• Kombinatorial adalah cabang matematika yang berguna untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. • Contoh : Sebuah password panjangnya 6 sampai 8 karakter. Karakter boleh berupa huruf atau angka. Berapa banyak kemungkinan password yang dapat dibuat? - Abcdef - aaaade - a123fs - erhtgahn - Yutresik - … - …..
• Misalkan, Percobaan 1 : p hasil Percobaan 2 : q hasil maka, hasil Percobaan 1 atau percobaan 2: p + q hasil
• Seorang mahasiswa Politeknik Telkom ingin membeli sebuah motor. • Ia dihadapkan untuk memilih pada satu jenis dari tiga merk motor, Honda 3 pilihan, Suzuki 2 pilihan, dan Yamaha 2 pilihan. • Dengan demikian, mahasiswa tersebut mempunyai mempunyai pilihan sebanyak • 3 + 2 + 2 = 7 pilihan.
Misalkan, Percobaan 1: p hasil Percobaan 2: q hasil maka, Percobaan 1 dan percobaan 2:
p × q hasil
• Dosen dengan kode HNP, mengajar mahasiswa kelas PCA-09-01, PCA-09-02, dan PCA-09-03. • Misalkan, jumlah mahasiswa PCA-09-01 adalah 25 orang, jumlah mahasiswa PCA-09-02 adalah 27 orang, dan jumlah mahasiswa PCA-09-03 adalah 20 orang. • Jika HNP ingin memilih 3 mahasiswa dimana setiap kelas dipilih masing-masing 1 orang. Banyaknya susunan yang dapat dipilih oleh HNP? • Penyelesaian:25 x 27 x 20 = 13.500 cara dalam memilih susunan tiga murid tersebut.
• Misalkan ada n percobaan, masing-masing denga pi hasil 1. Kaidah perkalian (rule of product)
p1 × p2 × … × pn hasil 2. Kaidah penjumlahan (rule of sum)
p1 + p2 + … + pn hasil
• Berapa banyak string biner yang dapat dibentuk jika: a. panjang string 5 bit b. panjang string 8 bit (= 1 byte)
Penyelesaian: a. 2 × 2 × 2 × 2 × 2 = 25 = 32 buah b. 28 = 256 buah
• Berapa banyak bilangan ganjil antara 1000 dan 9999 (termasuk 1000 dan 9999 itu sendiri) yang semua angkanya berbeda • Penyelesaian: a. b. c. d.
posisi satuan : posisi ribuan : posisi ratusan : posisi puluhan :
5 kemungkinan angka (1, 3, 5, 7 dan 9) 8 kemungkinan angka 8 kemungkinan angka 7 kemungkinan angka
Banyak bilangan ganjil seluruhnya = (5)(8)(8)(7) = 2240 buah.
• Berapa banyak bilangan ganjil antara 1000 dan 9999 (termasuk 1000 dan 9999 itu sendiri) yang boleh ada angka yang berulang. Penyelesaian: a. b. c. d.
posisi satuan : 5 kemungkinan angka (1, 3, 5, 7 dan 9); posisi ribuan : 9 kemungkinan angka (1 sampai 9) posisi ratusan : 10 kemungkinan angka (0 sampai 9) posisi puluhan : 10 kemungkinan angka (0 sampai 9)
Banyak bilangan ganjil seluruhnya = (5)(9)(10)(10) = 4500
• Ketika dua proses dikerjakan dalam waktu yang sama, kita tidak bisa menggunakan prinsip penjumlahan untuk menghitung jumlah cara untuk memilih salah satu dari dua proses tersebut. • Untuk menghitung proses tersebut, kita harus mengenal prinsip inklusi-eksklusi.
