Matějka K. 2010: Landscape structure / development and vegetation in the example of the transect Vrchlabí – Bílé Labe springs. Opera Corcontica 47/2010 Suppl. 1: 107–122
Landscape structure / development and vegetation in the example of the transect Vrchlabí–Bílé Labe springs Struktura / vývoj krajiny a vegetace na příkladu transektu Vrchlabí– prameny Bílého Labe Karel Matějka IDS, Na Komořsku 2175/2a, 143 00 Praha,
[email protected]
Abstract The study deals with the basic parameters of the contemporary landscape and vegetation cover in a landscape transect – a strip of 2 km in width and 18 km in length between Horní Branná and upper parts near Sněžka top. The whole transect was schematically divided into 18 intervals (segments) of 1 km length. The length of ecotonal elements was measured: maximal density of forest edges (58 m.ha–1) and balks with woods (40 m.ha–1) was found in agricultural landscape near Vrchlabí. The contemporary landscape structure was analyzed on the basis of historical structure described in the old cadastral maps. Indication sketches of maps of stable cadastre from first half of 19th century were used. An example of Dolní Dvůr (Niederhof) former cadastre is presented. The result of landscape analysis is compared with grassland communities in the altitudinal gradient, which are suitable for another landscape classification into altitudinal zones. Abstrakt Tato studie pracuje se základními parametry současné krajiny a vegetačního krytu v krajinném transektu – pruhu 2 km širokém a 18 km dlouhém mezi Horní Brannou a vrcholovými partiemi poblíž Sněžky. Celý transekt byl schematicky členěn do 18 intervalů (segmentů) o délce 1 km. Měřena byla délka ekotonálních elementů: maximální hustota lesních okrajů (58 m.ha–1) a mezí porostlých dřevinami (40 m.ha–1) byla zjištěna v zemědělské krajině poblíž Vrchlabí. Současná krajinná struktura byla analyzována on základě historické struktury popsané ve starých katastrálních mapách. Byly užity indikační skicy map stabilního katastru z první poloviny 19. století. Presentován je příklad bývalého katastru Dolní Dvůr (Niederhof). Výsledky analýzy krajiny jsou srovnávány s lučními společenstvy ve výškovém gradientu, který je vhodný pro další klasifikace krajiny na výškové zóny. Keywords: Klíčová slova:
altitudinal gradient, ecotone length, grassland, historical maps, landscape structure výškový gradient, délka ekotonů, louky, historické mapy, krajinná struktura
Introduction Biodiversity can be monitored at various levels from landscape, through an ecosystem (example see in Matějka & Málková, 2010), to a population (e. g. Ivanek & Matějka, 2010). Each of these levels requires a different approach to the study, as has been applied in the project BiodivKrŠu (Management of
107
Matějka: Landscape and vegetation of the transect Vrchlabí–Bílé Labe springs
biodiversity in the Giant Mountains and Bohemian Forest; www.infodatasys.cz /biodivkrsu). The landscape is at the highest level of biodiversity. This diversity level is represented by the variability of ecosystems in a landscape segment. However, it also contains diversity of animal species which are not bounded to a particular ecosystem, but moving across the landscape, such as most birds and large mammals. In addition, variability of environmental conditions is of particular importance in the management of land within the landscape segment. The landscape diversity (Farina 2006) is often characterized by the length of main ecotones – line boundary elements between adjacent ecosystems (Hansen et al. 1988). Different types of management define the different types of land use. Changes in management are reflected as changes in the characteristics of individual communities and ecosystems (Garnier et al. 2007), or as a transition to completely different ecosystem types (e. g. forest to arable land, grassland to shrubs). Both economic processes and their representation and localization in the landscape substantially alter during historical development (Semotanová 2009). Long-term changes in the land use and associated changes in the nature have been studied (Bičík & Kupková 2007). Němec & Pojer (2007, pp. 134–145) give an introduction to such a study. Kind of changes in the landscape on the basis of statistical data has been analyzed in the Czech Republic with regard to recent developments (Matějka 2007). Enumeration of total area with distinct land-use category-to-category changes is typical “global” view into this problem. Monitoring of the various landscape elements in historical perspective is necessary to understand the actual landscape structure at the local level. The stable cadastre maps in scale 1: 2880 (Semotanová 2001; technical description Huml & Michal 2003) are one of the first available accurate data on land use. For the major area of Giant Mountains, these maps were completed in the 1840s. The so-called „culture“ is property which is recorded for each plot (estate element). The simple identification of boundaries between cultures forms accurate land-use maps. Various spatial data sets of high quality and homogeneity allow a higher level of multidisciplinary research. Study of land-use history on the base of superposition of historical maps and actual remotesensing data is known from literature (e. g. Petit & Lambin 2002; Raffaele et al. 2009). The indicative sketch maps of stable cadastre prove sufficient accuracy. Disparity in range about 1 to 2 m was common. Older Josephine survey maps, produced between 1763 and 1787 are usable only in small measure without sufficient details (e.g. localization of banks or borders arable land / grassland) in the