Elektromágneses rezgések, elektromágneses hullámok Hasonlóan a mechanikai hullámokhoz, ahol rezgés hoz létre hullámot (pl. gitárhúr rezgése levegőben terjedő hanghullámot), az elektromágneses hullámokat is rezgés hozza létre. Neve: elektromágneses rezgés (szinuszosan változó elektromos és mágneses tér egy áramkörben) Egy kondenzátort és egy tekercset összekapcsolva kapjuk az elekromágneses rezgőkört: Ha a kondenzátorra feszültséget kapcsolunk akkor feltöltődik, majd összekapcsoljuk a tekerccsel, akkor létrejön a kondenzátorban az elektromos térnek, a tekercsben pedig a mágneses térnek a periodikus váltakozása. Az áramkörben az áram és a feszültség is periodikusan váltakozik.
Az elektromágneses rezgőkör kinyitásával (nyitott rezgőkör) a zárt rezgőkörben változó elektromos és mágneses tér kisugárzódik a rezgőkört körülvevő térben. A térben haladó változó elektromos és mágneses mezőt elektromágneses hullámnak nevezzük. A nyitott rezgőkörből készül az adó-antenna és vevő-antenna, amelyekkel a térben az elektromágneses (EM) hullámok által közvetített jeleket továbbítani lehet (pl. rádió, mobiltelefon, TV)
Az EM hullám légüres térben is terjed. Sebessége vákuumban: 300 000 km/s = 3 · 108 m/s Neve: fénysebesség A levegő az EM hullám számára ritka, ezért a levegőben is ekkora a sebessége. Optikailag sűrűbb anyagokban (pl. üveg, víz) a sebessége kisebb. A fénysebességnél nagyobb sebesség nem létezik. (Einstein megállapítása)
Elektromágneses (EM) színkép, az EM hullám fajtái A különböző EM hullámok sebessége ( c ) azonos anyagban azonos, a hullámhosszuk ( ) és frekvenciájuk ( f ) más. A különböző frekvenciájú és hullámhosszú hullámok tulajdonsága más, ezért különbözőképpen nevezzük őket. Az EM hullámok fajtáinak hullámhossz szerinti skálán való elhelyezését elektromágneses színképnek, vagy elektromágneses spektrumnak nevezzük. A nagyobb hullámhosszú elektromágneses hullám frekvenciája kisebb, a kisebb hullámhosszú elektromágneses hullám frekvenciája nagyobb. A nagyobb frekvenciájú elektromágneses hullámnak nagyobb az energiája. Az elektromágneses hullámok fajtáinak sorrendje a frekvenciájuk és így az enregiájuk sorrendjében (kisebb frekvenciától és energiától a nagyobb felé): rádióhullámok (legkisebb energiájú), mikrohullámok, infravörös sugárzás, látható fény, ultraibolya sugárzás, röntgensugárzás, radioaktív gamma sugárzás (legnagyobb energiájú)
Rádióhullámok fajtái: hosszúhullám (hullámhossza>km), középhullám (100 – 1000 m), rövidhullám (10 m – 100 m), ultrarövidhullám URH (néhány m) Elektromos jelek továbbítására alkalmas (rádió, TV, …). Adóantennával sugározzák ki és vevőantenna képes visszaalakítani elektromos jellé. Mikrohullámok (hullámhossza: mm, cm, dm) A rádióhullámokhoz hasonlóan elektromos jelek továbbítására alkalmas, de mivel nagyobb energiájú, erősebb és zavarmentesebb adást lehet továbbítani. A mobiltelefon jeleit is mikrohullám továbbítja. A GPS műholdas rendszer is mikrohullámokat sugároz és a GPS vevő méri, hogy a műholdról mennyi idő alatt ért oda, így mérhető a műhold távolsága, és ez alapján a vevő helye. A mikrohullám felhasználása: távolság és iránymérés, adattovábbítás pl. GPS, radar és fémdetektor (a fémről visszaverődik), mobiltelefon, rádiócsillagászat, melegítésre is használható (mikrosütő, gyógyászat)
Infravörös (infrared, IR) sugárzás (hősugárzás) (800 nm – mm)
A Nap és csillagokon kívül, minden tárgy is ad ki magából infravörös sugárzást. A melegebb tárgy erősebbet. Ezért lehet használni infravörös fényképezésre, tárgyak, élőlények által kibocsátott hősugárzást lehet érzékelni, hőfényképet készíteni. A Napból érkező IR sugárzás (hősugárzás) melegíti a Földet és az élőlényeket (napozás). Az IR sugárzás felhaszlása: vadállatok, vagy emberek, katonák megtalálása hőfénykép alapján, házak hőszigetelés vizsgálata, katonai felhasználás pl. hőkövető rakéta (a repülő vagy helikopter motorjának hősugárzását követi). Gyógyászatban: hőfénykép alapján gyulladt, beteg belső testrészek megtalálása, vagy melegítéssel gyógyítás (pl. infralámpa)
Látható fény (400 nm – 800 nm) (ibolyakék – vörös)
A látható fehér fény a különböző hullámhosszú színes fénysugarak keveréke. A fehér fény felbontható a színes összetevőire (pl. prizmával) A szemünk a különböző hullámhosszú EM sugarakat más színűnek látja.
