BIOREMEDIASI IN-SITU LAHAN TERCEMAR PESTISIDA OLEH MIKROBA YANG ADA PADA KOMPOS Yohanes Setiyo1, Ida Bagus Wayan Gunam2, Ida Bagus Putu Gunadnya1, I Wayan Tika1 1 Jurusan Teknik Pertanian, 2Jurusan Teknologi Industri Pertanian, Fakultas Teknologi Pertanian, Universitas Udayana ABSTRACT
PENDAHULUAN
Bioremediation process at field or ex-situ with organic fertilizer such as compost was very efficient, because micro-organism that naturally present in compost could degrade amount of pesticide residue in the soil. Compost as an organic fertilizer could improve the physical, chemical, and biological characteristics of the soil in a certain way so that soil mineral was available for plant. The special aim of this research was to optimize the bioremediation process for degradation of pesticide residues at Bedugul Agro-tourism Area so that organic farming system will be sustain. Compost-fertilized demonstration-plot was cultivated with horticultural plants, such as strawberry, carrot, lettuce; etc was very efficient in decomposing Dithane-45 pesticide residue. Twelve tons of compost for one hectare of cultivated land could change the soil porosity and its value became to 25%.
Bedugul adalah salah satu kawasan wisata andalan di pulau Bali dan sebagai penghasil sayuran maupun buah-buahan yang dikonsumsi oleh wisatawan serta masyarakat Bali pada umumnya. Pencemaran lahan pertanian di Bedugul sebagai akibat penggunaan insektisida secara tidak langsung memberikan dampak bagi kesehatan wisatawan dan masyarakat Bali, sebab saat ini belum dikembangkan sistim penjaminan mutu produk hortikultura.
Based on C/N, and pH, it could be concluded that better solution for bioremediation of pesticide residue problem was by giving mixed-compost in horticulture cultivation. Deviation of pH in bioremediation process was 0.22, and pH in-situ bioremediation process was between 6.9 and 7.12 or neutral pH, in this condition micro-organism would be effective in degrading pesticide residue. Bioremediation process on pesticide residue of Dithane M-45 at horticulture cultivation demplot with 3.6 g/l/20 m2 spraying dosages took place perfectly, which was showed by parameters on development of micro-organism population and the amount of pesticide residues. Pesticide residue of each spraying dosages was 0.25-1.7% at 35 days or this values were under 0.003 ppm. The amount of microbial at the beginning of bioremediation, nutrient availability in the compost, compost porosity, soil relative humidity, and soil pH and temperature supported the optimum bioremediation process. Coarse micro-organism identification indicated that actinomycetes group dominated the bioremediation process when soil relative humidity was low, under 30%. But, when soil relative humidity was above 30% then group of bacteria replaced activities of actinomycetes. Keyword : pestiside bioremediation process
108
residue,
mixed
The Excellence Research UNIVERSITAS UDAYANA 2011
compost,
Penggunaan pestisida dalam produksi hortikultura di kawasan wisata Bedugul tidak dapat dihindarkan. Hal ini dilakukan agar gagal panen dapat direduksi sehingga petani tetap meraih keuntungan maksimal. Dampak negatip dari aktivitas penggunaan pestisida adalah (1) hortikultura hasil panenan masih mengandung pestisida, (2) ekosistem lahan pertanian tercemar, (3) dan ekosistem perairan danau Buyan tercemar. Hasil penelitian menunjukkan bahwa keragaman populasi mikroorganisme tanah pada lahan pertanaman kubis ditentukan oleh intensitas penggunaan pestisida. Semakin intensif aplikasi pestisida pada suatu lahan berpengaruh nyata terhadap kandungan C-organik dan N-total tanah. Menurut Tengkano, 1992, tanah dengan aplikasi tiga jenis pestisida mempunyai kandungan C-organik 2,81% dan N-total 0,19%. Bioremidiasi in situ menggunakan pupuk organik kompos sangat efektif, karena mikroorganisme dalam pada kompos akan mampu mendegradasi residu pestisida dalam tanah (Indrayani, 2006). Selain itu kompos mampu memperbaiki sifat fisik tanah (Setiyo et al., 