METAL 2006 23.-25.5.2006, Hradec nad Moravicí ___________________________________________________________________________
K CHEMICKÉ MIKROHETEROGENITĚ NIKLOVÉ SUPERSLITINY ON CHEMICAL MICROHETEROGENEITY OF A NICKEL SUPERALLOY Jana Dobrovskáa Věra Dobrovskáa Karel Stránskýb a
VŠB-TU, 17.listopadu 15, 708 33 Ostrava - Poruba, ČR,
[email protected] b VUT- Brno, Technická 2,616 69 Brno, ČR,
[email protected]
Abstrakt V příspěvku jsou presentovány výsledky výzkumu chemické mikroheterogenity niklové superslitiny IN 792-5A. Chemická mikroheterogenita byla studována na vzorcích litého stavu a po tepelném ovlivnění (800, 900 a 1000°C) s odstupňovanou dobou žíhání. K získání koncentračních souborů vybraných prvků (hliníku, titanu, chrómu, kobaltu, niklu, niobu, molybdenu, tantalu a wolframu) byla použita metoda energiově disperzní (ED) rentgenové spektrální mikroanalýzy a mikroanalytický komplex JEOL JXA-8600/KEVEX Delta V, Sesame. Experimentální data byla následně zpracována pomocí metod matematické statistiky a pomocí původních matematických modelů s cílem získat základní krystalizační a segregační charakteristiky analyzovaných prvků a posoudit vliv tepelného zpracování na chemickou mikroheterogenitu slitiny. Abstract The paper deals with results of nickel superalloy IN 792-5A chemical microheterogeneity research. Chemical microheterogeneity has been studied on as-cast state sample and on samples after isothermal annealing at temperatures of 800, 900 and 1000°C with gradatory annealing time. To obtain concentration data files of selected elements (Al, Ti, Cr, Co, Ni, Nb, Mo, Ta and W) the method of energy disperse X-ray spectral microanalysis and analytical equipment JEOL JXA-8600/KEVEX Delta V, Sesame have been used. Experimental data have been processed by means of mathematic statistical methods and with the help of original mathematical models with aim to obtain basic crystallization and segregation characteristics of analyzed elements and to evaluate the influence of isothermal annealing on alloy chemical microheterogeneity.
1. ÚVOD Slitiny na bázi niklu jsou během krystalizace, obdobně jako uhlíkové i slitinové oceli, charakterizovány intenzívním dendritickým odmíšením konstitutivních i doprovodných prvků a též příměsí. Pochod dendritického odměšování i jeho konečný stav, který určuje dendritickou heterogenitu uvažované niklové slitiny, lze přitom z fyzikálně-metalurgického hlediska popsat stejnými modely jako je tomu u ocelí. Avšak na rozdíl od ocelí, jejichž odměšování a výsledná dendritická heterogenita jsou již dlouhou dobu soustavně sledovány [1] a je pro jejich popis k dispozici poměrně rozsáhlý soubor konkrétních údajů, pro slitiny na bázi niklu je těchto dat neporovnatelně méně [2]. Uvážíme-li, že oblasti s vysokým dendritickým odmíšením jsou při krystalizaci často charakterizovány extrémně nízkou teplotou solidu a tvorbou nekovových fází, karbidů, nitridů, sulfidů, fosfidických eutektik aj. fází, které jsou zdrojem primárních vad
1
