GERAK HARMONIK SEDERHANA Gerak harmonik sederhana adalah gerak bolak-balik benda melalui suatu titik kesetimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan. Gerak harmonik dapat dinyatakan dengan grafik posisi partikel sebagai fungsi waktu berupa sinus atau kosinus. Contoh gerak harmonik antara lain adalah gerakan benda yang tergantung pada sebuah pegas, dan gerakan sebuah bandul. Untuk memahami getaran harmonik, kita dapat mengamati gerakan sebuah benda yang diletakkan pada lantai licin dan diikatkan pada sebuah pegas (Gambar 1).
Gambar 1. Gerak benda pada lantai licin dan terikat pada pegas untuk posisi normal (a), teregang (b), dan tertekan (c) Anggap mula-mula benda berada pada posisi X = 0 sehingga pegas tidak tertekan atau teregang. Posisi seperti ini dinamakan posisi keseimbangan. Jika benda ditarik ke kanan kemudian dilepaskan, maka pegas akan menarik benda kembali ke arah posisi keseimbangan (X = +). Sebaliknya, ketika benda ditekan ke kiri (X = –) kemudian dilepaskan, maka pegas akan mendorong benda ke kanan, menuju posisi keseimbangan. Gaya yang dilakukan pegas untuk mengembalikan benda pada posisi keseimbangan disebut gaya pemulih. Besarnya gaya pemulih menurut Robert Hooke dirumuskan sebagai berikut. Fp = -kX Tanda minus menunjukkan bahwa gaya pemulih selalu pada arah yang berlawanan dengan simpangannya. Jika digabungkan persamaan di atas dengan hukum II Newton, maka diperoleh persamaan berikut. k a X Fp = -kX = m a atau m 1
Terlihat bahwa percepatan berbanding lurus dan arahnya berlawanan dengan simpangan. Hal ini merupakan karakteristik umum getaran harmonik. Syarat suatu gerak dikatakan getaran harmonik, antara lain: 1. Gerakannya periodik (bolak-balik). 2. Gerakannya selalu melewati posisi keseimbangan. 3. Percepatan atau gaya yang bekerja pada benda sebanding dengan posisi/simpangan benda. 4. Arah percepatan atau gaya yang bekerja pada benda selalu mengarah ke posisi keseimbangan. 1. Periode dan Frekuensi Getaran Harmonik a. Periode dan Frekuensi Sistem Pegas Pada dasarnya, gerak harmonik merupakan gerak melingkar beraturan pada salah satu sumbu utama. Oleh karena itu, periode dan frekuensi pada pegas dapat dihitung dengan menyamakan antara gaya pemulih (F = -kX) dan gaya sentripetal (F = -4π2 m f2 X). -4π2 m f2 X= -kX 4π2 m f2 = k Jadi frekuensinya adalah : 1 k f 2 m Dan periodenya adalah : m T 2 k Keterangan : f : frekuensi ( s-1 ) T : periode ( s ) k : konstanta pegas ( N/m ) m : massa beban ( kg ) Contoh soal 1 : Jika massa beban yang digantung pada ujung bawah pegas 1 kg, maka periode getarannya 3 sekon. Jika massa beban dilipatkan menjadi 4 kg, maka tentukan periode getarannya! Penyelesaian : Diketahui : m1 = 1 kg T1 = 3 s m2 = 4 kg Ditanyakan: T2 = ...? 2
Jawab: Hubungan periode pegas T, massa beban m dinyatakan dengan rumus: m2 2 T2 k T1 m1 2 k
T2 T1
m2 m1
4 1 =6s
3
2. Persamaan Getaran Harmonik Persamaan gerak harmonik sederhana didapatkan dari proyeksi gerak melingkar beraturan pada sumbu-x atau sumbu-y. a. Simpangan Getaran Harmonik Simpangan getaran harmonik sederhana dapat dianggap sebagai proyeksi partikel yang bergerak melingkar beraturan pada diameter lingkaran. Gambar berikut melukiskan sebuah partikel yang bergerak melingkar beraturan dengan kecepatan sudut ω dan jari-jari A. Anggap mula-mula partikel berada di titik P.