picture (Podobnikar 2009). Variation of land-use categories in the small area of Bohemian Forest at several points within the 160-year period is an example of other interesting data (Lacina et al. 2007). The rough view of historical development of land-use in the whole Giant Mountains was given by Vacek et al. (2007). Historical changes in the landscape management are important for composition of plant communities. Such relations were observed for instance in grasslands (Gustavsson et al. 2007; Kaligarič et al. 2006). Long-term fertilization impact in subalpine grasslands is known from the Giant Mountains (Semelová et al. 2008). Future vegetation studies should include the results of not only floristic and environmental but also historical analyses (Karlík & Poschlod 2009). The aim of the study is concerned in description of the basic features of the landscape and the vegetation cover along the selected landscape transect. Long-term landscape changes were investigated on an example of old cadastral maps (rather indicative sketch map) in Dolní Dvůr cadastre lying in the central part of the transect. Historical land-use development can be compared with parallel data from Bohemian Forest (Matějka 2009a). Attention is devoted to the localization of the fastest changing elements in the landscape, which are ecotones and mosaic of communities with scattered woody species. Boundaries between forest and non-forest have been mapped. Ecotonal communities have been mostly neglected just for their „unusual“ character, even if they have a high significance for preserving biodiversity and conservation as well. It is not a typical biotope mapping, which was carried out in the mapping of NATURA 2000. Altitudinal gradient as the leading environmental feature along the transect was described using collected data of plant coenological relevés of grasslands in the studied region.
108
Opera Corcontica 47/2010 suppl. 1
Methods Transect location and basic description The transect with a total length approximately 18 km and width of 2 km (total area of 34.3 km2) connects the highest localities below the top of the Sněžka Mt. with the agricultural landscape in the vicinity of Vrchlabí, one of the major centers of the Giant Mountains (Fig. 1). This transect lies in an
Fig. 1 Position of the landscape transect. Division of the transect into segments (1–18; each segment of size 1 km × 2 km) is drawn. The basic biotope types are shown in color: white – non-forest biotopes, green – forest biotopes, pink – alpine and subalpine zone. Balks overgrown by woods are marked by red lines. Obr. 1. Umístění krajinného transektu. Naznačeno je členění transektu na segmenty (1 až 18, každý segment o velikosti 1 km × 2 km). Barevně jsou označeny základní typy biotopů: bílá – nelesní biotopy, zelená – lesní biotopy, růžová – alpinská a subalpinská zóna. Meze s porosty dřevin jsou vyznačeny červenými liniemi.
109
Matějka: Landscape and vegetation of the transect Vrchlabí–Bílé Labe springs
area where a lot of plots have been previously monitored on the base of plant coenological relevés. There are several historical deforested enclaves in surroundings of the mountain chalets (Hořejší Vrchlabí, Strážné, Luisino údolí, Hříběcí boudy, Husí boudy, Lahrovy boudy, Přední Rennerovky, Friesovy boudy, Zadní Rennerovky, Klínové boudy, Richterovy boudy). The whole transect is schematically divided into 18 segments – the transect parts of 1 km in length. GIS processing Several data sets were collected in the whole area: scanned military maps 1 : 50 000, digital area model 1 : 25 000, geological maps 1 : 50 000 (Czech Geological Survey), digital forest typological map (Forest Management Institute; the Czech typological system applied – Viewegh et al. 2003), orthophotos 2007 (Czech Office for Surveying, Mapping and Cadastre; pixel size 0.5 m). All geographic data sets were processed in the software TopoL (www.topol.cz). Mapping of the ecotonal elements (forest edges and balks) was done on the background of orthophotos using terrain records. Historical maps The indicative sketch maps of stable cadastre were borrowed from the collection of National Archive. All maps from all cadastral areas reaching the transect were scanned using professional scanner Microtek ScanMaker 9800XL (400 dpi). Scanned map sheets were localized and rotated into the S–JTSK projection system using own special software. All prepared rasters represent original data layer in the TopoL software. All borders of the estate categories (1.1 water area, 1.3 rocks, 2.1 forests, 2.2 broadleaved forests, 4.1 meadows, 4.2 pastures, 5.1 arable land, 6.1 barren soils, 7.1 gardens, 7.2 courtyards, 7.3 village square, 8.1 wooden buildings, 8.2 masonry buildings and 9.1 paths) in the cadastral area of the former municipality Dolní Dvůr were vectorized into new layer of the historical land-use map. Changes in the land-use structure in the selected area were described using superposition of historical vectorized map and actual orthophotomap. Plant coenological data Plant communities of grasslands and similar stands were sampled using standard procedure by the author and J. Málková (University of Hradec Králové). Actual relevés were collected in the DBreleve database (Matějka 2009b). Herb layers of the communities were classified using TWINSPAN procedure (Hill 1979). Diversity parameters (species richness S, Shannon-Wiener‘s index H‘ and equitability e) were calculated in the DBreleve software. CANOCO version 4.5 was employed (ter Braak & Šmilauer 2002) to calculate detrended correspondence analysis (DCA). Each plot was localized as a point in the separate GIS layer.