METAL 2006 23.-25.5.2006, Hradec nad Moravicí ___________________________________________________________________________ (mikrostaženin, mikroředin, mikrotrhlin, mikrobublin aj.) a následně, během exploatace, mohou být tyto defekty i zdrojem prasklin a při dynamickém zatěžování příčinou únavových trhlin, potom se stává znalost dendritického odmíšení prvků a s tím spojené heterogenity slitiny jedním z určujících parametrů jakosti výrobku. V tomto příspěvku jsou uvedeny vybrané výsledky studia chemické a strukturní mikroheterogenity niklové slitiny IN 792–5A žíhané odstupňovanou dobou žíhání při teplotách 800°C, 900°C a 1000°C. Při výzkumu byla aplikována původní metoda měření dendritické mikroheterogenity prvků na danou slitinu na bázi niklu a byly stanoveny základní statistické parametry heterogenity vybraných prvků slitiny a také byly stanoveny rozdělovací koeficienty těchto prvků mezi pevnou a kapalnou fázi příslušné slitiny. 2. EXPERIMENTÁLNÍ MATERIÁL A METODY Jako experimentální materiál byla vybrána perspektivní niklová superslitina IN 792–5A, vyráběná u nás v PBS Velká Bíteš, a.s. Tavbové chemické složení slitiny je uvedeno v tabulce 1 (v hm%, resp. v ppm – prvek označen ∗). Tab. 1 Chemické složení analyzované niklové superslitiny IN 792–5A Table 1 Chemical composition of analysed nickel superalloy IN 792–5A Prvek koncentrace Prvek koncentrace Prvek koncentrace Prvek koncentrace
C 0,078 Co 8,87 ∗In < 0,1 ∗Zn < 1,0
Si Mn P S < 0,10 < 0,10 <0,002 <0,002 Cr Fe ∗Cd ∗Ga 12,28 < 0,1 0,16 < 10 ∗Pb ∗Sb ∗Se ∗Sn 0,3 < 1,0 < 2,0 < 5,0 Zr 0,031
∗Ag < 0,1 ∗Mg 8,4 Ta 4,12
Al 3,36 Mo 1,81 ∗Te < 1,0
∗As <5 ∗N 15 Ti 3,98
B 0,015 Nb < 0,10 ∗Tl < 0,2
∗Bi < 0,1 Ni 61,10 W 4,10
Chemická heterogenita bylo analyzována celkem u 10 vzorků, a to na vzorku litého stavu a po tepelném ovlivnění (800, 900 a 1000°C) s odstupňovanou dobou žíhání. Značení vzorků a režim jejich tepelného zpracování je uveden v tabulce 2. V tabulce jsou uvedeny také tvrdosti jednotlivých vzorků (měřeno ve spolupráci s ÚJP, a.s. Praha). Tab.2 Značení vzorku a režim tepelného zpracování Table 2 Marking of samples and regime of their thermal annealing Značení Teplota žíhání (°C) Doba žíhání (h) Tvrdost (HV 30)
12.0
13.8
14.8
15.8
13.9
14.9
15.9
13.1
14.1
15.1
0
800
800
800
900
900
900
1000
1000
1000
0
100
500
1000
100
500
1000
100
500
1000
392
404
400
395
377
365
366
365
358
359
K posouzení dendritické heterogenity a stanovení efektivních rozdělovacích koeficientů jsou nezbytné dostatečně velké koncentrační soubory sledovaných prvků, změřené optimálním způsobem a to v tomto případě ve vhodných, ve všech vzorcích strukturně přibližně stejných oblastech. K získání těchto koncentračních souborů byla použita metoda energiově disperzní (ED) rentgenové spektrální mikroanalýzy a mikroanalytický komplex JEOL JXA-8600/KEVEX Delta V, Sesame. U každého vzorku se změřil jeden koncentrační
2
METAL 2006 23.-25.5.2006, Hradec nad Moravicí ___________________________________________________________________________ soubor prvků podél úsečky orientované tak, aby u každého z analyzovaných vzorků protínala přibližně srovnatelný počet strukturně podobných dendritických buněk a jejich hranic. Vlastní měření probíhalo na VTÚO Brno. Na základě posouzení mikrostruktury připravených vzorků, jakož i spektrální rozlišovací schopnosti ED, bylo rozhodnuto získat koncentrační soubory hliníku, titanu, chrómu, kobaltu, niklu, niobu, molybdenu, tantalu a wolframu (tj. celkem 9 prvků). Měření proběhlo na každém vzorku ve 101 bodech ležících na úsečce dlouhé L = 500 µm (vzájemná vzdálenost jednotlivých bodů ∆L = 5 µm), přičemž tento délkový interval zároveň charakterizuje strukturní rozlišovací možnost použité analýzy. Pracovní podmínky analýz byly u všech vzorku stejné [3]. 