MECHANICAL PROPERTIES OF CONCRETE MIXED WITH WASTE GLASS THESIS
Arranged By: HAMED.A.EMHEMED ABUSHAREB S100130031
POST GRADUATE PROGRAM MASTER PROGRAM IN CIVIL ENGINEERING UNIVERSITAS MUHAMMADIYAH SURAKARTA 2015 i
MECHANICAL PROPERTIES OF CONCRETE MIXED WITH WASTE GLASS
Arranged by: HAMED.A.EMHEMED ABUSHAREB S100130031 This thesis approved 11 March 2015 by.
ii
iii
iv
Abstract The study of waste glass (WG) concrete mix was done to study mechanical properties of concrete mix with target characteristics strength 30MPa at 28 days age. The laboratory experimental study was conducted at Muhammadiyah University between October and December 2014,to find out the high strength and amount for Waste Glass as fine aggregates replacement in a concrete mix. Also alkali silica reaction (ASR) was determined by expansion test. For mechanical properties compressive strength, flexural strength and modulus of elasticity (MOE) were determined. All measurement was done in accordance to ASTM standard methods. Three sample content types of 10%, 15% and 20% concrete mix containing waste glass and control 0% concrete mix were prepared, casted and cured for 28 days before determination of mechanical properties, and mortar bar were caste and cured for 14 days for ASR determination. Results showed that highest measured characteristics strength was 30.72MPa, for flexural strength was 6.8MPa and for modulus of elasticity was 37.42MPa, and the high expansion test was 28% compared to control concrete mix. For the amount waste glass replacement was determined in relation to high characteristics strength yield which was found at 10% WG replacement. The conclusion reached to this study were; Maximum characteristic strength for glass concrete mix was reached with 10% fine aggregate replaced was 30.72Mpa at 28 days age. While for ASR ,fine aggregate replacement by waste glass showed expansion at all amount replaced.
v
Abstract Studi tentang limbah kaca (WG) beton dilakukan untuk mempelajari sifat mekanik beton dengan karakteristik sasaran kekuatan 30MPa pada 28 hari usia. Laboratorium Penelitian eksperimental dilakukan di Universitas Muhammadiyah antara Oktober dan Desember 2014, untuk mengetahui kekuatan tinggi dan jumlah Limbah Kaca sebagai pengganti agregat halus dalam campuran beton. Juga silika reaksi alkali (ASR) ditentukan dengan uji ekspansi. Untuk sifat mekanik kuat tekan, kuat lentur dan modulus elastisitas (MOE) ditentukan. Semua pengukuran dilakukan sesuai dengan metode standar ASTM. Tiga jenis konten sampel dari 10%, 15% dan 20% campuran beton yang mengandung limbah kaca dan kontrol 0% campuran beton siap, dicor dan sembuh selama 28 hari sebelum penentuan sifat mekanik, dan bar mortir yang kasta dan sembuh selama 14 hari untuk Penentuan ASR. Hasil penelitian menunjukkan bahwa kekuatan karakteristik diukur tertinggi adalah 30.72MPa, lentur adalah 6.8MPa dan modulus elastisitas adalah 37.42MPa, dan uji ekspansi tinggi adalah 28% dibandingkan dengan kontrol campuran beton. Untuk penggantian kaca jumlah limbah ditentukan dalam kaitannya dengan hasil kekuatan karakteristik tinggi yang ditemukan pada 10% pengganti WG. Kesimpulan yang dicapai penelitian ini adalah; Kekuatan karakteristik maksimum untuk kaca beton dicapai dengan 10% agregat halus diganti adalah 30.72Mpa pada 28 hari usia. Sedangkan untuk ASR, penggantian agregat halus oleh kaca limbah menunjukkan ekspansi di semua jumlah yang diganti.
vi
ﺑﺴﻢ ﷲ اﻟﺮﺣﻤﻦ اﻟﺮﺣﯿﻢ ACKNOWLEDGEMENT
First and foremost, want thank Allah I would like to express my sincere thanks and appreciation to my mother, and academic supervisors Assoc.Dr . Mohamad Solikin and Dr.Ir. Sri Sunarjono who continuously guided me throughout every step of my study and generously shared their time and knowledge with me. My special thanks must be extended to technical staff members post graduate program master program in civil engineering MUHAMMADIYAH UNIVERSITY SURAKARTA Million words of thanks for fellow friends who showed their Concern and support all the way. Abdullah .their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space.