Gambar 2. Proyeksi gerak melingkar beraturan terhadap sumbu Y merupakan getaran harmonik sederhana. Pada saat t = 0, partikel berada di titik P, setelah t sekon berada di Q. Besarnya sudut yang ditempuh adalah: 2π t θ ωt T Simpangan gerak harmonik sederhana merupakan proyeksi titik Q pada salah satu sumbu utamanya (sumbu Y). Jika simpangan itu dinyatakan dengan sumbu Y, maka: 3
Y A sin θ A sin ω t A sin
2π t T
Keterangan : Y = simpangan gerak harmonik sederhana (m) A = amplitudo (m) T = periode (s) ω = kecepatan sudut (rad/s) t = waktu (s) Besar sudut ( θ ) dalam fungsi sinus disebut sudut fase. Jika partikel mulamula berada pada posisi sudut θo, maka persamaanya dapat dituliskan sebagai berikut. 2π t Y A sin θ A sin (ω t θ o ) A sin θo T Sudut fase getaran harmoniknya adalah sebagai berikut. t θ 2π t θ (ω t θ o ) θ o atau θ 2π o T T 2π Contoh soal 2 : Sebuah titik materi melakukan gerak harmonik dengan amplitudo 5 cm. Berapakah simpangannya pada saat sudutnya 30°? Jawab Diketahui: A = 5 cm dan θ = 30°. y = A sin θ = 5 sin 30° = (5 cm)(1/2) = 2,5 cm. Contoh soal 3 : Sebuah benda melakukan gerak sederhana dengan periode T. Berapakah waktu yang diperlukan benda agar simpangan sama dengan ½ amplitudonya? Jawab: Y = A sin θ 1 A = A sin θ 2 1 sin θ = 2 1 θ = π 6 2π t 1 π T 6 1 t T 12 4
b. Kecepatan Getaran Harmonik Kecepatan benda yang bergerak harmonik sederhana dapat diperoleh dari turunan pertama persamaan simpangan. dy d vy (A sin ωt ) dt dt v y = ω A cos ω t Karena nilai maksimum dari fungsi cosinus adalah satu, maka kecepatan maksimum (vmaks ) gerak harmonik sederhana adalah sebagai berikut. vmaks = ω A c. Percepatan Getaran Harmonik Percepatan benda yang bergerak harmonik sederhana dapat diperoleh dari turunan pertama persamaan kecepatan atau turunan kedua persamaan simpangan. dv y d d(cos ωt) ay (ω A cos ωt ) ω A dt dt dt ay = ω A (-ω sin ωt ) ay = -ω2 A sin ωt ay = -ω2 Y Karena nilai maksimum dari simpangan adalah sama dengan amplitudonya (y = A), maka percepatan maksimumnya (amaks ) gerak harmonik sederhana adalah sebagai berikut. amaks = - ω2 A Contoh soal 4 : Sebuah benda bermassa 2 gram digetarkan menurut persamaan y = 0,05 sin 300t (semua satuan dalam SI). Tentukan kecepatan dan percepatan benda pada saat t = 0,6 s. Jawab : Diketahui: m = 2 g, Y = 0,05 sin 300t → ω = 300 t = 0,6 s. Kecepatan: v = dy/dt = ω A cos ωt = (300)(0,05)(cos 300 . 0,6) = 15 cos 180° = -15 m/s.
5
Percepatan: a = dv/dt = ω2 A sin ω t = (300)2 (0,05)(sin 300 . 0,6) = (300)2 (0,05) sin 180° = 0. Contoh soal 5 : Sebuah partikel bergerak harmonik sederhana dengan frekuensi 50 Hz dan mempunyai amplitudo 0,2 m. Hitunglah a. kecepatan dan percepatan partikel pada titik seimbang, b. kecepatan dan percepatan partikel pada simpangan maksimum, dan c. persamaan simpangan gerak harmonik! Penyelesaian : Diketahui : f = 50 Hz A = 0,2 m Ditanyakan : a. v y dan ay = ... ? (pada titik seimbang) b. v y dan ay = ... ? (pada simpangan maksimum) c. Persamaan simpangan = ... ? Jawab: a. Pada titik seimbang, simpangan (y) = 0 sehingga θ = ω t = 0 dan θo = 0. 1 1 T 2 x 10 -2 s f 50 ω = 2π f = 2π × 50 = 100π rad/s Kecepatan partikel pada titik seimbang v y = A ω cos (ω t + θo ) Karena θ = ω t = 0 dan θo = 0 v y = A ω cos 0 = 0,2 × 100 π x 1 = 20π m/s Percepatan partikel pada titik seimbang ay = -A ω2 sin 0 =0 b. Pada simpangan maksimum, θ = ω t = 90° dan θo = 0 v y = A ω cos (θ + θo) = 0,2 × 100π cos (90° - 0°) =0 6
