Jurnal Infomedia Vol.1 No.1 September 2016 | ISSN: 2527-9858
KLASIFIKASI DAN PENINGKATAN KUALITAS CITRA SIDIK JARI MENGGUNAKAN DFT (DISCRETE FOURIER TRANSFORM) Cilla Sundari1, Muhammad Nasir2, Hari Toha Hidayat3 Program Studi Teknik Informatika, Jurusan Teknologi Informasi dan Komputer, Politeknik Negeri Lhokseumawe, Jalan Banda Aceh-Medan Km. 280,3 Buketrata, Lhokseumawe, 24301 PO.BOX 90 Telp. (0645) 42670, 42785 Fax 42785, Indonesia E-mail :
[email protected],
[email protected],
[email protected].
ABSTRAK Sidik jari merupakan suatu komponen biometrik yang sering digunakan sebagai alat identifikasi yang terbukti cukup efektif karena sifatnya yang universal, unik, dan permanen pada setiap manusia. Berdasarkan jenis nya sidik jari memiliki 4 jenis yaitu berminyak, normal, kering, dan kotor.Sidik jari kering yang secara kasat mata dapat dilihat adanya garis yang terputus, sedangkan sidik jari berminyak yang licin memiliki minyak berlebih atau sering basah. Kondisi sidik jari kotor merupakan sidik jari kotor yang diakibatkan oleh debu, pulpen, tinta spidol dan lain-lain. Untuk mengatasi permasalahan tersebut ditawarkan satu alternatif untuk meningkatkan kualitas sidik jari yang terfokus pada sidik jari berjenis kering dengan menggunakan metode DFT. Klasifikasi citra sidik jari kering yang dilakukan berdasarkan nilai piksel ridge dan valley dengan tingkat keberhasilan tertinggi mencapai 96% dan keseluruhan keberhasilan klasifikasi 69%. Untuk peningkatan terbaik didapatkan pada nilai ambang D0 = 0,2. Kata Kunci : sidik jari, klasifikasi, peningkatan, discrete fourier transform
1. PENDAHULUAN Sidik jari merupakan suatu komponen biometrik yang sering digunakan sebagai alat identifikasi yang terbukti cukup efektif karena guratan pada sidik jari melekat pada kulit manusia seumur hidup dan bersifat universal dan unik antara satu individu dengan individu lainnya.
Sebelumnya penelitian ini telah dilakukan oleh Salahuddin, Tulus, dan F.Fahmi (2013). Dengan judul βKlasifikasi dan Peningkatan Kualitas Citra Sidik Jari Menggunakan FFT (Fast Fourier Trasform).β Output dari aplikasi ini adalah sidik jari yang berkualitas rendah menjadi kualitas tinggi. Metode yang digunakan adalah FFT (Fast Fourier Transform) untuk sidik jari. Hasil peningkatan piksel ridge 97.52 % pada konstanta k=0,6, dan hasil verifikasi persentase matching sidik jari tertinggi pada nilai konstanta k=0,6 yaitu 54,29%.[4]
Pendeteksian sidik jari saat ini sering mengalami kesalahan yang diakibatkan oleh kondisi dari jenis sidik jari. Sidik jari memiliki beberapa jenis yaitu sidik jari normal, kering, berminyak, dan kotor. Sidik jari kering yang secara sentuhan kulit terasa lebih kasar, sedangkan sidik jari berminyak lebih terasa licin karena memiliki minyak berlebih atau sering berkeringat, dan sidik jari kotor sering diakibatkan oleh debu, pulpen, tinta spidol dan lain-lain[2]. Untuk mengatasi masalah tersebut ditawarkan salah satu alternatif untuk meningkatkan kualitas citra sidik jari kering dengan membuat aplikasi klasifikasi dan peningkatan kualitas citra sidik jari menggunakan DFT (Discrete Fourier Transform). Dengan metode tersebut diharapkan proses peningkatan kualitas citra sidik jari dapat dilakukan dengan lebih efektif dan lebih efesien. Metode ini digunakan untuk meningkatkan nilai ridge (gundukan) dan mengurangi nilai valley (lembah) pada citra sidik jari.Hal ini dilakukan agar ridge (gundukan) pada citra sidik jari tidak terlalu rusak dan terlalu halus.
Permasalahan dalam mengklasifikasi dan meningkatkan kualitas citra sidik jari dibatasi hal-hal sebagai berikut : a. Menghitung nilai ridge dan valley. b. Mengklasifikasi dan meningkatkan citra sidik jari kering dengan menggunakan DFT (Discrete Fourier Transform). c. Sidik jari tangan kanan dengan 5 posisi (normal, miring kanan, miring kiri, terbalik, dan ujung atas).
