GEOTERMIKUS ENERGIA A geotermikus energia a Föld belső hőjéből származó energia. A Föld belsejében lefelé haladva kilométerenként átlag 30 °C-kal emelkedik a hőmérséklet. Magyarországon a geotermikus energiafelhasználás 1992-es adat szerint 80-90 ezer tonna kőolaj energiájával volt egyenértékű. A geotermikus energia korlátlan és folytonos energia nyereséget jelent. Termálvíz formájában nem kiapadhatatlan forrás. Kitermelése viszonylag olcsó, a levegőt nem szennyezi. A geotermikus energia egy megújuló energiaforrás, ami a legolcsóbb energiák közé tartozik. Mára Spanyolország a legnagyobb zöldenergia felhasználó. Magyarországon sok geotermikus energiát használnak fel, sok híres termálfürdő van. A geotermikus fűtés kb. 5 év alatt térül meg. Magyarországon a termálvíz 2 km-nél 120 fok is lehet. A termálkútból feltörő vizet gáztalanítják, ülepítik, és sótartalmát részben eltávolítják, majd a felhasználás helyére szivattyúzzák, a lehűlt vizet pedig valamilyen vízáramba, vízgyűjtőbe vezetik. Amennyiben nincs vízutánpótlás - a rétegenergia csökkenése következtében idővel kevesebb vizet adnak. A csökkenő víznyomást kompresszorral, búvárszivattyúval lehet növelni, de nem gazdaságos ez az eljárás. A legjobb megoldást a kitermelt és már lehűlt víz visszasajtolása jelenti, mely mérsékli a mély rétegekben található vízszint csökkenését. Hőszivattyú A hőszivattyú olyan berendezés, mely arra szolgál, hogy az alacsonyabb hőmérsékletű környezetből hőt vonjon ki és azt magasabb hőmérsékletű helyre szállítsa. A hőszivattyú elvileg olyan hűtőgép, melynél nem a hideg oldalon elvont, hanem a meleg oldalon leadott hőt hasznosítják. Minden olyan fizikai elv alapján készülnek hőszivattyúk, melyeket a hűtőgépeknél is használnak. Leggyakoribbak a gőzkompressziós elven működő berendezések, de léteznek abszorpciós hőszivattyúk is. A hőszivattyúk fordított üzemmódban is működnek, ekkor a melegebb hely hűtésére is használhatók. A hőszivattyúk fordított üzemmódban működtetett hőerőgépnek is felfoghatók. A gőzkompressziós hőszivattyúkban alkalmasan választott hűtőfolyadék gőze áramlik zárt csővezetékben. A gőz a fűteni kívánt oldalon elhelyezett kondenzátorban lecsapódik, miközben hőjét a kondenzátor csőfalán keresztül átadja vagy a helyiség levegőjének, vagy a központi fűtés vizének. Ezután a cseppfolyós hűtőközeg fojtószelepen keresztül expandál, eközben hirtelen elpárolog és hőmérséklete lecsökken. A kisnyomású, hideg gőzt a hideg oldali hőcserélőben a külső környezet felmelegíti, majd a kompresszor összesűríti és visszajuttatja a kondenzátorba, és a folyamat megismétlődik. Megfelelően kialakított hőszivattyúban az áramlás iránya megfordítható, ekkor a berendezés fűtés helyett hűti a helyiséget. A legtöbb esetben a hőszivattyúk hőforrásul a külső levegőt, vagy a talajt, esetleg természetes vizeket (Tenger, tó, folyó, talajvíz) használnak.
A termodinamika második főtétele szerint a hő nem áramlik hidegebb helyről melegebbre spontán módon, külső munkát kell befektetni ahhoz, hogy ez a folyamat végbemenjen. A hőszivattyúk abban különböznek egymástól, hogy ezt a külső munkát milyen módon juttatják a rendszerbe, de alapvetően úgy fogható fel, hogy a hőszivattyúk fordított működésű hőerőgépek. A hőerőgépekben a meleg tartályból a hideg felé áramlik a hő, miközben a gép a hőenergia különbséget mechanikai munkává alakítja. Hasonlóképpen a hőszivattyú mechanikai munka bevitelét igényli ahhoz, hogy hőt áramoltasson hidegebbről melegebb helyre. Mivel a hőszivattyú bizonyos mennyiségű munkát fektet be a hő szállításához, a hűtőközeg meleg oldalon mérhető energiája a befektetett mechanikai munkával nagyobb, mint a hideg oldalon mérhető. Ez hőerőgépnél fordítva igaz: a munkaközeg hőenergiája itt a hideg oldalon a termelt mechanikai munkával kisebb, mint a meleg oldalon.