3. VÝSLEDKY A JEJICH DISKUSE Byly stanoveny základní statistické parametry normálního (Gaussova) statistického rozdělení změřených koncentrací devíti prvků v souboru desíti vzorků slitiny IN 792–5A s odstupňovanou dobou žíhání při teplotách 800, 900 a 1000°C. K těmto parametrům patří: cst střední koncentrace prvku (aritmetický průměr) ve vybraném úseku, σn-1 směrodatná (standardní, střední) odchylka měřené koncentrace prvku, dále cmin minimální koncentrace prvku a cmax maximální koncentrace prvku změřené vždy ve vybraném úseku vzorku. Dále byly z těchto dat vypočteny indexy dendritické heterogenity prvků v měřených úsecích jednotlivých vzorků, přičemž index heterogenity IH příslušného prvku byl definován jako poměr směrodatné odchylky σn-1 a střední hodnoty koncentrace cst tohoto prvku. Poté byly postupem podrobně popsaným v pracích [4,5] vypočteny na základě vypočítaných statistických dat pro každý analyzovaný prvek v jednotlivých vzorcích hodnoty efektivních rozdělovacích koeficientů kef. Indexy heterogenity a rozdělovací koeficienty analyzovaných prvků v jednotlivých vzorcích se přitom vztahují k témuž měřenému úseku a pro každý z analyzovaných prvků tak představují navzájem související párové hodnoty. Výše uvedené parametry pro každý analyzovaný prvek a každý vzorek jsou přehledně uvedeny ve zprávách [6,7]. Z těchto rozsáhlých výsledků jsou zde předloženy v tabulce 3 pouze střední hodnoty koncentrací analyzovaných prvků, jejich indexy heterogenity a efektivní rozdělovací koeficienty vždy pro soubor vzorků tepelně ovlivněných při stejné teplotě. Na obr. 1 je znázorněna chemická heterogenita jednotlivých vzorků prostřednictvím indexů heterogenity jednotlivých analyzovaných prvků. Tab.3 Střední hodnoty chemického složení, indexů heterogenity a efektivních rozdělovacích koeficientů analyzovaných prvků Table 3 Average values of chemical composition, indexes of heterogeneity and effective partition coefficients of analysed elements litý stav Parametr cst σn-1
Al
Ti
3,220 0,776
IH kef σk
Cr
Prvek Co
Ni
Nb
Mo
Ta
W
3,176 0,920
12,516 3,538
8,849 1,662
62,639 3,584
0,079 0,065
1,720 0,404
3,226 1,121
4,575 0,965
0,241
0,290
0,283
0,188
0,057
0,824
0,235
0,348
0,211
1,228 0,133
1,264 0,181
0,798 0,158
0,862 0,108
1,048 0,032
0,478 0,310
0,822 0,120
1,354 0,188
0,843 0,116
3
METAL 2006 23.-25.5.2006, Hradec nad Moravicí ___________________________________________________________________________
teplota žíhání 800°C Parametr Al Ti cst 3,210 3,430 σn-1 0,864 1,048 IH σIH kef σk
kef σk
Ni
Nb
Mo
Ta
W
12,178 3,972
8,883 2,104
62,776 4,205
0,045 0,051
1,633 0,421
3,510 1,210
4,335 0,983
0,306 0,007
0,327 0,022
0,237 0,016
0,067 0,003
1,147 0,116
0,258 0,011
0,345 0,023
0,227 0,011
1,269 0,020
1,297 0,008
0,767 0,017
0,823 0,012
1,058 0,003
3,467 0,233
0,811 0,011
1,353 0,037
0,830 0,009
Cr
Prvek Co
Ni
Nb
Mo
Ta
W
12,947 4,274
9,112 1,968
62,085 4,048
0,064 0,056
1,766 0,465
3,271 1,190
4,383 0,779
0,331 0,020 0,761 0,016
0,216 0,009 0,837 0,009
0,065 0,003 1,057 0,002
0,891 0,065 1,960 1,331
0,264 0,021 0,802 0,018
0,363 0,023 1,393 0,028
0,178 0,031 0,862 0,022
Cr
Prvek Co
Ni
Nb
Mo
Ta
W
12,941 4,993
9,086 2,035
62,327 4,533
0,055 0,052
1,730 0,600
3,351 1,494
4,315 0,892
0,387 0,067 0,743 0,038
0,224 0,035 0,842 0,022
0,073 0,009 1,059 0,007
0,944 0,080 1,222 1,399
0,347 0,060 0,762 0,034
0,445 0,060 1,471 0,079
0,208 0,024 0,842 0,015
0,302 0,009 1,315 0,005
0,329 0,014 1,345 0,014