Ultraibolya (ultraviolet, UV) sugárzás (1 nm – 400 nm) Fajtái: UV-A, UV-B, UV-C A Napból érkező UV sugarakat a légkör ózon rétege szűri. Élettani hatása: D-vitamin képzést, barnulást okoz (napozás, solárium). Nagy mennyiségben káros, leégést, bőrrákot okoz. A bőrnél tovább nem halad. Használják szórakozóhelyeken, a fehér fluoreszkál UV hatására.
Röntgensugárzás (0,01 nm – nm) Nagy energiájú sugárzás, áthatol a testen, különböző anyagokon nagyobb vagy kisebb mértékben hatol át. Ezért röntgen-fényképezésre használható. Nagy mértékben használva az élő szöveteket károsítja. Használják anyagvizsgálatra, átvilágításra is (pl. repülőtéri csomagvizsgálat).
Rádioaktív gamma sugárzás (< 0,01 nm)
A legnagyobb energiájú sugárzás. Atommag átalakuláskor jön létre (atombomba, atomreaktor, csillagok). Az élő szövetekre nagy roncsoló hatása van. Atombomba robbanáskor keletkező gamma sugárzás a sejtroncsoló hatás miatt halált okoz. Daganatos sejtek pusztítására használják a gyógyászatban (sugárkezelés). A világűrben is van gamma sugárzás (kozmikus gamma sugárzás). A csillagok atommag átalakulási folyamatainak következménye. Ez a sugárzás is éri a Földet, de ez kis mértékű (háttérsugárzás).
Optika
A fény a mechanikai hullámokhoz hasonlóan rendelkezik a hullámok tulajdonságaival, ezért ahhoz hasonlóan két anyag határán visszaverődik és megtörik: Fény visszaverődése Egy másik anyag határára érve a fény egy része visszaverődik (pl. tükörről). A visszaverődésnél a beesési szög megegyezik a visszaverődési szöggel. Fénytörés Egy másik anyag határára érve a fény egy része behatol az anyagba, az iránya, hullámhossza és a sebessége megváltozik. A beesési szög és a törési szög szinuszának aránya megegyezik a sebességek (c1, c2) arányával. Ez az arány a két anyagra jellemző adat, a két anyag egymáshoz képesti törésmutatója (n2;1).
Optikailag sűrűbbnek nevezzük azt az anyagot, amelynek a törésmutatója a másik anyaghoz képest 1-nél nagyobb, és amelyben a fény lassabban terjed.