ay = -A ω2 sin (90° + 0) = -0,2 x (100π )2 + 0 = -2.000π2 m/s 2 c. Persamaan simpangan y = A sin(ω t + θ o ) = 0,2 sin (100π t) 3. Energi Gerak Harmonik Sederhana Benda yang melakukan gerak harmonik sederhana memiliki energi potensial dan energi kinetik. Jumlah energi potensial dan energi kinetik disebut energi mekanik. a. Energi Kinetik Gerak Harmonik Energi kinetik adalah energi yang dimiliki oleh benda yang melakukan gerak harmonik sederhana karena kecepatannya. Karena Ek =
1 mv y2 dan v y = A ω cos ω t, maka : 2
1 m (A ω cos ω t)2 2 1 = m A2 ω2 cos2 ω t 2
Ek =
Energi kinetik maksimum pada gerak harmonik dicapai ketika berada di titik setimbang. Sedangkan energi kinetik minimum dicapai ketika berada di titik balik. b. Energi Potensial Gerak Harmonik Besarnya energi potensial adalah energi yang dimiliki gerak harmonik sederhana karena simpangannya. Secara matematis energi potensial yang dimiliki gerak harmonik dirumuskan sebagai berikut. 1 2 ky 2 1 = m ω2 (A sin ωt)2 2 1 = m ω2 A2 sin2 ωt 2
Ep =
Energi potensial maksimum pada gerak harmonik dicapai ketika berada di titik balik. Sedangkan energi kinetik minimum dicapai ketika berada di titik setimbang. c. Energi Mekanik Energi mekanik sebuah benda yang bergerak harmonik adalah jumlah energi kinetik dan energi potensialnya. 7
Em = Ek + Ep 1 1 m A2 ω2 cos2 ωt + m ω2 A2 sin2 ωt 2 2 1 = m ω2 A2 ( cos2 ωt + sin2 ωt ) 2 1 = m ω2 A 2 2
=
Berdasarkan persamaan di atas, ternyata energi mekanik suatu benda yang bergetar harmonik tidak tergantung waktu dan tempat. Jadi, energi mekanik sebuah benda yang bergetar harmonik dimanapun besarnya sama.
Contoh Soal 5 : Benda yang massanya 400 g bergetar harmonik dengan amplitudo 5 cm dan frekuensi 100 Hz. Hitunglah energi kinetik, energi potensial, dan energi mekaniknya (energi total) saat simpangannya 2,5 cm! Penyelesaian : Diketahui : m = 400 g = 0,4 kg A = 5 cm = 0,05 m f = 100 Hz Y = 2,5 cm Ditanyakan : a. Ek = ...? b. Ep = ...? c. Em = ...? Jawab: a. Energi kinetik Y A sin θ Y sin θ A 2,5 5 = 0,5 θ = 30o cos θ = cos 30o = 0,866 θ=ωt ω = 2π f
8
Ek = = = = =
1 m (A ω cos ω t)2 2 1 m (A 2π f cos θ)2 2 1 m 4 π2 f2 A2 cos2 θ 2 1 m 4 π2 f2 A2 cos2 30º 2 1 x (0,4) x 4 x (3,14)2 x (100)2 x (0,05)2 x (0,866)2 2
= 147,894 J b. Energi potensial 1 2 1 = 2 1 = 2 1 = 2
Ep =
m ω2 A2 sin2 ωt m 4 π2 f2 A2 sin2 θ m 4 π2 f2 A2 sin2 30o x (0,4) x 4 x (3,14)2 x (100)2 x (0,05)2 x (0,5)2
= 49,298 J c. Energi Mekanik Cara I : Em = Ep + Ek = 147,894 + 49,298 = 197,192 J Cara II : 1 m ω2 A2 2 1 = m 4 π2 f2 A2 2 1 = x (0,4) x 4 x (3,14)2 x (100)2 x (0,05)2 2
Em =
= 197,192 J
9
4. Susunan Pegas Dua buah pegas atau lebih dapat disusun seri, paralel, atau gabungan seri dan paralel. Berikut hal-hal yang berkaitan dengan susunan pegas seri dan paralel. a. Susunan Seri Untuk memudahkan pembahasan, diambil pegas-pegas yang tetapan pegasnya sama. Rumus dasar yang digunakan adalah rumus modulus Young dan Hukum Hooke (k = EA/X). Jadi, tetapan pegas berbanding lurus dengan luas penampang pegas A, modulus Young E, dan berbanding terbalik dengan panjang pegas X. Persamaan ini menyatakan tetapan pegas tunggal.
Gambar 1. Pegas disusun seri. Jika dua buah pegas disusun secara seri seperti terlihat pada Gambar di atas, maka panjang pegas menjadi 2X. Oleh karena itu, persamaan pegasnya (ks ) menjadi seperti berikut.