teplota žíhání 1000°C ParaAl metr Ti cst 2,961 3,324 σn-1 1,049 1,387 IH σIH
Prvek Co
0,269 0,016
teplota žíhání 900°C Parametr Al Ti cst 3,141 3,231 σn-1 0,946 1,062 IH σIH kef σk
Cr
0,354 0,054 1,343 0,068
0,416 0,056 1,422 0,081
Z výše uvedených výsledků a z výsledků uvedených v [6,7] vyplývá, že během dlouhodobého žíhání při teplotách 800°C, 900°C a 1000°C probíhají ve struktuře niklové slitiny IN 792–5A složité redistribuční procesy všech analyzovaných prvků. Na rozdíl od většiny již studovaných niklových superslitin [6] však u této slitiny rozsah chemické heterogenity nepřesahuje délku analyzovaného úseku, která v tomto případě činí 500 µm. Při teplotě žíhání 800°C se u všech analyzovaných prvků pozorovala s rostoucí dobou žíhání tendence k růstu mikroheterogenity, tj. pro doby žíhání 100, 500 a 1000 hod. Při teplotě žíhání 900°C se zvyšuje heterogenita s rostoucí dobou žíhání u prvků Al, Ti, Cr, Mo a Ta, naopak u prvků Co, Ni, Nb a W se snižuje. Při teplotě žíhání 1000°C dochází k růstu chemické heterogenity u všech prvků. Z porovnání průměrných hodnot indexů heterogenity analyzovaných prvků pro tři doby žíhání vyplývá, že při teplotě žíhání 900°C mají prvky Al, Ti, Cr, Mo a Ta obecně vyšší heterogenitu a prvky Co, Ni, Nb a W nižší heterogenitu než při teplotě žíhání 800°C. Lze tedy
4
METAL 2006 23.-25.5.2006, Hradec nad Moravicí ___________________________________________________________________________ konstatovat, že vyšší teplota žíhání a delší doba žíhání způsobují homogennější rozložení prvků Co, Ni, Nb a W ve struktuře niklové slitiny IN 792–5A. Toto však platí pouze pro srovnání teplot 800 a 900°C. Při dalším zvýšení teploty žíhání na 1000°C vzrostly průměrné hodnoty indexů heterogenity u všech prvků, přičemž absolutně nejvyšší hodnoty tohoto parametru se nacházejí u vzorku 15.1, tj. vzorku žíhaného při nejvyšší teplotě nejdelší dobu (mimo prvků niob a wolfram). Z hlediska celkové chemické mikroheterogenity lze sestavit následující rostoucí posloupnost vzorků: 12.0 (litý stav – nejnižší chemická heterogenita), 15.9, 14.9, 14.8, 13.9, 13.1, 13.8, 14.1, 15.8 a 15.1 (nejvyšší heterogenita). Celkovou chemickou heterogenitu v měřených oblastech jednotlivých vzorků a také podíl jednotlivých prvků na této heterogenitě charakterizuje také obr.1.
vz 13.1
vz 15.9
0,38
0,17
0,37
0,21
0,28
vz 13.9 0,21
0,36
0,27
0,90
0,07
0,27
0,95
0,06
0,25
doba žíhání [hod]
0,23
0,15
0,34
0,24
0,07
0,23
0,23
0,32
0,25
1,03
Al Ti Cr Co Ni Nb Mo Ta W
vz 15.8
vz 14.8 0,23
0,35
0,25
1,14
0,22
0,21
0,35
0,23
0,82
0,06
0,19
2,5
vz 15.1
vz 14.1
vz 14.9
1,26
0,21 0,24
2,0
0,22 0,18
0,40
0,28
1,03 0,82
0,32 0,28
1,5
0,51
0,42
0,36
0,87
0,07
0,30
0,35
0,35
1,0
0,40
0,93
0,08
0,26
0,33
0,30
0,24
0,5
0,06
0,30
0,27
0
0,07
0,31
0,26
100
0,06
0,33
0,29
500
0,06
0,29
1000
0,19
0,34
100
0,21
0,31
0,31
0,32
0,36
0,30
500
0,32
0,30
1000
0,29
100
0,0
0,23
0,40
0,41
0,35
500
0,45
0,47
0,41
1000
vz 13.8
vz 12.0 - litý stav 3,0
3,5
4,0
index heterogenity [-]
Obr.1 Celková heterogenita jednotlivých vzorků (vyjádřená indexy heterogenity) slitiny IN 792-5A v závislosti na době žíhání pro teploty žíhání 800, 900 a 1000°C, včetně stavu po odlití. Fig.1 Total chemical heterogeneity of the individual samples (expressed by indexes of heterogeneity) of alloy IN 792-5A in dependence on annealing time for annealing temperatures of 800, 900 and 1000°C, including as-cast state.
