Képfeldolgozási módszerek a geoinformatikában Elek István – Klinghammer István Eötvös Loránd Tudományegyetem, Informatikai Kar, Térképtudományi és Geoinformatikai Tanszék, MTA Térképészeti és Geoinformatikai Kutatócsoport 1. Bevezetés A képfeldolgozás a számítástudomány egyik intenzíven fejlődő ága, amely a geoinformatikában is fontos szerepet játszik. A távérzékelés számos képfeldolgozási módszert használ, amelyek révén megőrizhetők és kiemelhetők a képeken látható jellegzetességek, vagy éppen ellenkezőleg, kiszűrhetők a zajok, elnyomhatók a nem kívánatos jelenségek. A digitális kép, mint olyan, raszteres adatmodellt követ, így minden raszteres logikájú adatbázisra, mint például a digitális magasság modellre (DEM: Digital Elevation Model), eredményesen alkalmazhatók a képfeldolgozás eljárásai. Ebben az esetben a raszteres adatelemek, a pixelek, nem fényintenzitás értékeket, hanem magasságértékeket tartalmaznak. A Föld felszíne egy meglehetősen bonyolult geometriai objektum, amelyen számos más egyéb objektum helyezkedik el, mint például folyók, utak, települések, telkek, épületek, stb. Megfelelően mintavételezett digitális felszín rácspontjaihoz rögzítve helyezkednek el a fent említett objektumok. Fontos megérteni e digitális felszín viselkedését a rácsállandó függvényében. Nyilvánvalóan egy sűrűn mintavételezett felszín finomabb részletek visszaadására képes – nemcsak a domborzat, hanem a hozzá kötött egyéb vonalas vagy poligonos térképi elemek tekintetében is – mint egy ritka mintavételezésű. A cikkben áttekintjük a domborzatleírás raszteres modelljét, valamint néhány szűrési eljárást, amelyet a magasság modellre alkalmaztunk. Bemutatunk egy lehetséges automatikus eljárást, amely a domborzat simítószűrése és ritkított átmintavételezése révén éri el a rajta lévő többi térképi elemek generalizálását. A Függelékben összefoglaljuk az alkalmazott digitális szűrési eljárások matematikai alapjait.
2. Mintavételezés és a digitális domborzati modellek A szaktudományokban alapvető jelentőségű az adatnyerés folyamata, amely a technika mai színvonalán digitális adatnyerést vagy mintavételezést jelent. Mintavételezéskor analóg jelekből állítunk elő digitális adatokat, vagyis a folyamat a jól ismert analóg-digitál konverzió (1. ábra). Tekintsük át a mintavételezés elvi modelljét. Jelölje g(t) a mintavételezni kívánt függvény, t-k a közönként következő Dirac- sorozatot, amely a mintavételezés eszköze. Ezzel megszorozva a g(t) függvényt, annak digitalizált változatát kapjuk, vagyis az eredeti függvény értékeit a k mintavételi helyeken.
1
1. ábra. A digitalizálás elméleti modellje, az ún. analóg-digitál konverzió
A digitális magasságmodell célja az analóg felszín lehető legpontosabb leírása. A digitalizálás elméleti modelljét két dimenzióra kiterjesztve elmondható, hogy az analóg felszín leírására nagyon alkalmas egy két dimenziós Dirac- sorozat, amely szabályos rácspontokban ( mintavételi távolsággal) megadott magasságértékekkel írja le a felszínt. A digitális felszínnek tehát valamennyi adatpontja rendelkezik x,y,z koordinátákkal (2. ábra).