2.
DISCRETE FOURIER TRANSFORM
Menurut [5] Transformasi Fourier merupakan suatu proses yang banyak digunakan untuk memindahkan domain dari suatu fungsi atau obyek ke dalam domain frekuensi. Di dalam pengolahan citra digital, transformasi fourier digunakan untuk mengubah domain spasial pada citra menjadi domain frekuensi.
1
Jurnal Infomedia Vol.1 No.1 September 2016 | ISSN: 2527-9858
Transformasi fourier diskrit yang dikenakan pada fungsi 2D (fungsi dengan dua variabel bebas), DFT 2D banyak digunakan dalam pengolahan citra digital, karena data citra dinyatakan sebagai fungsi 2D. Dalam dua dimensi, DFT mempunyai input berupa matriks dan akan menghasilkan output berupa matriks dengan ukuran yang sama. Jika input adalah f(x,y) maka outputnya dapat dinyatakan dengan F(u,v). Matriks F(u,v) disebut transformasi fourier dari f (x,y) dan ditulis sebagai berikut : πβ1
πΉ(π’, π£) = β π₯=0
πβ1
β π(π₯, π¦) exp[β2ππ( π¦=0
π₯π’ π¦π£ + )] π π (1)
πβ1
1 π(π₯, π¦) = β ππ
π₯=0
πβ1
β πΉ(π’, π£) exp[2ππ( π¦=0
π₯π’ π¦π£ + )] π π (2)
Ket : U=indeks transformasi (baris) V=indeks transformasi (kolom) X=indeks citra (baris) Y=indeks citra (kolom) M=panjang discret(kolom) N= panjang discret(baris)
3.
METODE PENGUMPULAN DATA
Pengambilan data citra sidik jari dilakukan secara acak yaitu 12 orang dengan 5 posisi perorang. Data 12 orang tersebut 2 orang berminyak, 3 orang normal, 5 orang kering dan 2 orang kotor. Data sidik jari akan diambil dengan merujuk pada pedoman pengambilan data Fingerprint yakni menggunakan optical sensor fingerprint βU.are.U 4500β yang diproduksi oleh digital personal dengan mendapatkan ukuran citra 300 Γ 300 piksel grayscale dalam format bitmap.
Gambar 1. Flowchat keseluruhan sistem Adapun tahapan-tahapan yang dilakukan yaitu : 1. Menginput citra sidik jari 2. Memotong citra dibagian tengah sidik jari untuk mendapatkan hasil yang terbaik 3. Kemudian citra yang telah dipotong kemudian dibinerisasikan 4. Memperhitungkan nilai Ridge dan Valley 5. Pengkondisian berdasarkan range yang telah ditetapkan. 6. Hasil klasifikasi yang diperoleh dari proses pengkondisian, ditingkatkan dengan memasukkan nilai matrik dari citra sidik jari tersebut kedalam perhitungan metode DFT 7. Hasil persentase dari proses yang telah dilakukan
3.1 PERANCANGAN Flowchat ini menjelaskan bagaimana proses klasifikasi pada citra yang pertama dilakukan adalah mengumpulkan citra sidik jari dengan 5 posisi yaitu normal, miring kanan, kiri, terbalik, dan ujung atas, kemudian lakukan cropping dan binerisasi, klasifikasi sidik jari kering dengan ketentuan nilai ridge dan valley, peningkatan dengan metode DFT, persentase sebelum dan sesudah peningkatan. Flowchat keseluruhan penelitian ini di tunjukkan pada Gambar 1 berikut ini.
Nilai range dari masing-masing jenis ditentukan dari interval berikut. Diketahui : Nilai Ridge Min = 25 Nilai Ridge Max = 65 K=4 Penyelesaian: R = Nilai Ridge Max β Nilai Ridge Min = 65 β 25 = 40 I=R/K
2
Jurnal Infomedia Vol.1 No.1 September 2016 | ISSN: 2527-9858
= 40 / 4 = 10 Kelas1 = NilaiMin + I β 1 = 25 + 10 β 1 = 34 Kelas2 = Kelas1 + I β 1 = 35 + 10 β 1 = 44 Kelas3 = Kelas2 + I β 1 = 45 + 10 β 1 = 54 Kelas4 = Kelas3 + I = 55 + 10 = 65 Tabel 1 Range Klasifikasi Kelas 1 (Kotor) 25 β 34 Kelas 2 (Kering) 35 β 44 Kelas 3 (Normal) 45 β 54 Kelas 4 (Berminyak) 55 β 65
4.2 HASIL KLASIFIKASI Klasifikasi citra sidik jari kering dapat dilihat pada tabel 2 berikut. Tabel 2 Hasil klasifikasi Citra Sidik Jari
Jempol
Keterangan : R = Range K = Kelas I = Interval
4.