Směr přerozdělování prvků při krystalizaci a tuhnutí této slitiny IN 792–5A je stejný jako při izotermickém žíhání při třech teplotách, tj. prvky hliník, titan a tantal se přerozdělují spolu s niklem do matrice, zatímco prvky chróm, kobalt, niob, molybden a wolfram se oddělují do mezidendritických prostor. V těchto prostorách se zřejmě při dlouhodobém izotermickém žíhání na teplotě koncentrují uvedené prvky nad mezí rozpustnosti a tvoří karbidické a jiné částice zejména na bázi chrómu a niobu. Prvek niob vykazoval u této slitiny vůbec nejvyšší heterogenitu jak u vzorku v litém stavu, tak u vzorků po izotermickém žíhání. Je však nutno uvést, že měření niobu metodou energiově disperzní mikroanalýzy je zatíženo poměrně značnou chybou vzhledem k jeho nízké koncentraci ve struktuře slitiny IN 792–5A, lze však z těchto měření usoudit trend v chování prvku, vzhledem k tomu, že všechna měření byla prováděna při stejných podmínkách.
5
METAL 2006 23.-25.5.2006, Hradec nad Moravicí ___________________________________________________________________________ Zajímavé je také chování wolframu při izotermickém žíhání slitiny IN 792–5A. Zatímco u většiny již analyzovaných niklových slitin (např. slitina 2.4879 [6]) wolfram vykazoval při vysokoteplotním žíhání s rostoucí dobou žíhání zřetelnou tendenci k růstu mikroheterogenity, a tedy se jako silně karbidotvorný prvek podílel během prodlevy na teplotách významně na vylučování a růstu karbidických fází, u slitiny IN 792–5A je tomu naopak. Při izotermickém žíhání na teplotách 900 a 1000°C je jeho chemická heterogenita nižší než u litého stavu. Korelace analyzovaných prvků vzhledem k niklu (viz tabulka 4) je u litého stavu i u třech teplot žíhání velmi silná (kromě niobu, u kterého je korelace s niklem statisticky nevýznamná), absolutní hodnoty korelačních koeficientů všech prvků jsou nejvyšší u teploty 1000°C (v tabulce 4 jsou statisticky významné koeficienty značeny tučně). To znamená, že redistribuce prvků ve vzorcích niklové slitiny klesá (s výjimkou molybdenu) za jinak stejných podmínek s teplotou žíhání 900°C poté, při teplotě 1000°C redistribuce stoupá. Tab.4
Přehledová korelační matice prvků ve vztahu k niklu pro litý stav a tři teploty žíhání
Table 4 Correlation between analysed elements and nickel for as-cast state and three annealing temperatures litý stav 12.0
Al
Ti
Cr
Co
Nb
Mo
Ta
W
-0,986
Ni 1
Ni
0,956
0,937
-0,992
-0,010
-0,933
0,934
-0,739
800°C 13.8 Ni 14.8 Ni 15.8 Ni průměr odchylka
Al 0,965 0,962 0,974 0,967 0,006
Ti 0,970 0,967 0,970 0,969 0,002
Cr -0,994 -0,993 -0,994 -0,994 0,001
Co -0,988 -0,986 -0,991 -0,988 0,003
Ni 1 1 1 1,000 0,000
Nb 0,088 0,042 0,106 0,079 0,033
Mo -0,947 -0,957 -0,961 -0,955 0,007
Ta 0,949 0,945 0,953 0,949 0,004
W -0,842 -0,767 -0,769 -0,793 0,043
900°C 13.9 Ni 14.9 Ni 15.9 Ni průměr odchylka
Al 0,956 0,959 0,936 0,950 0,013
Ti 0,956 0,976 0,950 0,961 0,014
Cr -0,992 -0,993 -0,992 -0,992 0,001
Co -0,989 -0,989 -0,933 -0,970 0,032
Ni 1 1 1 1,000 0,000
Nb 0,040 -0,055 0,184 0,056 0,120
Mo -0,951 -0,955 -0,963 -0,956 0,006
Ta 0,947 0,946 0,917 0,937 0,017
W -0,600 -0,708 -0,498 -0,602 0,105
1000°C 13.1 Ni 14.1 Ni 15.1 Ni průměr odchylka
Al 0,967 0,979 0,987 0,978 0,010