2. ábra. Egy két dimenziós Dirac-
sorozattal és mintavételi távolsággal mintavételezett digitális felszín
Vegyük észre, hogy mennyire hasonló a digitális kép és a digitális magasságmodell adatszerkezete. Emiatt a képfeldolgozás módszerei a domborzati modellek manipulálására is sikerrel alkalmazhatók. Vonjunk le néhány triviális következtetést: ha nagy a rácsállandó (a mintavételi távolság), akkor felszín leírása „elnagyolt”, kevés részlet látható, ellenben az adatbázis kevés tárhelyet igényel. Ha viszont kicsi a rácsállandó, akkor a felszín apró részleteit is képes lesz 2
visszaadni a digitális modell. A részletgazdagság következménye az adatok nagy tárhely igényében jelentkezik. Ennélfogva mindazon térképi elemek pontossága, „részletgazdagsága”, amelyeket a digitális felszínhez kötöttünk, függeni fog a felszín leírás pontosságától, vagyis a mintavételi távolságtól. Ez a tény egy korrekt lehetőséget nyújt a generalizálás bizonyos fajtáinak automatizálására, hiszen a mintavételi távolság változtatásával (növelésével) a felszín és a hozzá kapcsolt egyéb térképi rétegek egyre elnagyoltabb, egyre összevontabb leírását leszünk képesek megadni. (A mintavételezés pontosabb leírása a Függelékben olvasható.) Vizsgáljunk meg egy nagy felbontású magasság modellt ( =50m), amely a Dunakanyart ábrázolja (3. ábra),. A kis mintavételi távolság miatt a felszín meglehetősen részletgazdag leírását láthatjuk.
3. ábra. A digitális domborzatmodell simítószűrés előtt Mi történik, ha a felszínt leíró adatmátrixot simítószűrésnek vetjük alá? A simítószűrés hatására az adatrendszer nagyobb frekvenciájú változásai eltűnnek, vagyis a szűrés után kapott domborzat kevésbé lesz változékony, a kisebb domborzati változások kisimulnak, csak a nagyobb hullámhosszúságú változások maradnak meg (4. ábra).
3
4. ábra. A digitális domborzatmodell simítás után Az automatikus generalizálás lehetőségét a simítás teremti meg azáltal, hogy eliminálja a kisebb, jelentéktelenebb változásokat, és csak a nagyobb léptékű (kisebb frekvenciájú) változásokat hagyja meg. Mindazok az objektumok, amelyek a domborzattal együtt szerepeltek a térképen, a domborzat simításának hatására automatikusan simítottá, generalizálttá válnak, ami megfelel a generalizálás bizonyos fajtáinak (természetesen a kiemelésnek vagy bármilyen arányos torzításnak nem).
3. Problematikus kérdések Vizsgálódásaink azt mutatják, hogy a legtöbb térképi tematikát megfelelően generalizálja a fent leírt eljárás. Van még néhány probléma, amit nem sikerült kielégítőn megoldanunk. A generalizálás hatására bizonyos vonaltalálkozások (például útkereszteződések, vizek összefolyása) beesési szöge kismértékben megváltozhat. Előfordulhat, hogy ez nem felel meg előzetes elvárásainknak, vagyis interaktív megoldási módszert kell választanunk, kézzel kell korrigálnunk a kapott megoldást. Egy másik, elvileg sem egyszerű kérdés, hogy erőteljes domborzat simítás hatására megváltozhatnak a felszín bizonyos jellemzői. Kisebb völgyek, pihenők, gerincvonalak megváltozhatnak, amit egyébként a felületes szemlélő észre sem vesz, sőt nem okoz hibának tűnő változást a generalizálás eredményében sem. Elvileg azonban problematikus lehet, hogy az eredeti és a simított felszín gravitációs szempontból eltérhet egymástól. Kisebb nagyobb mértékben átrendeződhetnek bizonyos lokális gravitációs minimumhelyek, amelyek egy lefolyási modell készítését jelentősen befolyásolhatják. Ezzel csak azt kívántuk hangsúlyozni, hogy a leírt eljárást csak térkép generalizálásra használjuk, és a simított magasságmodellt ne alkalmazzuk más célokra.
4
4. Függelék A digitális szűrések megértéséhez szükséges néhány matematikai fogalom ismertetése.
Fourier-transzformáció Legyen s(t) az idő nem periodikus függvénye. Nevezzük Fourier-transzformációnak a következű műveletet: (1)
ahol S(f) az s(t) függvény Fourier-transzformáltja, vagy spektruma. Nevezzük inverz Fouriertranszformációnak a következő műveletet.
(2) A Fourier-transzformáció az s(t) függvényt az időtartományból a frekvencia tartományba képezi le, míg az inverz transzformáció az S(f) függvényt (s(t) spektrumát) a frekvencia tartományból az időtartományba képezi le. Az időt, mint történeti okokból kialakult konvencionális elnevezést használjuk. Digitális képek vagy magassági modellek esetén időtartomány helyett helyesebb lenne tértartományt mondani, továbbá a probléma így kétdimenziós, ami kissé bonyolultabbá teszi a formulát. A frekvencia tartomány azonban ezekben az esetekben is korrekt megnevezés, elvégre a spektrum a képeken látható változások frekvenciájáról hordoz információt.
