANTITATIF
33
LP Model for Blue Ridge Hot Tubs MAX: 350X1 + 300X2 S.T.: 1X1 + 1X2 <= 200 9X1 + 6X2 <= 1566 12X1 + 16X2 <= 2880 X1 >= 0 X2 >= 0
Rabu, 05 Nopember 2008
METODE KUANTITATIF
34
17
11/5/2008
Solving LP Problems: An Intuitive Approach • Idea: Each Aqua-Spa (X1) generates the highest unit profit ($350), so let’s make as many of them as possible! • How many would that be? – Let X2 = 0 • 1st constraint: 1X1 <= 200 • 2nd constraint: 9X1 <=1566 or X1 <=174 • 3rd constraint: 12X1 <= 2880 or X1 <= 240 • If X2=0, the maximum value of X1 is 174 and the total profit is $350*174 + $300*0 = $60,900 • This solution is feasible, but is it optimal? • No!
Rabu, 05 Nopember 2008
METODE KUANTITATIF
35
Solving LP Problems: A Graphical Approach • The constraints of an LP problem defines its feasible region. • The best point in the feasible region is the optimal solution to the problem. • For LP problems with 2 variables, it is easy to plot the feasible region and find the optimal solution. Rabu, 05 Nopember 2008
METODE KUANTITATIF
36
18
11/5/2008
Plotting the First Constraint
X2 250
(0, 200) 200
boundary line of pump constraint X1 + X2 = 200
150
100
50 (200, 0) 0 0
50
Rabu, 05 Nopember 2008
100
150
200
250
X1
METODE KUANTITATIF
37
Plotting the Second Constraint
X2
(0, 261)
250 boundary line of labor constraint 9X1 + 6X2 = 1566
200
150
100
50 (174, 0) 0 0
Rabu, 05 Nopember 2008
50
100
150
200
METODE KUANTITATIF
250
X1
38
19
11/5/2008
Plotting the Third Constraint
X2 250
(0, 180) 200
150 boundary line of tubing constraint 12X1 + 16X2 = 2880
100 Feasible Region
50 (240, 0) 0 0
Rabu, 05 Nopember 2008
50
100
150
200
METODE KUANTITATIF
250
X1
39
Plotting A Level Curve of the Objective Function
X2 250
200 (0, 116.67)
objective function
150
350X1 + 300X2 = 35000 100 (100, 0)
50
0 0
Rabu, 05 Nopember 2008
50
100
150
200
METODE KUANTITATIF
250
X1
40
20
11/5/2008
A Second Level Curve of the Objective Function
X2 250
(0, 175)
objective function 350X1 + 300X2 = 35000
200
objective function 350X1 + 300X2 = 52500
150
100 (150, 0)
50
0 0
Rabu, 05 Nopember 2008
50
100
150
200
METODE KUANTITATIF
250
X1
41
Using A Level Curve to Locate the Optimal Solution
X2 250
objective function 350X1 + 300X2 = 35000
200
150 optimal solution 100 objective function 350X1 + 300X2 = 52500
50
0 0
Rabu, 05 Nopember 2008
50
100
150
200
METODE KUANTITATIF
250
X1
42
21
11/5/2008
Calculating the Optimal Solution • The optimal solution occurs where the “pumps” and “labor” constraints intersect. • This occurs where: X1 + X2 = 200 (1) and 9X1 + 6X2 = 1566 (2) • From (1) we have, X2 = 200 -X1 (3) • Substituting (3) for X2 in (2) we have, 9X1 + 6 (200 -X1) = 1566 which reduces to X1 = 122 • So the optimal solution is, X1=122, X2=200-X1=78 Total Profit = $350*122 + $300*78 = $66,100 Rabu, 05 Nopember 2008
METODE KUANTITATIF
43
Enumerating The Corner Points
X2 250
obj. value = $54,000 (0, 180)
200
Note: This technique will not work if the solution is unbounded.
obj. value = $64,000
150
(80, 120) obj. value = $66,100 (122, 78)
100
50
obj. value = $60,900 (174, 0)
obj. value = $0 (0, 0)
0 0
50
Rabu, 05 Nopember 2008
100
150
200
METODE KUANTITATIF
250
X1
44
22
11/5/2008
Summary of Graphical Solution to LP Problems 1. Plot the boundary line of each constraint 2. Identify the feasible region 3. Locate the optimal solution by either: a. Plotting level curves b. Enumerating the extreme points
Rabu, 05 Nopember 2008
METODE KUANTITATIF
45
Special Conditions in LP Models • A number of anomalies can occur in LP problems: – Alternate Optimal Solutions – Redundant Constraints – Unbounded Solutions – Infeasibility
Rabu, 05 Nopember 2008
METODE KUANTITATIF
46
23
11/5/2008
Example of Alternate Optimal Solutions X2 250
objective function level curve 450X1 + 300X2 = 78300
200
150
100
alternate optimal solutions
50
0 0
100
50
Rabu, 05 Nopember 2008
150
200
METODE KUANTITATIF
250
X1
47
Example of a Redundant Constraint X2 250 boundary line of tubing constraint 200 boundary line of pump constraint 150 boundary line of labor constraint
100 Feasible Region
50
0 0
Rabu, 05 Nopember 2008
50
100
150
200
METODE KUANTITATIF
250
X1
48
24
11/5/2008
Example of an Unbounded Solution X2 1000
objective function X1 + X2 = 600
800
-X1 + 2X2 = 400
objective function X1 + X2 = 800
600
400
200 X1 + X2 = 400
0 0
Rabu, 05 Nopember 2008
200
400
600
800 METODE KUANTITATIF
1000
X1
49
Example of Infeasibility
X2 250
200
X1 + X2 = 200
feasible region for second constraint
150
100 feasible region for first constraint
50
X1 + X2 = 150
0 0
Rabu, 05 Nopember 2008
50
100
150
200
METODE KUANTITATIF
250
X1
50
25