Ti 0,985 0,986 0,991 0,987 0,003
Cr -0,993 -0,996 -0,998 -0,996 0,003
Co -0,988 -0,992 -0,995 -0,992 0,004
Ni 1 1 1 1,000 0,000
Nb -0,136 0,081 -0,114 -0,056 0,119
Mo -0,962 -0,981 -0,987 -0,977 0,013
Ta 0,947 0,975 0,980 0,967 0,018
W -0,827 -0,901 -0,949 -0,892 0,061
4. ZÁVĚR V předloženém článku jsou uvedeny výsledky studia chemické a strukturní mikroheterogenity niklové slitiny IN 792–5A žíhané odstupňovanou dobu při teplotách 800, 900 a 1000°C. K dosažení těchto výsledků byla aplikována původní metoda měření dendritické mikroheterogenity prvků na vybrané slitiny na bázi niklu a byly stanoveny základní statistické parametry heterogenity prvků těchto slitin a také stanoveny rozdělovací koeficienty prvků mezi pevnou a kapalnou fázi příslušné slitiny.
6
METAL 2006 23.-25.5.2006, Hradec nad Moravicí ___________________________________________________________________________ K získání koncentračních souborů vybraných prvků (hliníku, titanu, chrómu, kobaltu, niklu, niobu, molybdenu, tantalu a wolframu) byla použita metoda energiově disperzní (ED) rentgenové spektrální mikroanalýzy a mikroanalytický komplex JEOL JXA-8600/KEVEX Delta V, Sesame. U každého z desíti vzorků se změřil jeden koncentrační soubor prvků podél úsečky orientované tak, aby u každého z analyzovaných vzorků protínala přibližně srovnatelný počet strukturně podobných dendritických buněk a jejich hranic. Na základě experimentálního měření a následného zpracování koncentračních dat bylo zjištěno, že niklová slitina IN 792–5A je má poměrně vysokou chemickou heterogenitu a tato heterogenita je ovlivňována jak teplotou, tak dobou žíhání. Ze vzájemného porovnání výsledků měření heterogenity niklové slitiny při teplotách 800, 900 a 1000°C lze usoudit na dosti složitý mechanismus redistribučních procesů všech analyzovaných prvků uplatňující se při dlouhodobých prodlevách na jednotlivých teplotách. Výsledky provedeného měření dendritické mikroheterogenity prvků tedy znovu potvrzují, že během dlouhodobé prodlevy na teplotě se na konečném formování chemické mikroheterogenity matrice podílejí jednak difúzní pochody, které vedou k homogenizaci slitiny, jednak pochody řízené vylučováním a růstem karbidických fází, které vedou ke zvýšení mikroheterogenity. Výsledná mikroheterogenita prvků ve slitině je pak určena složitou interakcí obou pochodů. Zpracováno díky finanční podpoře projektu GAČR, reg. č. 106/06/1210 a projektu MŠMT ČR, reg.č. MSM6198910013. LITERATURA [1] CHVORINOV, N. Krystalizace a nestejnorodost oceli. 1.vyd. Praha: NČSAV, 1954. [2] SUNG, P.K. - POIRIER, D.R. Met. and Mat. Trans. A, 30 A, 8, 1999, s. 2173. [3] REK,A., STRÁNSKÝ,K. Heterogenita niklové slitiny IN 792–5A, teplota žíhání (0, 800, 900, 1000)°C. Výzkumná zpráva 612-20-04, VTÚO Brno, listopad 2004 [4] DOBROVSKÁ,J. aj. In: Difúze a termodynamika materiálů '98, ÚFM AVČR aj., 1998, s.26 [5] DOBROVSKÁ,J. aj. In: Difúze a termodynamika materiálů '98, ÚFM AVČR aj., 1998, s.29. [6] DOBROVSKÁ, J. aj. Heterogenita superslitin na bázi niklu. Zpráva ke Smlouvě o dílo, Ostrava, listopad 2004 [7] DOBROVSKÁ, J. aj. Heterogenita superslitin na bázi niklu. Zpráva ke Smlouvě o dílo, Ostrava, listopad 2005
7