Jadi, bila 2 pegas yang tetapan pegasnya sama dirangkaikan secara seri, maka susunan ini akan memberi tetapan pegas susunan sebesar ½ k. Sedangkan untuk n pegas yang tetapannya sama dan disusun seri, maka berlaku persamaan berikut
Contoh Soal : Dua buah pegas yang disusun secara seri berturut-turut besar konstantanya 200 N/m dan 100 N/m. Apabila pada pegas tersebut diberi beban 40 N, hitunglah pertambahan panjang pegas! Penyelesaian : Diketahui : a. k1 = 200 N/m b. k2 = 100 N/m c. F = 40 N Ditanyakan : ∆x = ...? 10
Jawab: 1 1 1 ks k1 k2 1 1 200 100 3 200 200 ks 66,67 N/m 3
Menurut Hukum Hooks : F = ks ∆x F ks 40 66,67
x
= 0,60 m = 60 cm b. Susunan Paralel Bila pegas disusun paralel, maka panjang pegas (X) tetap. Sedangkan luas penampang pegas berubah dari A menjadi 2A, bila pegas yang disusun sebanyak dua buah.
Gambar 2. Pegas disusun paralel. Jadi, untuk dua buah pegas yang disusun secara paralel, tetapan pegasnya (kp) menjadi seperti berikut.
Bila ada n pegas yang tetapan pegasnya sama disusun secara paralel, maka akan menghasilkan pegas yang lebih kuat. Karena tetapan pegasnya menjadi lebih besar. Contoh Soal : Dua buah pegas yang disusun pararel berturut-turut mempunyai konstanta sebesar 200 N/m dan 300 N/m. Jika diujungnya diberi beban sebesar 4 kg dan g = 10 m/s2, maka hitunglah pertambahan panjang pegas! 11
Penyelesaian : Diketahui : a. k1 = 200 N/m b. k2 = 300 N/m c. m = 4 kg d. g = 10 m/s2 Ditanyakan: ∆x = ...? Jawab: kp = k1 + k2 = 200 + 300 = 500 N/m Menurut Hukum Hooks : F = kp ∆x x
F kp 4 x 10 500
= 0,08 m = 8 cm 5. Bandul Sederhana Sebuah bandul sederhana terdiri atas sebuah beban bermassa m yang digantung di ujung tali ringan (massanya dapat diabaikan) yang panjangnya l. Jika beban ditarik ke satu sisi dan dilepaskan, maka beban berayun melalui titik keseimbangan menuju ke sisi yang lain. Jika amplitudo ayunan kecil, maka bandul melakukan getaran harmonik. Perhatikanlah Gambar berikut
Sebuah beban bermassa m tergantung pada seutas kawat halus kaku sepanjang A dan massanya dapat diabaikan. Apabila bandul itu bergerak vertikal dengan membentuk sudut θ, seperti terlihat pada Gambar b, gaya pemulih bandul tersebut adalah mg sin θ. Secara matematis dapat dituliskan 12
Oleh karena sin θ
y , maka persamaan di atas dapat dituliskan sebagai
berikut.
Contoh Soal : Sebuah ayunan sederhana memiliki panjang tali 40 cm dengan beban 100 gram. Tentukanlah besar gaya pemulihnya jika benda disimpangkan sejauh 4 cm dan percepatan gravitasi di tempat itu = 10 m/s2. Jawab Diketahui: l = 40 cm, m = 100 g = 0,1 kg y = 4 cm, g = 10 m/s2 Besar gaya pemulih pada ayunan adalah : F = mg sin θ y
= mg ( ) = 0,1 x 10 x
4 40
= 0,1 N Periode dan Frekuensi Bandul Sederhana Persamaan gaya pemulih pada bandul sederhana adalah F = -mg sin θ. Oleh karena sin θ
y y , maka persamaannya dapat ditulis F = -mg ( ).
Karena persamaan gaya sentripetal adalah F = -4π2 mf2 y, maka diperoleh persamaan sebagai berikut. Fsentripetal = Fpemulih y
-4π2 mf2 y = -mg ( ) 4π2 f2 =
g
Dari persamaan diatas, ternyata diketahui bahwa periode dan frekuensi bandul sederhana tidak bergantung pada massa dan simpangan bandul, tetapi hanya bergantung pada panjang tali dan percepatan gravitasi setempat.
13
Contoh Soal : Sebuah ayunan bandul sederhana memiliki panjang tali 64 cm, massa beban 0,1 kg. Saat beban diberi simpangan 10 cm dan dilepaskan, terjadi getaran selaras (g = 10 m/s2). Hitunglah periode ayunan dan kecepatan maksimum benda tersebut! Penyelesaian : Diketahui : a. l = 64 cm = 0,64 m b. m = 0,1 kg c. A = 10 cm = 0,1 m d. g = 10 m/s2 Ditanyakan : a. T = ...? b. vmaks = ...? Jawab: l a. T 2 g
0,64 10 2 0,064 = 2π x 0,25 = 0,5π s 2
b. vmaks = ω A 2π A T 2π x 0,1 0,5π = 0,4 m/s
14