(pl. víz vagy üveg a levegőhöz képest)
Teljes visszaverődés Ha a sűrűbb anyagban (pl. üveg) a fény a belső felületére olyan szögben esik, amelynél a törési szög 90 º, akkor nem tud kilépni az anyagból (üvegből). Ha ennél nagyobb szögben esik a határfelületre, akkor teljesen visszaverődik, pl. az üveg belsejében a faláról belül visszaverődve halad tovább. Ezt használják az optikai kábeleknél. (adatkábelek: (TV, internet), orvosi alkalmazás: üvegszálas endoszkóp)
Lencsék, tükrök
Síktükör A tükör mögött látszólagos kép (K) alakul ki, amelynek nagysága azonos a tárggyal (T). Felhasználása: pl. fali tükör Homorú gömbtükör A párhuzamosan beeső fénysugarakat 1 pontba gyűjti össze, ezt nevezzük fókuszpontnak (F). A fókuszpontnak a tükörtől való távolsága a fókusztávolság (f), amely a gömb sugarának a fele. A fókusztávolságon belüli tárgyról látszólagos nagyított kép, a fókusztávolságon kívüli képről fordított állású kép keletkezik. Felhasználása: pl. kozmetikai tükör, fogászati tükör A fókuszpontba gyűjti az EM sugarakat a TV parabola antenna és a napkollektor is.
Domború tükör A domború tükör a párhuzamosan érkező sugarakat szétszórja úgy, mintha a tükör mögül egy pontból (fókuszpontból) indulnának. A tárgy képe kicsinyített kép lesz. Felhasználása: pl. közlekedési tükrök, visszapillantó tükör
Homorú lencse (szórólencse) A párhuzamos sugarakat szétszórja. Kicsinyített képet ad. Felhasználása: ajtókémlelő, szemüveglencse, távcső lencse
Domború lencse (gyűjtőlencse) A domború lencse összegyűjti a fénysugarakat a fókuszpontba. Egyenes állású nagyított képet ad, ha a tárgy a fókusztávolságon belül van, fordított állású képet ad, ha a tárgy a fókusztávolságon kívül van. Felhasználás: nagyító, szemüveg, távcső, mikroszkóp A szemünk lencséje (szemlencse) a látható képet lekicsinyítve vetíti a szem hátsó részén levő retinára (fordított állásban).
Mindegyik tükörre, lencsére érvényes: Nagyítás: a kép és a tárgy nagyságának aránya: N=K/T=k/t Leképezési törvény: (f fókusztávolság, k képtávolság, t tárgytávolság) Lencse dioptriája: D=1/f (fókusztávolság reciproka 1/méter - ben)
Fényhullám interferencia
A fény, mint elektromágneses hullám a mechanikai hullámokhoz hasonlóan interferenciára képes (a találkozó hullámok a különböző találkozási helyeiken erősítik, gyengítik vagy kioltják egymást). Megfigyelhető ha pl. a fehér fényben levő különböző színű fénysugarak kioltják egymást, akkor a maradék színeket látjuk. Pl. CD felületén színes csíkokat látunk, vagy az úton az olajfoltot színesnek látjuk.
A lézerfény útjába tett optikai rácson (sűrű egyenes réseken) áthaladó fény elhajlik a réseken és a rács túlsó oldalán a sugarak interferenciája miatt az erősítéses helyeken fénypontok alakulnak ki.
Színek
Színfelbontás A fény sebessége az anyagokban kis mértékben függ a fény hullámhosszától. Tehát különböző színű fénysugarakra kicsit más. Ezért pl. a prizma (háromszög oldalú üveg) más szögben töri meg a különböző színű fénysugarakat. Így a prizma a fehért fényt színeire bontja. A vízcsepp is, pl. szivárvány. Az anyagok színe Ha a fehér fény (pl. napfény vagy lámpa fénye) egy anyag, tárgy határára érkezik, akkor a különböző színű fénysugarak - egy része visszaverődik, - egy része elnyelődik az anyagban, - egy része áthalad az anyagon, ha az anyag átlátszó, pl. víz, üveg, átlátszó műanyag (plexi) A tárgyakat olyan színűnek látjuk, amelyik színű fénysugár róla visszaverődik.
Fehérnek látjuk azt, amelyikrőI mindegyik színű fénysugár visszaverődik. Pl. zöldnek látjuk (pl. a leveleket), ami a zöld színnek megfelelő frekvenciájú fényt visszaveri, a többit elnyeli. Feketének látjuk azt az anyagot, ami minden színű fénysugarat elnyel, semmit nem ver vissza, tehát a fekete nem szín, hanem az amit nem látunk.