2009), sifat biologis dan sifat kimia tanah untuk peningkatan kesuburan tanah (Pare et al., 1999; Kondo dan Yasuda, 2003). Pertanian organik penting dikembangkan agar pertiwi atau tanah Bali terhindar dari kerusakan akibat penggunaan zat-zat kimia. Alam Bali relatif kecil, apa pun aktivitas yang dilakukan mesti mampu menekan kerusakan lingkungan. Agar alam tidak tercemar zatzat kimia, sudah saatnya masyarakat mengembangkan pertanian organik, (Suprapta, 2007). Tujuan penelitian adalah mengoptimalkan proses bioremidiasi dengan metode pemupukan menggunakan kompos di kawasan agrowisata Bedugul, sebagai
upaya mempertahankan sistim pertanian organik berkelanjutan (sustainable organic farming system) yang mampu meningkatkan kualitas dan daya saing produk hortikultura. METODE PENELITIAN Bahan Penelitian Bahan untuk penelitian di demplot lahan milik UD Sila Artha adalah : benih tanaman (wortel, sawi, strowberi, dan tomat), kompos kotoran sapi terfermentasi, kompos bokasi, kompos sampah organik perkotaan, kompos campuran dan pestisida Dithane M-45. Bahan untuk uji perkembangbiakan bakteri dan kapang pada proses pengomposan adalah nutrient agar (NA), potato dextrose agar (PDA) dan aquades. Prosedur Penelitian Penelitian meliputi kajian terhadap dinamika populasi mikroba jenis kapang dan bakteri di lahan yang dibudidayakan Sawi, Strowberi, Selada, Tomat dan Wortel dan disemprot pestisida jenis dithane M-45. Dosis penyemprotan pestisida adalah 3.6 g/l/20 m2 (dosis tinggi). Sampel tanah untuk pengamatan populasi mikroba diambil pada lima titik untuk masingmasing demplot pada ke dalaman 0-5 cm dan 5 – 10 cm dari permukaan tanah. Untuk pengamatan konsentrasi pestisida yang dapat didegradasi, pengambilan sampel tanah pada 0, 2, 4, 7, 15, 30, 45, dan 60 hari dari waktu penyemprotan pestisida. Analisis populasi bakteri dilakukan dengan metode TPC pada media PCA. Pembuatan PCA dengan melarutkan 15 g agar, 1 g dextrosa, 5 tripton, 1.5 g yeast ke dalam 1000 ml aquadest. Larutan tersebut dipanaskan sambil diaduk dengan magnetic stirer sampai mendidih dan homogen. Selanjutnya larutan disterilisasi dalam autoclave pada suhu 121oC selama 15 menit. Setelah agak dingin dituangkan ke dalam cawan petri steril ± 15 – 20 ml dan didinginkan. Setelah padat cawan petri ditutup dalam posisi terbalik. Metode TPC dilakukan dengan melarutkan 1 g sampel dengan 9 ml NaCL faali (0.9%) ke dalam tabung reaksi. Larutan ini pengencerannya 10-1 dan pengenceran dilakukan sampai 10-6. Setiap kali melakuan pengenceran larutan diaduk menggunakan vortek. Selanjutnya 0.1 ml larutan untuk pengenceran 10-4 sampai 10-6 dituang ke media PCA menggunakan ependorf dari stip steril. Selanjutnya larutan disebar dengan sprider yang telah dicelupkan pad alkhohol dan dipanaskan. Kemudian diinkubasi pada suhu ruang selama 48 jam. Koloni yang diitung hanya yang berjumlah 30 – 300 koloni. Kadar residu di lahan, digunakan Gas Kromatografi dengan standart Mancozeb murni yang diperoleh dari
PT. Tanindo Subur Prima. Ekstraksi sampel dilakukan secara langsung. Pengujian dengan Gas Kromatografi, diawali dengan penyaringan, pemurnian dan injeksi ke dalam kolom. Pada Proses penyaringan, sampel tanah ditimbang sebanyak 250 gram dan ditambahkan Acetonitril serta 5 gram Na2SO4 anhidrat granuler, kemudian diblender dan disaring. Proses selanjutnya adalah memasukkan sebanyak 93 ml filtrat dalam corong pisah yang berisi 100 ml petroleum eter, dikocok selama 5 menit, dan membuang lapisan air yang terpisah pada bagian bawah. Pada sisa larutan ditambahkan 200 ml Na2SO4 2%, dikocok selama 2 menit, dan membuang lagi sisa air yang terpisah. Pada corong biasa diberi glass wall dan Na2SO4 anhidrat granuler pada lapisan atas, dilewatkan pada corong untuk disaring. Proses selanjutnya adalah pemurnian. Pada proses pemurnian glass wall ditempatkan pada bagian bawah kolom kromatografi dan ditambahkan 1.6 gram fluoricyl serta 1.6 gram Na2SO4 anhidrat Granuler, kolom dicuci dengan 50 ml heksan, kemudian dengan 50 ml metanol, dan membuang cairan pencuci. Elusi dengan 11 ml heksan, ditampung masing-masing dalam labu erlemeyer dan diuapkan sampai 0.5 ml diatas water bath. Sampel yang telah diuapkan diatas water bath diambil sebanyak 10 mikroliter dengan menggunakan syringe, kemudian di injeksikan ke dalam kolom melalui septum secara bersamaan dengan menekan tombol start. Dilayar monitor diagram kromatogram yang terbentuk dapat dimati. Perhitungan nilai kuantitatif residu yang terdapat pada sample menggunakan rumus : ug/L (ppm) =