vii
TABLE OF CONTENT CHAPTER I
BACKGROUND ………………………………………………………………1
1.1
Introduction…………………………………………………………...……………………1
1.2
Problems statement…………………..……………………………………………………5
1.3
Hypothesis …………………………………..…………………………………………… 6
1.4
Objectives…………………………………………….……………………………………7
1.5
Scope of Study…………………………….………………………………………………7
1.6
Justification, Significance or Benefit……...………………………………………………7
1.7
Methodology of the study……………………….…………………………………………8
CHAPTER II
LITERETURE REVIEW AND BASIC THEORY…………………...……9
2.1
Literature Review………………………………………………………….………………9
2.1.1
Previous Studies on Waste Glass Uses in a Concrete Mixture……………………………9
2.2
Basic Theory…………………………………………………………………..…………15
2.2.1
Concrete…………………………………………………………………………………15
2.2.2
Cement……………………………………………………………..……………………16
2.2.3
Water ……………………………………………………………………………………16
2.2.4
Aggregates ……………………………………………………...………………………17
2.2.5
Admixtures………………………………………………………….……………………18
2.2.6
Pozzolans………………………………………………………………………………..18
2.2.7
Glass ……………………………………………………………………….……………18
2.2.8
Waste glass………………………………………………………………………………19
2.3
Alkali Silica Reaction…………………………………………………...………………20
2.3.1
ASR Mechanism………………………………………………………………………..21
CHAPTER III
RESEARCH METHODOLOGY…………………………………………22
3.1
Research Explanation …………………………………………….…...………………..22
3.1.1
Introduction
3.1.2
Location and Time……………………………………………………………………….23
……………………………………………………..……………………..22
viii
3.1.3
Data collection techniques……………………………………………………………….23
3.2
Testing For Material ………………...…………………………………………………27
3.2.1
Cement…………...………………………………………………………………………27
3.2.2
Aggregates ………………………………………………………………………………27
3.2.3
Glass……………………………………………………………………………………..29
3.2.4
Water……………………………………………………………………………………..29
3.3
Mix Design Of Concrete……………………………………………….……..………….30
3.3.1
Concrete mix Design target strength 30 MPa for 28 days age ……….…………………30
3.3.2
Method selection…………………………………………………………………………30
3.3.3. Determination of the Mean Target Strength (Ft) …………………………………………31 3.3.4
Procedure for Mix Design ……………………….………………………………………36
3.4
Slump Test …….…………………………………..……………………………………………37
3.5
Making and Curing of cube…………….……….…………………………………...……………37
3.6
Testing for Specimens………………….…………………………………………………………38
3.6.1 Plan and Methods …………………….…………………………………………………………..38
3.6.2
Compressive strength test……………………………………………….……………….39
3.6.3
Flexural strength testing……………………………………………………...…………..40
3.6.4
Modulus of elasticity……………………………………………………………………..40
3.6.5
Alkali-Silica Reaction (ASR) Test…………………………………………….…………41
3. 7
Matrix Of Specimens ……………………………………………………………………42
3.8
Data Analysis Methods…………………………………..………………………………42
CHAPTER IV RESULT ANDDISCUSSION…………………….…………………………44 4.1
Introduction……………………………………………………………………...………44
4.2
Material Properties Tests………………………………………………………..……….45
4.2.1
Cement …………………………………………………………………..………………45
4.2.2
Natural Coarse Aggregate Test …………………………………………...……………..45
4.2.3
Fine Aggregate Test ……………………………………………………………………..48 ix
4.2.4
Waste Glass Aggregate Test……………………………………………..………………50
4.3
Mixing, Slump test, Molding and Curing …………………………….…………………53
4.3.1
Mix Proportion…………………………………………………...………………..…….53
4.3.2
Mixing and Molding……………………………………………………………………..53
4.3.3
Curing……………………………………………………………..……………………..54
4.3.4
Slump Test ……………………………………………………...……………………….54
4.4
Testing for specimens…………………………………………..………………………..56
4.4.1
Compressive Strength……………………………………………………………………56
4.4.2
Flexural Strength …………………………………………………..…………...………..60
4.4.3
Modulus of Elasticity………………………………………………………...…………..62
4.4.4
Alkali Silica Reaction (ASR) ASTM C 227and C 12……………..……………………..64
4.5. Comparison between the Measured Mechanical Properties………………………………...69
CHAPTER V……………………………………………………………………………………72 5.1
Conclusion…………………………………………………………………………………72