Telunjuk
HASIL DAN PEMBAHASAN
4.1 BINERISASI Proses binerisasi ini bertujuan untuk mengkonversi citra sidik jari ke dalam suatu citra biner yang menggunakan nilai threshold. Nilai threshold ini digunakan untuk mendapatkan hasil terbaik dalam proses binerisasi. Adapun nilai threshold yang dipilih antara lain 128, 150, 160, dan 180.
Tengah
Manis
Kelingking
Sinta Posisi Ridge
Valley
Hasil
Normal
36,59
63,40
Kering
Miring Kiri
32,25
67,74
Kotor
Miring Kanan
37,62
62,37
Kering
Terbalik
35,88
64,11
Kering
Ujung
42,32
57,67
Kering
Normal
38,58
61,41
Kering
Miring Kiri
39,70
60,29
Kering
Miring Kanan
41,99
58,00
Kering
Terbalik
40,24
59,75
Kering
Ujung
43,31
56,68
Kering
Normal
39,56
60,43
Kering
Miring Kiri
42,64
57,35
Kering
Miring Kanan
36,14
63,85
Kering
Terbalik
34,39
65,60
Kotor
Ujung
46,59
53,40
Normal
Normal
42,66
57,33
Kering
Miring Kiri
46,30
53,69
Normal
Miring Kanan
47,20
52,79
Normal
Terbalik
42,07
57,92
Kering
Ujung
36,73
63,26
Kering
Normal
33,18
66,81
Kering
Miring Kiri
42,31
57,68
Kering
Miring Kanan
41,48
58,51
Kering
Terbalik
36,70
63,29
Kering
Ujung
42,68
57,31
Kering
Menghitung persentase keberhasilan klasifikasi citra sidik jari kering tersebut, dapat dilakukan dengan cara berikut. Persentase = π½π’πππβ π·ππ‘π π΅ππβππ ππ Γ 100% π½π’πππβ π·ππ‘π 15 = Γ 100% 25 = 60%
Gambar 2 Hasil Binerisasi dengan nilai threshold Nilai threshold yang digunakan yaitu 160, hal ini dikarenakan pada nilai tersebut memiliki nilai intensitas yang baik diantara nilai lain, maka penelitian ini menggunakan nilai threshold 160 dalam binerisasi citra sidik jari.
Hasil klasifikasi citra sidik jari keseluruhan dapat dilihat pada tabel 3 berikut.
3
Jurnal Infomedia Vol.1 No.1 September 2016 | ISSN: 2527-9858
1 πππππ·(π£, π’) β€ π·0 πΉ(π£, π’) = { 0 πππππ·(π£, π’) > π·0
Tabel3 Hasil klasifikasi keseluruhan Hasil Klasifikasi Nama Citra Jenis sidik jari Cilla Endang Dariyanti Angga Adinda Isma Kiki Andri Sinta Deni Munita
Husna
Persentase Keberhasilan
Berminyak Beminyak Normal Normal Normal Kering Kering Kering Kering Kering Kotor
64% 80% 88% 52% 64% 96% 72% 76% 60% 68% 56%
Kotor
52%
(3)
Dalam hal ini, D0 adalah bilangan non-negatif yang biasa disebut radius filter, yang menentukan ambang frekuensi, dan D(v,u) adalah jarak antara (v,u) terhadap pusat filter. Sehingga nilai yang berada di pusat filter dipertahankan, dan nilai yang jauh dari pusat filter dihilangkan atau diminimalkan. Menentukan nilai ambang frekuensi (D0) yang terbaik, dipilih dari beberapa percobaan pada nilai ambang (D0) tersebut diantaranya yaitu D0 = 0,2, D0 = 0,4, D0 = 0,6, D0 = 0,8, D0 = 1,0 dan D0 = 1,2. Hasil percobaan dari nilai ambang tersebut dapat dilihat pada gambar 3 berikut.
Tingkat persentase keberhasilan klasifikasi keseluruhan di peroleh 69% dari perhitungan persentase keberhasilan klasifikasi keseluruhan sebagai berikut. Persentase = π½π’πππβ π·ππ‘π π΅ππβππ ππ Γ 100% π½π’πππβ π·ππ‘π 207 = Γ 100% 300 = 69 %
4.3 ANALISA DFT Pada proses peningkatan kualitas citra sidik jari dilakukan dengan metode DFT, metode ini akan mentransformasikan domain spasial ke domain frekuensi. Domain spasial merupakan inputan berupa citra sidik jari.