AxBxCxD ExFxG
Dimana : A : Konsentrasi larutan standart pestisida (µg/ µl), B : Tinggi puncak hasil pemurnian (mm), C : Volume akhir hasil ekstraksi ( µl), D : Faktor Pengenceran, E : Tinggi puncak larutan standart (mm), F : Volume hasil pemurnian yang disuntikkan ( µl), dan G : Volume atau berat dari contoh atau spesimen yang di ekstrak (ml atau gram). Pengukuran kandungan C-oraganik dengan metoda AOAC 1995, dan pengukuran N-organik dengan metoda CHONS Analyser 1998. Sedangkan pH tanah diukur dengan pengambilan sampel tanah di kedalaman 0-5 cm dan 5 – 10 cm bersamaan dengan pengukuran C-organik, N-organik dan populasi mikroba. HASIL DAN PEMBAHASAN Lahan pertanian di kawasan wisata Bedugul bercirikan : memiliki kemiringan lereng tergolong curam yang berkisar antara 15 – 40%, jenis tanah adalah andosol dan regosol yang sangat peka teradap erosi, curah hujan cukup tinggi antara 2500 – 3000 mm/tahun, dan konservasi tanah kurang memadai. Tingkat erosi di lahan pertanian ini tergolong berat yang berkisar antara
The Excellence Research UNIVERSITAS UDAYANA 2011
109
Penggunaan teknologi fertigasi terbatas pada budidaya hortikultura di green house, sedangkan penggunaan pupuk kandang oleh petani masih sangat terbatas jumlahnya. Hasil pengamatan sifat kimia, sifat fisik dan sifat biologis terhadap sampel tanah dari lahan pertanian selepas dibudidayakan hortikultura adalah : N-organik 0,42%; C-organik 2,9%; P2O5 7,26 ppm; K2O 0, 48 me/100 g; Mg 1,03 me/1009Mg; Na 0,42 me/100 g; KTK 35,8 me/100g; C/N 10,6; pH tanah 6,3; populasi mikroba 10 4,04 cfu. Dari data sifat kimia, dan sifat biologis lahan pertanian di Bedugul tergolong miskin bahan organik. Hal ini disebabkan perilaku petani selalu mengandalkan pupuk kimia, pengembalian bahan organik dari sisa tanaman jarang dilakukan. Mikroorganisme dalam tanah yang sebagian besar merupakan kelompok bakteri dan kapang, mikrorganisme ini berkembang di zone perakaran tanaman dan mengurai perakaran yang tersisa setelah panen. Pemberian kompos sebagai pupuk organik ke lahan pertanian dengan dosis 12 ton/ha pada lapisan olah atau kedalaman sampai 10 – 15 cm berpengaruh terhadap sifat fisik, sifat kimia dan sifat biologis tanah. Kompos yang diberikan adalah dari kotoran sapi dan kotoran ayam menyebabkan perubahan kandungan N-organik 1,38%; C-organik 21%; P2O5 649 ppm; K2O 3, 43 me/100 g; Mg 1,13 me/1009; Mg; Na 0,62 me/100 g; KTK 65,8 me/100g; C/N 16,6; pH tanah 6,8; populasi mikroba 10 5,14 cfu. Mineral-mineral dan bahan organik dalam kompos akan memperkaya jumlah unsur hara yang tersedia di zone perakaran. Ketersediaan unsur hara tercermin pada naiknya nilai kapasitas tukar kation (KTK) tanah, nilai KTK tanah yang tidak diberi kompos adalah 35 dan nilai KTK tanah yang diberi kompos 65,8. Bahan organik pada kompos yang memiliki C/N masih tinggi oleh mikroba kelompok kapang dan bakteri akan diurai menjadi mineral-mineral seperti Mg2+, K+, Ca2+, serta bahan organik yang lebih stabil, aktivitas penguraian baan organik ini mengakibatkan nilai KTK dari tanah naik. Partikel-partikel kompos dengan ukuran mendekati diameter fraksi pasir pada tanah menyebabkan terbentuknya rongga atau pori-pori makro pada tanah, sedangkan partikel kompos dengan ukuran mendekati
110
The Excellence Research UNIVERSITAS UDAYANA 2011