Gőzkompressziós hűtőgép körfolyamata a hőmérséklet-entrópia diagramban.
R134a hűtofolyadékkal üzemelő gőzkompressziós hőszivattyú körfolyamata a log(p)-i diagramban. 1-2 kompresszió, 2-3 hűtés-lecsapódás, 3-4 fojtás, 4-1 elpárolgás A leggyakrabban használt hőszivattyú a szokás szerint hűtőközegnek nevezett munkaközeg elpárolgása és lecsapódása (lekondenzálódása) közben fellépő termodinamikai változásokat hasznosítja. A gőz állapotú munkaközeget egy kompresszor összesűríti és keringeti a rendszerben, ennek folyamán felmelegszik a munkaközeg, mely ezután egy kondenzátornak hívott hőcserélőben lehűl és lecsapódik. A kondenzátorban hőjét átadja a fűtendő helyiségnek, majd a folyékony halmazállapotú, mérsékelt hőmérsékletű csapadék nyomáscsökkentő berendezésen áramlik át, mely fojtószelep, kapilláris, esetleg hőhasznosító
szerkezet, például turbina lehet. A nyomáscsökkentő berendezésen átáramló nagyrészt folyékony munkaközeg egy másik hőcserélőbe, az elpárologtatóba jut, ahol a hűtőközeg elpárolog, miközben hőt vesz fel a környezetből. Ezután a hűtőközeg visszajut a kompresszorba és a folyamat ismétlődik. Megjegyzendő, hogy a munkaközeget a hőszivattyúknál is általában hűtőközegnek nevezik, noha a helyesebb elnevezés inkább fűtőközeg lenne, de a szokás onnan származik, hogy a hűtőgépek és a hőszivattyúk munkaközege megegyezik, és a korábban csak hűtőgépekkel foglalkozó szakemberek kezdtek később hőszivattyúkkal is foglalkozni. A termodinamikai körfolyamat jól követhető az entrópia-hőmérséklet (T-s) diagramban. A folyamat az 1 pontból indul, ahol a közeg a po nyomáson telített gőz állapotban van. Az 1-2 folyamat adiabatikus kompresszió, mely a kompresszorban játszódik le. Ideális esetben ennek az állapotváltozásnak a képe a diagramban függőleges egyenes (izentropikus kompresszió), valóságban azonban az állapotváltozás irreverzibilis, az entrópia mindig növekszik, ezért a görbe jobb felé kissé elhajlik. A 2-5 folyamatok a kondenzátorban zajlódnak le: a 2-3 folyamat a túlhevítési hő elvonása, a 3. pontban a gőz eléri a telítettségi állapotot a p nyomáson. A 3-4 folyamat során a hőmérséklet nem változik, egyre több gőz csapódik le, a 4. pontban folyadék állapot alakul ki. A 4-5 szakasz a kondenzátorban a folyékony hűtőközeg esetleges utóhűtése, majd az 5-6 folyamat a fojtásos állapotváltozás, ez hirtelen nyomásesést jelent, melynek végén a közeg po nyomásra expandál, a folyadék egy része (mintegy a fele) hirtelen elpárolog és a közeg nedves gőz állapotba kerül, ez a folyamat izentalpikus, vagyis a folyamat közben az entalpia nem változik. Végül a 6-1 folyamat során az elpárologtatóban hőt vesz fel a közeg a hűtendő térből állandó hőmérsékleten és nyomáson, miközben a gőz nedvességtartalma állandóan csökken. Ekkor a közeg a körfolyamat kiindulási pontjára, az 1. állapotba jut vissza és a folyamat kezdődik elölről. Természetesen a fent leírtak ideális közegre vonatkoznak, a valóságos folyamatok kismértékben eltérnek ettől. Az ilyen rendszereknél alapvetően fontos, hogy a hűtőközeg elegendően magas hőmérsékletet érjen el a kompresszor után a kondenzátorban, mivel a termodinamika második főtétele értelmében csak melegebb helyről áramlik hő a hidegebb felé. Hasonlóképpen a folyadék kellően alacsony hőmérsékletre kell lehűljön a fojtásos expanzió után, mivel az elpárologtatóban sem áramlik hidegebb helyről a melegebb