5.2
Suggestion…………………………………….……………………………………………73
REFERENCE……………………………………………………………………………………74
x
LIST OF TABLE
Table.2.1
shows approximate compositions and the corresponding uses of various common forms of glass ……………………………………………………………………..19
Table 3.1
General Properties and Composition of OPC Type……….……………..……..…27
Table 3.2
The Grading requirement for Fine aggregate as designated by ASTM C 3….…...28
Table 3.3
Grading Requirement for Coarse Aggregates as designated by ASTM C 33.…....29
Table 3.4
Glass chemical composition………………………………………………….……29
Table 3.5
Given Concrete Data Description …….………………………………………..…30
Table 3.6
Recommended values of slump for various types of construction as given by A CI 211.1-91 (reapproved 2002). ………………………………………………………32
Table 3.7
Approximate requirements for mixing water and air content workability and nominal maximum sizes of aggregates according to ACI 211.1-9…………..……33
Table. 3.8
Relation between water/cementation material ratio average compressive strength of concrete, according to ACI 211.1-91 (reapproved 2002 ).…………….…………...34
Table 3.9
Dry bulk volume of coarse aggregate per unit volume of concrete as given by ACI 211.1-91 (reapproved 2002). …………...……………………………..……………35
Table 3.10 Concrete mix design outputs at 30 MPa. ….…………………………..….…..……36 Table 3.11 Concrete mix design materials description………………………………..…..……36 Table.3.12
for Variables Parameters…………………………………………………..….……39
Table.3.13
Matrix for Specimens Description …………………………….……….…………42
Table .3.14 . Batch Material Proportioning…………………………………..………………….43 Table. 4.1
Test, Standard and Samples Specimens …..………………………………………44 xi
Table 4.2
Coarse Aggregate Test Result………………………….…………….……………45
Table 4.3
Gradation of Coarse Aggregate ………………………………...……..………..…46
Table 4.4
Fine aggregate test result……………….……………………….………....………48
Table 4.5
Gradation of Fine Aggregate………………………………………………………49
Table 4.6
Fine aggregate test result …………………………………………………….……50
Table. 4.7
Fine Aggregates (Glass) Gradation …………………………………….…………51
Table 4.8
Mixtures Proportion………………………………………………………….……53
Table 4.9
Slump Test Result description …………………………….....…………….………55
Table 4.10
Characteristic Strength (MPa) ………………………...……..…………...………56
Table 4.11
Flexural Strength (MPa) at 28 days. …………………………….…………..……60
Table 4.12
Modulus of Elasticity (MOE) at 28 days as ASTM C 469….…………………….62
Table: 4.13
Mortar Mixtures proportions used for ASTM C 1260 (ASR test) ………………..65
Table 4.14
ASTM C 1260 Expansion Test Results………………………………….……..….66
Table: 4.15. Comparison of Measured Mechanical Properties ………………………………….70
xii
TABLE OF FIGURE Figure: 3.1. Flow chart for procedures for making waste glass concrete mix and experimental testing……………………………………………………………………………………………25 Figure: 3.2. Flow chart showing the procedure for preparation of waste glass fine aggregate …26 Figure 4.1
Coarse aggregates gradation ……………………………….………...……………47
Figure: 4.2
Fine aggregates gradation …………………………………..………..……………49
Figure: 4.3
Glass Sieve gradation as in accordance to ASTM C ………………………...……52
Figure: 4.4
Slump test for Fresh prepared WG concrete mix. ……………….……………..…55
Figure 4.5
Characteristic Strength of WG concrete at 28 Days………………………………58
Figure . 4.6 Flexural Strength of WG concrete mix……………………………………………61 Figure: 4.7
MOE WG concrete for 28 days age . Research Result (2014…………..…………63
Figure 4.8
Graphical illustration of ASR expansion test Results……………………
xiii
APPENDIX LEST. APPENDIX A : NCA and NFA and GA tests. APPENDIX B : Slump test APPENDIX C: Compressive strengths test. APPENDIX D: Flexural strengths test. APPENDIX E: Modulus of elasticity test. APPENDIX F: Alkali-Silica Reaction (ASR) test. APPENDIX G: Pictures of the Tests from the Laboratory
xiv