Tanah pertanian untuk budidaya hortikultura memerlukan porositas yang ideal. Dengan porositas sekitar 25% menyebabkan aerasi dalam tanah berlangsung secara sempurna, drainase di lahan berlangsung secara baik terutama saat curah hujan tinggi, potensi tanah menahan lengas tanah meningkat. Daya serap air dari hasil penelitian dari beberapa perlakuan pemberian kompos naik 2.5 – 4.5%, besar kenaikan daya serap air identik dengan hasil penelitian Setiyo et al., 2007 dan Setiyo et al., 2009. Kemampuan menyediakan air atau lengas tanah bervariasi dari 25.8 – 27.9% volume. Menurut Setiyo et al., 2009 berdasarkan kadar air kapasitas lapang, kadar air titik layu permanen dan lengas tersedia bagi tanaman pemupukan dengan beberapa jenis kompos pada lahan pertanian di Kawasan Wisata Bedugul menghasilkan tanah geluhan. 0.5
0.8
Akumulasi residu pestisida terremediasi, ppm
Kawasan lahan pertanian berteras-sering dibudidayakan tanaman hortikultura secara terus menerus. Tanaman hortikultura yang dibudidayakan adalah sawi, kubis, slada, sledri, wortel, cabai paprika, lotus, kacang panjang, terong, strabery, tomat. Petani selama ini mengandalkan pupuk kimia sumber N, P, K yang dijual di pasaran dan mengandalkan air irigasi dari curah hujan dan kelembaban udara.
ukuran partikel debu akan cenderung menyebabkan terbentuknya pori-pori mikro. Pori-pori makro terisi oleh udara, sedangkan pori-pori mikro akan terisi air.
Residu pestisida yang terremidiasi, ppm
181,3 – 461,5 ton/ha/th.
0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0
10
20
30
40
50
Waktu pengamatan, hari Lahan tidak dipupuk kompos Lahan dipupuk kompos kotoran sapi
a. Dosis tinggi
60
70
0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0
20
40
60
Waktu pengamatan, hari
80
Lahan dipupuk kompos kotoran sapi Lahan tidak dipupuk kompos
a. Dosis sedang
Gambar 1. Akumulasi residu pestisida di Kawasan Wisata Bedugul yang teremediasi
Residu pestisida di lahan yang dibudidayakan hortikultura yang tidak dipupuk kompos lebih lambat teremediasi dibandingkan dengan lahan yang dipupuk dengan kompos. Hal ini menyebabkan peluang residu pestisida terbawa surface run off terutama di musim penghujan untuk lahan pertanian yang tidak dipupuk kompos adalah hampir 45 hari dari waktu penyemprotan, sedangkan jika lahan dipupuk dengan kompos peluangnya hanya 7 hari. Selain itu residu pestisida yang tidak terurai oleh mikroba juga berpotensi untuk diserap oleh perakaran tanaman dalam hitungan waktu yang sama dengan potensi terbawa surface run off. Kompos dari kotoran sapi dan kotoran ayam yang diberikan pada lahan yang dibudidayakan hortikultura mengandung mikroorganisme aktif antara 106 - 107 cfu sedangkan lahan pertanian yang tidak dipupuk kompos hanya memiliki populasi mikroba aktif 103 – 104 cfu, selain itu nutrien yang ada pada kompos memperkaya jumlah nutrien yang ada pada lahan pertanian hortikultura. Kedua kondisi ini menjadi penyebab mikroorganisme di lahan aktif mengurai residu pestisida jenis dithane M-45, namun karena populasi dan kandungan nutrien dilahan yang dipupuk kompos kondisinya lebih baik maka kecepatan penguraian residupestisida juga lebih cepat. Hasil penelitian ini memiliki kecenderungan
1.5
4
1
2
0.5
0
0 1
2
3
4
5
6
7
8
Waktu bioremediasi, minggu Populasi mikroba
Residu pestisida
a. Lahan tanpa dipupuk kompos kotoran sapi dan disemprot pestisida dosis tinggi
12 10 8 6 4 2 0
3 2.5 2 1.5 1 0.5 0 1
2
3
4
5
6
7
Residu pestisida, ppm
2
6
Populasi mikroba, cfu
8
Residu pestisida, ppm
Populasi mikroba, log cfu
Nutrien pada proses bioremediasi kompos tersedia dalam bentuk bahan organik dari kompos, residu tanaman dan residu pestisida. Dinamika populasi mikroba berubungan erat dengan perubahan C/N bahan organik. Kenaikan populasi mikroba di awal proses bioremediasi residu pestisida diikuti dengan penurunan C/N tanah, hal ini disebabkan nutrien C, H, O, N yang ada pada residu pestisida dan tanah diurai oleh mikroba untuk dimanfaatkan sebagai bahan penyusun selnya. Sedangkan, puncak populasi mikroba terjadi bersamaan dengan titik minimum C/N tanah. Pada proses selanjutnya sebagian mikroba mati terurai menjadi unsur hara, unsur hara C dan N organik sebagian menaikan C/N dan sebagian lagi diserap perakaran tanaman.