Setiap byte disusun oleh 8-bit. Berapa banyak jumlah byte yang dimulai dengan ‘11’ atau berakhir dengan ‘11’? Penyelesaian: Misalkan A = himpunan byte yang dimulai dengan ‘11’, B = himpunan byte yang diakhiri dengan ‘11’ A ∩ B = himpunan byte yang berawal dan berakhir dengan ‘11’ A ∪ B = himpunan byte yang berawal dengan ‘11’ atau berakhir dengan ‘11’
• |A| = (1)(1)(2)(2)(2)(2)(2)(2) = 26 = 64 • |B| = (2)(2)(2)(2)(2)(2) (1)(1) = 26 = 64, • |A ∩ B| = (1)(1)(2)(2)(2)(2)(1)(1) = 24 = 16. maka A ∪ B = A + B – A ∩ B = 26 + 26 – 16 = 64 + 64 – 16 = 112.
1. Sebuah restoran menyediakan 10 jenis makanan dan 8 jenis minuman. Jika setiap orang boleh memesan 1 makanan dan 1 minuman, berapa banyak makanan dan minuman yang dapat dipesan! 2. Jabatan presiden mahasiswa dapat diduduki oleh mahasiswa politeknik angkatan 2007 atau 2008. Jika jumlah mahasiswa politeknik telkom angkatan 2007 dan 2008 masing masing 400 dan 1100 mahasiswa, berapa cara memilih presiden mahasiswa!
3. Sekelompok mahasiswa yang menyukai Batagor Riri terdiri dari 12 pria dan 7 wanita. Berapa jumlah cara memilih satu orang pria dan satu orang wanita yang menyukai Batagor tersebut? 4. Sekelompok mahasiswa yang menyukai Batagor Riri terdiri dari 12 pria dan 7 wanita. Berapa jumlah cara memilih satu orang yang menyukai Batagor tersebut?
5. Pelat nomor memuat 2 huruf (boleh sama)diikuti 3 angka dengan digit pertama tidak sama dengan 0(boleh ada angka yang sama). Ada berapa pelat nomor berbeda? 6. Pelat nomor memuat 2 huruf berbeda diikuti 3 angka berbeda. Ada berapa pelat nomor berbeda?
7. Terdapat 4 jalur bus antara A dan B dan 3 jalur bus dari B ke C. Tentukan banyaknya cara agar seseorang dapat bepergian dengan bus dari A ke C melewati B? 8. Terdapat 4 jalur bus antara A dan B dan 3 jalur bus dari B ke C. Tentukan banyaknya cara agar seseorang dapat pulang pergi dengan bus dari A ke C melewati B
9. Terdapat 4 jalur bus antara A dan B dan 3 jalur bus dari B ke C. Tentukan banyaknya cara agar seseorang dapat pulang pergi dengan bus dari A ke C melewati B dan tidak ingin melewati satu jalur lebih dari sekali?
10. Perpustakan Politeknik Telkom memiliki 6 buah buku Sistem Informasi, 10 buku Algoritma dan Pemrograman, serta 15 buku Sistem Komputer. Berapa jumlah cara memilih: a. 3 buah buku, masing-masing dari jenis yang berbeda b. Sebuah buku
11. Dari angka 3, 5, 6, 7, dan 9 dibuat bilangan yang terdiri atas tiga angka yang berbeda. Tentukan banyaknya bilangan yang kurang dari 400! 12. Dari angka-angka 1, 2, 3, 4 dibentuk bilangan yang terdiri atas 4 angka yang berlainan. Tentukan banyaknya bilangan yang lebih dari 2000!
• Permutasi adalah jumlah urutan berbeda dari pengaturan objek-objek. • Permutasi merupakan susunan yang mungkin dibuat dengan memperhatikan urutan. • Simbol : P(n, r)
n! • P(n, r) = (n − r )!
• Misalkan S = {p, q, r}. Berapa cara yang mungkin dalam penyusunan 2 huruf pada S sehingga tidak ada urutan yang sama ? • Penyelesaian:
• Berapa banyak “kata” yang terbentuk dari kata “HAPUS”? • Penyelesaian: P(5, 5) = 5! = 120 buah kata • Berapa banyak cara mengurutkan nama 25 orang mahasiswa? • Penyelesaian: P(25, 25) = 25! = 15.511.210.043.330.985.984.000.000
• Diketahui enam buah bola yang berbeda warnanya dan 3 buah kotak. • Masing-masing kotak hanya boleh diisi 1 buah bola. • Berapa jumlah urutan berbeda yang mungkin dibuat dari penempatan bola ke dalam kotak-kotak tersebut? BOLA m
b
p
h
k
KOTAK 1
2
3
j
Cara 1: a. kotak 1 dapat diisi oleh salah satu dari 6 bola (ada 6 pilihan); b. kotak 2 dapat diisi oleh salah satu dari 5 bola (ada 5 pilihan); c. kotak 3 dapat diisi oleh salah satu dari 4 bola (ada 4 pilihan).