Mivel a fekete anyag elnyeli a fénysugarakat (pl. napsugárzást), ezért a fekete ruha jobban felmelegszik, mint a fehér, ami visszaveri a fényt. Ezért célszerű nyáron világos ruhában járni.
Átlátszó anyagokat olyan színűnek látunk, amelyiket átengedi, a többit elnyeli. (pl. színes italos üveg, mozaiküvegek) Színkeverés 3 alapszínből minden szín kikeverhető, összeállítható: piros (red), zöld (green), kék (blue) – rövidítve: RGB Ezek egymásra vetítésével, keverésével lehet összeállítani a különböző színárnyalatokat. Ezt használják a képernyőkben (TV, mobiltelefon, laptop), ahol minden világító „pontot (pixelt)” egy piros, egy zöld és egy kék pont különböző erősségű fénye ad. A színkeverést használják a nyomdákban, színes nyomtatókban.
Néhány gyakorlati példa részletesen Parabola antenna A fémből készült parabola tükör a műholdról érkező elektromágneses rádióhullámokat összegyűjti, fókuszálja 1 pontba (fókuszpont). A fókuszpontban levő antenna (rezgőkör) átalakítja az EM hullámot elektromágneses rezgéssé, váltakozó árammá, amelynek a frekvencia-váltakozása tartalmazza a műholdról érkező hang és kép jeleket. Ezt az áramot áramvezeték (antennakábel) továbbítja a TV vevő-egység felé.
Szemüveg Ha a szemlencse a képet a retina mögé jeleníti meg, akkor egy gyűjtő (domború) lencsével a szem előtt jobban össze kell gyűjteni a sugarakat, hogy a retinára kerüljön a látott kép. Ha a szemlencse a képet a retina elé jeleníti meg, akkor egy szóró (homorú) lencsével a szem előtt szét kell szórni a sugarakat, hogy a retinára kerüljön a látott kép. Műszerrel megállapítható, hogy milyen domboralutú, vagyis milyen fókusztávolságú szemüveg szükséges a pontos beállításhoz.
Endoszkóp kamera Az üvegszálban a fény a teljes visszaverődés jelensége miatt nem tud kilépni, a belső faláról visszaverődik. Sok vékony üvegszálból készíthető olyan hajlékony cső, amellyel a cső egyik végén láthatóvá válik a cső másik vége előtti kép, akkor is, ha a cső nem egyenes. Ezt orvosi vizsgálatoknál használják.
Optikai kábel Az üvegszálban a fény a teljes visszaverődés jelensége miatt nem tud kilépni, a belső faláról visszaverődik. Sok vékony üvegszálból készíthető olyan hajlékony cső, amellyel periódikusan fényjeleket lehet továbbítani. Ez használható digitális jelek, adatok továbbítására. Ilyen optikai kábelt fektetnek le a földben, a tengerek alján, és vezetnek a felszínen is . Ezeken keresztül lehet a leggyorsabban (fénysebességgel) továbbítani az adatokat. Ezt használják az internet és a TV adatok továbbítására. (kábel TV, és internet kapcsolat különböző földrészek között)
Napszemüveg A Napból jövő ultraibolya sugarak B fajtája (UV-B hullámhossza 280 -315 nm) segíti a szervezet D-vitamin képzését, de csak kis mennyiségben érheti testünket. Nagyobb mennyiségben a testfelület (bőr, szem) sejtjeit károsítják, leégést, bőrrákot, szemkárosodást okozhat. Ez a sugárzás nem tud áthatolni bizonyos vastagságú üveg vagy műanyag felületen, erre szolgál a napszemüveg. (Vastagabb üvegablak mögött nem lehet lebarnulni, csak melegedni. Viszont vízben le lehet égni, mert a vízbe kb. 1,5 m mélységig behatol az UV-B sugárzás.) A napszemüveg UV szűrésének mértéke függ a napszemüveg anyagától. A jó napszemüveg UV szűrése közel 100 %-os.