felé hő. Ezen kívül a nyomáskülönbségnek kellően nagynak kell lennie, hogy a közeg lecsapódjék a meleg oldalon és elpárologjon a kisnyomású részen a hideg oldalon. Minél nagyobb a hőmérsékletkülönbség, annál nagyobb nyomáskülönbség szükséges és következésképpen annál nagyobb energia szükséges a közeg komprimálására. Ennél fogva minden hőszivattyúra igaz, hogy a fajlagos fűtőteljesítmény (egységnyi befektetett munka által átvitt hő) csökken a hőmérsékletkülönbség növekedésével. A különböző hőmérsékleti és nyomáskövetelményeknek megfelelően igen sokféle hűtőközeg áll rendelkezésre. A hűtőgépek, klímaberendezések és néhány fűtési rendszer is hasonló követelményeket támaszt a munkaközeggel szemben, így ezek a gépek hasonló technológiákra épülnek. Az épületgépészetben alkalmazott hőszivattyúk általában gőzkompressziós elven működnek. Legtöbbször felszerelik egy olyan szeleppel és optimalizált hőcserélőkkel, melyek lehetővé
teszik a hőáramlás megfordítását. A szelep átkapcsolásával a hűtőfolyadék áramlási iránya megfordítható, ilyenformán a hőszivattyú egyaránt képes fűteni és hűteni is az épületet. Hűvösebb éghajlaton a fűtés az alapállapot. A folyamat megfordíthatósága miatt a kondenzátor és elpárologtató működése időnként felcserélődik, ezért mindkettő olyan kialakítású, hogy mindkét üzemmódban betöltse funkcióját. Emiatt a fűtő-hűtő hőszivattyúk fajlagos fűtőteljesítménye mindig kicsit kisebb, mint a csak fűtésre vagy csak hűtésre tervezett hőszivattyúké. Hőszivattyút használnak esetenként úszómedencék vizének előmelegítésére vagy háztartási melegvíz előállítására is. Néhány esetben egyetlen hőszivattyú képes ellátni a fűtési és melegvíz igényt is, azonban a két feladat eltérő követelményei miatt ez csak igen ritkán oldható meg. Épület fűrésére szolgáló külső levegő hőjét hasznosító hőszivattyú fajlagos fűtőteljesítménye enyhe időben 3-4 körüli értéket mutat, elektromos fűtésre ugyanez az érték 1.0. Ez azt jelenti, hogy 1 joule elektromos energiát használó ellenállásfűtés 1 joule hőt termel, míg 1 joule energiát felhasználó hőszivattyú 3-4 joule hőt termel. A fajlagos fűtőteljesítmény erősen függ a levegőből nyert hő esetén a külső hőmérséklettől. Igen hideg külső hőmérséklet esetén több munkát kell befektetni az eredményes fűtéshez, mint enyhe időben. A levegő hőjét hasznosító hőszivattyúk ezért kisegítő hagyományos fűtést is igényelnek, mert nagy hideg esetén gazdaságosabb azt alkalmazni. Geotermikus hőszivattyúknál ez nem áll fenn, mert a talaj, talajvíz hőmérséklete gyakorlatilag állandó az egész év folyamán. A diagramból az is látható, hogy a fajlagos fűtőteljesítmény annál jobb, minél kisebb a meleg oldali hőmérséklet. Ez azt mutatja, hogy hatékonyabban lehet a hőszivattyút padlófűtésre és falfűtésre használni, mint hagyományos radiátorokra, melyeknél a kisebb fűtőfelület miatt magasabb hőmérsékletre van szükség ugyanannyi hő leadására. Fontos tudatosítani, hogy a fajlagos fűtőteljesítmény nem elsősorban a hőszivattyú konstrukciójától függ, hanem az üzemi körülményektől. Ugyanannak a hőszivattyúnak másmás hőmérsékleti viszonyok mellett más a fajlagos fűtőteljesítménye. A fűtés gazdaságosságát ezért a fajlagos fűtőteljesítményből nem lehet megítélni. •
•