• Jumlah urutan berbeda dari penempatan bola = (6)(5)(4) = 120 Cara 2: P(6,3)=6!/(6-3)!=6!/3!=120
Berapakah jumlah kemungkinan membentuk 3 angka dari 5 angka berikut: 1, 2, 3, 4 , 5, jika: (a) tidak boleh ada pengulangan angka, dan (b) boleh ada pengulangan angka.
Penyelesaian: (a) Dengan kaidah perkalian: (5)(4)(3) = 60 buah Dengan rumus permutasi P(5, 3) = 5!/(5 – 3)! = 60 (b) Tidak dapat diselesaikan dengan rumus permutasi. Dengan kiadah perkalian: (5)(5)(5) = 53 = 125.
• Diketahui Kode buku di sebuah perpustakaan panjangnya 7 karakter, terdiri dari 4 huruf berbeda dan diikuti dengan 3 angka yang berbeda pula. • Tentukan banyak kode yang dapat dibuat! • Penyelesaian: P(26, 4) × P(10,3) = 258.336.000
• Banyaknya permutasi dari n objek dari n1 yang sama, n2 yang sama,……, nr yang sama adalah
n! n1!n2 !...nr !
Tentukan banyaknya kata yang dapat dibentuk dari kata “DISKRIT” Penyelesaian: n=7 n1 = 2 (huruf I yang sama, jumlahnya = 2) Banyaknya kata yang dapat dibentuk dari kata “DISKRIT” = n!/n1! = 7!/2! = 2520 Kata
Tentukan banyaknya kata yang dapat dibentuk dari kata “MATEMATIKA” Penyelesaian: n = 10 n1 = 2 (huruf M) n2 = 3 (huruf A) n3 = 2 (huruf T) Banyaknya kata yang dapat dibentuk dari kata “MATEMATIKA” = 10!/2!3!2! = 151.200 kata
1. Berapa banyak bilangan berdigit 3 yang bisa dibentuk dari 6 angka 2,3,4,5,7,9 dan pengulangan tidak diperbolehkan? 2. Sebuah bioskop mempunyai jajaran kursi yang disusun perbaris. Tiap baris terdiri dari 6 kursi. Jika dua orang akan duduk, berapa banyak pengaturan tempat duduk yang mungkin pada suatu baris?
3. Tentukan banyaknya sandi yang dapat dibentuk dari 5 huruf yang berbeda dan diikuti pula dengan 2 angka yang berbeda pula! 4. Sebuah mobil mempunyai 4 tempat duduk. Berapa banyak cara 3 orang didudukkan jika diandaikan satu orang harus duduk di kursi sopir?
• Bentuk khusus dari permutasi adalah kombinasi. • Jika pada permutasi urutan kemunculan diperhitungkan, maka pada kombinasi, urutan kemunculan diabaikan. • Simbol : C (n,r)
n! • C (n,r) = r !(n − r )!
• Di antara 10 orang mahasiswa Teknik Komputer Angkatan 2009, berapa banyak cara membentuk sebuah perwakilan beranggotakan 5 orang sedemikian sehingga: 1. Mahasiswa bernama A selalu termasuk di dalamnya; 2. Mahasiswa bernama A tidak termasuk di dalamnya; 3. Mahasiswa bernama A selalu termasuk di dalamnya, tetapi B tidak; 4. Mahasiswa bernama B selalu termasuk di dalamnya, tetapi A tidak; 5. Mahasiswa bernama A dan B termasuk di dalamnya; 6. Setidaknya salah satu dari mahasiswa yang bernama A atau B termasuk di dalamnya.