8
Waktu biremediasi, minggu Populasi mikroba
Residu pestisida
b.Lahan dipupuk kompos kotoran sapi dan disemprot pestisida dosis tinggi
Gambar 2. Populasi mikroba dan residu pestisida lahan pada waktu bioremediasi yang berbeda
Phase menurunnya populasi mikroba dan menurunnya C/N secara bersamaan disebabkan oleh suplai unsur hara untuk tanaman hortikultura dari mikroba yang mati belum cukup, sehingga tanaman mengambil unsur hara dari tanah. Hal inilah yang menyebabkan C/N tanah mengalami penurunan. Dinamika populasi mikroba dan C/N pada proses bioremidiasi in-situ di Bedugul identik dengan penelitian Indrayani (2006) di Ciawi, Bogor.
9 8
7.1
7 6
7.05 pH
Dinamika proses bioremidiasi residu pestisida setelah penyemprotan dicerminkan oleh dinamika populasi mikroba dan dinamika konsentrasi residu pestisida di zone perakaran. Pada perlakuan penyemprotan pestisida dengan dosis rendah dan dosis tinggi di lahan yang dipupuk kompos dan di lahan yang tidak dipupuk kompos, populasi mikroba tertinggi dicapai di minggu ke 3, namun populasi mikroba di lahan yang dipupuk kompos mencapai 108.
7.2 7.15
5
7
4
6.95
3
6.9
2
6.85
1
Populasi mikroba, log cfu
yang sama dengan hasil penelitian Indrayani (2006) pada proses bioiremediasi lahan tercemar profenofos secara ex-situ dengan cara pengomposan.
0
6.8 1
2
3
4
5
6
7
8
Waktu bioremediasi, minggu pH
Populasi mikroba
Gambar 3. Hubungan Waktu Bioremediasi, pH dan populasi mikroba pada proses bioremediasi in-situ
Kenaikan pH di minggu pertama sampai minggu ke tiga, karena ada demineralisasi bahan organik terutama unsur mikro Mg2+, K+, Ca2+ dari kompos dan residu pestisida. Kation-kation ini akan berikatan dengan asam-asam yang terbentuk selama proses dekomposisi menyebabkan pH naik. Pada pH di atas 7 sifat massa yang didekomposisi cenderung basa, sehingga kelebihan ion OH- akan mengakibatkan kehilang ammonium dalam bentuk NH3- dan hidrosilasi beberapa unsur biologis seperti Cu dan Mn membentuk campuran karbonat yang sulit terurai (Ton, 1991). Pada pH di bawah 7, sifat massa yang didekomposisi cenderung asam, sehingga kelebihan ion H+ dapat menyebabkan penguraian dan pelepasan ion Ca2+ dan Mg2+ dari mikroorganisme, ionion metal dari mineral dan bahan organik (Sudyastuti, 2007) . Proses bioremediasi in-situ lahan tercemar pestisida Dithane M-45 yang disemprot dengan dosis rendah, menunjukan bahwa reaksi bioremediasi berlangsung pada pH mendekati netral. Dari identifikasi di lapangan memang tidak ada bau terdeteksi dari indera penciuman, sehingga pelepasan gas NH3 penyebab bau tidak terjadi, hal ini sesuai dengan hasil penelitian Indrayani (2006) untuk proses bioremidiasi ex-situ. Reaksi bioremediasi yang berlangsung pada pH sedikit asam adalah perlakuan kontrol, disebabkan karena pelepasan unsur-unsur seperti Mg2+, K+, Ca2+ dari kompos tidak ada. KESIMPULAN DAN SARAN Kesimpulan Berdasarkan dinamika pH, populasi mikroba dan C/N tanah proses bioremediasi residu pestisida secara in-situ pada lahan budidaya hortikultura di
The Excellence Research UNIVERSITAS UDAYANA 2011
111
Kawasan Wisata Bedugul berlangsung secara optimal. Perlakuan pemupukan dengan kompos campuran memberikan reaksi bioremidiasi dengan perubahan pH hanya 0.22 dan reaksi pada kondisi pH netral, sehingga mikroba akan lebih efektif meremidiasi residu pestisida. Residu pestisida dari masing-masing dosis penyemprotan pada hari ke 35 tersisa 0.25% - 1.7% atau dibawah 0.003 ppm. Dari identifikasi awal kelompok aktinomisetes mendominasi proses bioremediasi pada saat kelengasan tanah di bawah 30 %, dan kelompok bakteri mendominasi proses pada kelengasan tanah di atas 30%.