Gambar 3 Citra enhancement dengan nilai D0 yang berbeda Nilai D0 yang digunakan yaitu D0= 0,2, hal ini dikarenakan pada nilai tersebut dapat meningkatkan nilai ridge dengan baik diantara nilai yang lainnya, maka penelitian ini menggunakan nilai D0= 0,2.
Setelah citra sidik jari diinputkan maka proses selanjutnya adalah mentransformasikan ke citra tersebut ke domain frekuensi. Pada proses transformasi ini terdapat perubahan nilai pada citra tersebut. Nilai pada domain frekuensi ini berupa nilai real dan nilai imaginer, dimana nilai real merupakan nilai asli dan nilai imaginer adalah nilai hayal yang ditandai dengan ada nya (+) untuk nilai real dan (-) untuk nilai imaginer.
Nilai hasil dari ideal lowpass filter masih pada domain frekuensi, sehingga perlu ditransformasikan kembali ke domain spasial yang biasa disebut dengan invers DFT. Sehingga didapatkan hasil peningkatan yang dapat dilihat pada gambar 4 berikut.
Setelah citra berada pada kawasan frekuensi maka dilakukan proses pemfilteran pada kawasan frekuensi untuk meningkatkan kualitas citra tersebut. Filter yang cocok untuk proses peningkatan citra yaitu ideal lowpass filter yang dapat meloloskan bagian berfrekuensi rendah dan menghilangkan yang berfrekuensi tinggi. Sehingga dapat menghilangkan derau atau membuat derau menjadi lebih halus. Ideal lowpass filter memiliki fungsi transfer seperti berikut: Gambar 4 Hasil Peningkatan DFT
4
Jurnal Infomedia Vol.1 No.1 September 2016 | ISSN: 2527-9858
5.
(Tesis Mahasiswa Jurusan Teknik Elektro) FMIPA Universitas Sumatera Utara.
SIMPULAN
[9] Susilawati Indah.2009.βTeknik Pengolahan Citra Kuliah 7 Transformasi Fourier.β Yogyakarta: Universitas Mercu Buana.
Berdasarkan perancangan dan pengujian yang telah dilakukan sebelumnya mengenai klasifikasi dan peningkatan kualitas citra sidik jari menggunakan discrete fourier transform metode pada bab terdahulu, maka dapat diambil kesimpulan berupa: 1. Pada klasifikasi citra sidik jari dilakukan dengan menemukan nilai piksel ridge dan piksel valley sesuai range yang telah ditetapkan, sehingga didapatkan hasil keseluruhan klasifikasi citra sidik jari sebesar 69% . 2. Proses peningkatan kualitas dari citra sidik jari berjenis kering menggunakan metode discrete fourier transform, yang mengalami pemfilteran dikawasan frekuensi, didapatkan nilai D0 yang terbaik yaitu D0 = 0,2.
[10] Yun, E. 2006. βAdaptive Fingerprint Image Enhancement with Fingerprint Image Quality Analysis.β Elsevier on Image and Vision Computing, 101-110.
DAFTAR ACUAN [1] Kamaruddin,Muis.2010.βPeningkatanPerformansi Pengklasifikasian Pola Sidik Jari Berbasis Jaringan ELM-RBF dengan Kombinasi FFT dan PCA.β Vol.1. STMIK KHARISMA Makassar. [2] Kadir, Abdul. 2013. βDasar pengolahan citra dengan Delphi.β Yogyakarta. [3] Kadir, Abdul. 2013. βTeori Pengolahan Citra.β Yogyakarta.
dan
Aplikasi
[4] Moeslund,Thomas B. 2012. βIntruduction to Video and Image Processing : Building Real System and Application.β Springer. Verlag London. [5] Nasir, M dan Syahroni, M. βPengujian Kualitas Citra Sidik Jari Kotor menggunakan Learning Vector Quantization (LVQ).β, Jurusan Teknik Elektro Politeknik Negri Lhokseumawe. Vol 9(1). [6] Noviyanto, A. (2009). βPerbaikan Citra Sidik Jari dengan Metode STFT (Short Time Fourier Transform) Analysis.β Yogyakarta: Universitas Gadjah Mada. [7] Putra Darma. 2010. βpengolahancitra digital.β Yogjakarta. [8] Salahuddin, Tulus, danFahmi,F.2013.βKlasifikasi dan Peningkatan Kualitas Citra Sidik Jari Menggunakan FFT (Fast Fourier Trasform).β
5