Talajkollektoros rendszer esetében több száz méter hosszú speciális kemény PVC köpennyel ellátott rézcsöveket, vagy polietilén csöveket fektetnek le 1-2 méter mélyen. Hátránya, hogy nagy felületen (a fűtött alapterület 1,5-3-szorosán) kell megbontani a telket a csövek lefektetésekor, ezért leginkább új építésű házak esetén jöhet szóba. Segítségével négyzetméterenként 20-30 Wattnyi energiát nyerhetünk. Ennek nagysága függ a talaj hővezetésétől, nedvességtartalmától, és az esetleges talajvíztől. Talajszondás rendszer esetén kb. 15 cm átmérőjű, 50–200 méter hosszú lyukat fúrnak a földbe leginkább függőlegesen. Ebbe helyezik az U alakú szondát, amiben zárt rendszerben cirkulál a hűtőközeg. 200 méteres mélység esetén kb. 17 °C-os a Föld. Lehet két- vagy háromkörös rendszer, attól függően, hogy a szondában közvetlenül a hűtőközeg áramlik, vagy fagyálló folyadék adja át közvetetten hőjét a hűtőközegnek. A szondák speciális esete az energiakaró: több szondát egymás mellé helyezve nyáron
•
•
•
•
eltárolják a hőenergiát a földben, amit télen hasznosítanak. Különösen nyári hűtési igény esetén, ill. ipari méretekben gazdaságos. Nagyságrendekkel mélyebb szondák esetén (1000-2000 méter) már nem a talajrétegekben eltárolt napenergia kerül közvetetten hasznosításra, hanem elsősorban a geotermikus energia. A Föld középpontjában lejátszódó reakciók hője a felszín felé áramlik, ezért mennél mélyebb a fúrt kút, annál nagyobb a kúttalp körüli réteg hőmérséklete. Ez a hőmérséklet a geotermikus gradienstől függ. (egy kilométerrel mélyebben mennyivel melegebb a földkéreg) Ez hazánkban 60 °C/km körüli érték, szemben a 30°/km-es európai átlaggal. Masszív abszorber (beton építmény) Föld alatti vagy föld feletti beton vagy téglafalban betonlemezben műanyag csőkígyót helyeznek el. Külön e célra épített szoborszerű elemek, vagy támfalak, homlokzati betonfelületek is felhasználhatóak. A működés elve hasonló a talajkollektorokhoz: A beton jól vezeti a hőt, tömege alkalmas a hő tárolására. Segít a levegő, talaj, esővíz hőjének átvételében, a napsugárzást közvetlen is hasznosíthatja. Talajvíz. A talajvíz-kútból búvárszivattyúval nyert víz hőjének elvonása után a vizet vagy egy másik kútba, vagy felszíni vízbe (patak, tó, folyó) vezetik, vagy elszivárogtatják földbe fektetett dréncsöveken át. A talajvíz állandó hőmérséklete (7˙C-12˙C) és jó hővezető-képessége révén ideális hőforrás. További speciális alkalmazás, amikor hőforrásként egy tó szolgál. Ebbe helyezik el körkörösen a kollektorként szolgáló csöveket. Levegő. A külső levegőt ventilátorok szívják be, és a hőszivattyú hűti le. Hátránya, hogy a levegő hőmérséklete nem állandó, így a rendszer hatékonysága is változó, illetve a ventilátorok által keltett zaj is problémát jelenthet. Felhasználásra kerülhet még a ház pincéjének levegője is. Központi szellőztető rendszerrel ellátott, légmentesen szigetelt ház esetén a kifúvásra kerülő elhasznált levegő is használható hőforrásként, vagy a befúvásra kerülő levegőt melegítve, vagy a fűtési rendszerre rásegítve. (Ennél egyszerűbb megoldás a hőcserélők alkalmazása, ahol a kifúvott meleg és a beszívott hideg levegő egy nagy felületű berendezésen át adja át a hőt, anélkül, hogy keveredne.) Hulladékhő. Számításba jöhet hőforrásként a szennyvíz, az elhasznált termálvíz. Előbbire magyarországi példa a szekszárdi húskombinát, ahol a 22 °C-os szennyvíz a hőforrás, míg utóbbira a harkányi gyógyfürdő, melynek 32-35 °C-os elfolyó vizét használják fel két egyenként 1100 kW-os hőszivattyúval.