Setiyo, Y. 2009. Aplikasi Kompos Dari Sampah Kota Sebagai Pupuk Organik Untuk Meningkatkan Produktivitas Tanaman Jahe Merah. Disajikan di Seminar Nasional Basic Science VI Tanggal 21 Februari 2009 di Universitas Barawijaya, Malang. Setiyo, Y., Suparta U., Tika W., dan Gunadya, I. B. P. 2009. Pengembangan Model Bioremidiasi Menggunakan Kompos
Pada Lahan Tercemar
Untuk Meningkatkan Kualitas Produk Hortikultura (Studi Kasus : Kawasan Agrowisata BedugulBali). Laporan Penelitian Hibah Kompetitif Sesuai Strategis Nasional, 2009.
Saran Model bioremediasi sangat diperlukan petani,
Sudyastuti, T dan Setyawan, N. 2007. Sifat thermal
karena kualitas hortikultura pada lahan yang tanpa
tanah pasiran pantai dengan pemberian bahan
dipupuk kompos berpotensi mengandung pestisida,
pengkondisi tanah dan biomikro pada budidaya
selain itu cemaran di lahan pertanian sudah sangat
tanaman cabai (capsicum annuum). Prosiding seminar
mencemari
nasional teknik pertanian – yogyakarta 2007
perairan
Danau
Buyan.
Penggunaan
kompos dari kotoran ternak yang dicampur dengan residu tanaman hortikultura sangat dianjurkan untuk dikembangkan di kelompok tani, selain mengurangi ketergantungan pada pupuk kimia juga mengatasi masalah pencemaran lahan.
Suwanto, A. 1994. Mikroorganisme Untuk Biokontrol : Strategi Penelitian dan Penerapannya Dalam Bioteknologi Pertanian. Agrotek, Vol. 2(1). IPB, Bogor, hal 40-46. Suprapta. 2007. Bali agar Dikembangkan Pertanian
DAFTAR PUSTAKA
Organik. Bali Post Selasa, 25/09/07
Indrayani, N. 2006. Bioiremediasi lahan tercemar profenofos secara ex-situ dengan cara pengomposan. [Thesis}. Bogor: Sekolah Pasca Sarjana, Institut Pertanian Bogor
water regime, light, and soil properties on N2 fixation associated with decomposition of organic mater in paddy soils. JARQ 37(2): 113 – 119. Pare T, Dinel H, and Schnitzer M. 1999. Extractability of trace metals during co-composting of biosolids and municipical solid wastes. J. Biol. Fertil. Soils 29:31 – 37. Subroto, M.A, dan Yuwono,
A.S. 2007. Pengembangan Model Simulasi Proses Pengomposan Sampah Organik Perkotaan. Journal Forum Pascasarjana Vol 30 (1) Januari 2007. Bogor. 112
1992. Dampak negatif insektisida terhadap musuh alami pengisap polong. Seminar Hasil Penelitian Pendukung Pengendalian Hama Terpadu. Kerjasama
Kondo M and Yasuda M. 2003. Effects of temperature,
Setiyo, Y., Hadi K.P,
Tengkano, W., Harnoto, M. Taufik, dan M. Iman.
The Excellence Research UNIVERSITAS UDAYANA 2011
Program
Nasional
PHT,
BAPPENAS
dengan
Faperta-IPB. 29 p. Ton, S. W. 1991. Environmental Considerations With Use of Pesticides in Agriculture. Paper pada Lustrum Regulations. University of Minnesota.