A négyszög-függvény és Fourier-transzformáltja Legyen s(t) egy olyan függvény (5. ábra), amely s(t) = a, ha |t| <
/2
= 0 egyébként
5
5. ábra. A négyszög-függvény A négyszög-függvény Fourier-transzformáltja (6. ábra) a következő:
(3)
6. ábra. A négyszög-függvény Fourier-transzformáltja az ún. szinusz kardinálisz függvény A Fourier-transzformáció szimmetrikus mivoltából következően (egy mínusz előjeltől eltekintve a magfüggvény kitevőjében) egy frekvenciatartománybeli négyszög-függvény inverz Fourier-transzformáltja az időtartományban egy szinusz kardinálisz függvény.
DiracPaul Dirac, a híres elméleti fizikus olyan pontszerű objektumok, mint az elektron leírására használta először a róla elnevezett függvényt (valójában nem függvény, hanem ún. disztribúció), amelynek a definíciója a következő: (4)
vagyis a Dirac- egy végtelenül keskeny és végtelenül magas impulzus, amelynek görbe alatti területe egységnyi. Egyik nevezetes tulajdonsága kiválasztási tulajdonság: (5)
6
vagyis ha megszorzunk egy függvényt a Dirac- -val, akkor az kiválasztja a függvénynek a Dirac- argumentumához tartozó értékét. Pontosan e tulajdonság az alapja az analog-digitál konverziónak (lásd 1. ábra).
Konvolúció Legyenek f1 és f2 folytonos függvények. Jelölje konvolúciójukat h, amely a következőképpen számítható (6) Jelölje F a Fourier-transzformációt, legyenek g(t) és h(t) időfüggvények, spektrumaik G(f) és H(f). (7) vagyis a függvények konvolúciójával.
szorzatának
Fourier-transzformáltja
egyenlő
a
spektrumok
Igaz továbbá a következő: (8) vagyis a spektrumok szorzata egyenlő a függvények konvolúciójának Fouriertranszformáltjával. Ennek az azonosságnak a frekvencia szerinti szűrések (pl. simítás) esetén lesz nagy jelentősége.
Digitális szűrők, kernelek Diszkrét esetben a konvolúció integrálja összegzésbe megy át, vagyis a diszkrét konvolúció a következő: (9) Valóságos esetben véges értékeket vehet csak fel (limitált képméret, korlátozott nagyságú térképi terület). Legyen például f2 egy digitális kép, és f1 az úgynevezett kernel, amely a szűrés hatását valósítja meg (7. ábra):
7
7. ábra. A kernel (f1) és a szűrendő adatmátrix (f2) mint például fénykép, magasságmodell, stb. A kernellel végigfutva (konvolúció) a adatmátrixon hajtható végre a szűrés. A szűrés eredménye attól függ, hogy milyen szűrőegyütthatókat töltöttünk a kernel mátrixba. Felülvágó szűrő Felülvágónak mondunk egy szűrőt, ha a megadott felső határfrekvenciánál nagyobb frekvenciájú jeleket kiszűri az adatrendszerből. Ez tehát azt jelenti, hogy a jel (pl. kép, magassági modell) spektrumát megszorozzuk egy négyszögfüggvénnyel, melynek értéke a felső határfrekvencia alatt 0, alatta 1. E művelet megfelelője az időtartományban egy szinusz kardinálisz függvénnyel végrehajtott konvolúció (9. formula). Mivel a képek és a magasságmodellek kétdimenziós adatrendszerek, ezért a szűréshez két dimenziós szinusz kardinálisz (sinc) függvény szükséges (8. ábra).
8. ábra. A kétdimenziós szinusz kardinálisz (sinc) függvény Felülvágó szűrések és magasság modellek Alkalmazzuk a kívánt felső határfrekvenciának megfelelő sinc függvényt a domborzati modell adatmátrixára. Az így simított adatrendszerből számított 3D-s magasságmodell a választott felső határfrekvenciától függően kevesebb nagyfrekvenciás komponenst fog tartalmazni. Így a domborzat lesimított jelleget fog ölteni, éppen olyant, amilyet a generalizálástól elvárunk.
8