1. Banyak cara untuk membentuk perwakilan yang beranggotakan 5 orang sedemikian sehingga A selalu termasuk di dalamnya adalah: C(9, 4) = 126 2. Banyak cara untuk membentuk perwakilan yang beranggotakan 5 orang sedemikian sehingga A tidak termasuk di dalamnya adalah: C(9, 5) = 126 3. Banyak cara untuk membentuk perwakilan yang beranggotakan 5 orang sedemikian sehingga A termasuk di dalamnya, tetapi B tidak adalah: C(8, 4) = 70
4. Banyak cara untuk membentuk perwakilan yang beranggotakan 5 orang sedemikian sehingga B termasuk di dalamnya, tetapi A tidak adalah: C(8, 4) = 70 5. Banyak cara untuk membentuk perwakilan yang beranggotakan 5 orang sedemikian sehingga A dan B selalu termasuk di dalamnya adalah: C(8, 3) = 56
6. Jumlah cara membentuk perwakilan sedemikian sehingga setidaknya salah satu dari A atau B termasuk di dalamnya adalah: Jumlah cara membentuk perwakilan sehingga A termasuk di dalamnya, B tidak + jumlah cara membentuk perwakilan sehingga B termasuk di dalamnya, A tidak + jumlah cara membentuk perwakilan sehingga A dan B termasuk di dalamnya = 70 + 70 + 56 = 196
1. Suatu pertemuan dihadiri oleh 15 orang undangan. Jika mereka saling berjabat tangan, banyak jabat tangan yang terjadi dalam pertemuan itu adalah .... 2. Dari 20 siswa akan dipilih sebuah tim sepakbola yang terdiri atas 11 orang. Tentukan banyak cara dalam pemilihan tersebut.
3. Banyaknya segitiga yang dapat dibuat dari 7 titik tanpa ada tiga titik yang terletak segaris adalah .... 4. Tentukan banyaknya cara memilih 5 orang dari 15 orang siswa untuk menjadi pelaksana upacara bendera Senin pagi! 5. Menentukan lima orang pemain cadangan dari 16 orang anggota kesebelasan sepakbola.
6. Ada 5 orang mahasiswa jurusan Matematika dan 7 orang mahasiswa jurusan Informatika. Berapa banyak cara membentuk panitia yang terdiri dari 4 orang jika: (a) tidak ada batasan jurusan (b) semua anggota panitia harus dari jurusan Matematika (c) semua anggota panitia harus dari jurusan Informatika (d) semua anggota panitia harus dari jurusan yang sama (e) 2 orang mahasiswa per jurusan harus mewakili.
40
7. Berapa banyak cara membentuk sebuah panitia yang beranggotakan 5 orang yang dipilih dari 7 orang pria dan 5 orang wanita, jika di dalam panitia tersebut paling sedikit beranggotakan 2 orang wanita?
41
Jabarkan (3x - 2)3! Penyelesaian: Misalkan a = 3x dan b = -2, (a + b)3 = C(3, 0) a3 + C(3, 1) a2b1 + C(3, 2) a1b2 + C(3, 3) b3 = 1 (3x)3 + 3 (3x)2 (-2) + 3 (3x) (-2)2 + 1 (-2)3 = 27 x3 – 54x2 + 36x – 8
Tentukan suku keempat dari penjabaran perpangkatan (x - y)5. Penyelesaian: (x - y)5 = (x + (-y))5. Suku keempat adalah: C(5, 3) x5-3 (-y)3 = -10x2y3.
1. (2x-3)3=… 2. (3x-2y)4 = … 3. Tentukan suku ke empat dari penjabaran perpangkatan (x +y)5 4. Tentukan suku ke lima dari penjabaran perpangkatan (2x +3y)6
5. Dengan menggunakan teorema binomial, tentukan : a. koefisien x5y8 dalam (x + y)13 b. koefisien x7 dalam (1 + x)11 c. koefisien x9 dalam (1 – x)19