Results and discussion Actual structure of the landscape The transect represents very well the altitudinal gradient in the Eastern Giant Mountains (Fig. 2). The geomorphological division is possible in the form: segments 1–6 (455–725 m a.s.l.), ss. 7–9 (525– 875 m), ss. 10–13 (715–1335 m, steeply increasing), ss. 14–16 (1055–1555 m) and ss. 17–18 (1305– 1550 m). The altitudinal gradient is reflected by the climate gradient. The Quitt’s climate classification (Tolasz 2007) changes from moderately warm region MW4 (ss. 1–3) and transition zone MW4 / C7 (ss. 4–5), through cold region C7 (ss. 6–11), to C5 with islands of C4 (ss. 12–18). Geology is changing from Permian rocks (ss. 1–3), Carboniferous rocks (ss. 3–4), and Silurian rocks (ss. 4–7), to Proterozoic rocks: gneiss (ss. 6–11), schists and phyllites (ss. 8–13), schists with amphibolites etc. (ss. 14–17), and granite partially covered by peat (ss. 17–18).
110
Opera Corcontica 47/2010 suppl. 1
1800 1600 1400
Altitude (m)
1200 1000 800 600 400 200 0 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Segment
Fig. 2 Range and average of altitude in the 1km segments along the transect. Obr. 2. Rozsah a průměr nadmořské výšky v 1km segmentech podél transektu. 100.00
non-forest forest (sub)alpine zone
90.00
Area of biotope (%)
80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Segment
Fig. 3 Share of the basic biotope types in 1km-segments along the transect. Obr. 3. Zastoupení základních typů biotopů v 1km segmentech podél transektu.
111
Matějka: Landscape and vegetation of the transect Vrchlabí–Bílé Labe springs
Four basic landscape types were distinguished along the transect within zones (Fig. 3): • agricultural landscape (segments 1–6) with non-forest biotopes >70 % of the area, the moderately warm region MW4 prevails; • forested landscape (segments 7–13), forests cover 62–92 %, without presence subalpine biotopes, in cold region C7; • subalpine landscape (segments 13–15 [–16]) and • alpine landscape (segments 16–18). Length of ecotones with woods is a typical feature of the landscape (Fig. 4). Forest edge length varies in range 10–58 m.ha–1 (segments 1–6), 10–44 m.ha–1 (ss. 7–12) or between 7–29 m.ha–1 (ss. 13–16). Position of subalpine tree-line edge was probably man-modified. Length of the line elements overgrown by woody species in the agricultural landscape – balks was measured between 8–40 m.ha–1 (ss. 1–6) and 0.6–5.7 m.ha–1 (ss. 7–11). Balks length is lower comparing some other areas (e.g. the Bohemian Forest piedmont; Matějka 2009). Alpine timberline (Treml 2004) is decreased in lot of localities as a result of former pasturing. Such an example was observed in the Zadní Rennerovky enclave with altitudes below 1200 m a.s.l. 90.00
Forest edges Line elements Total
80.00
70.00
-1
Length (m ha )
60.00
50.00
40.00
30.00
20.00
10.00
0.00 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Segment
Fig. 4 Length of the ecotonal elements (forest edges and other line elements – balks overgrown by woods) in the landscape within 1km-segments along the transect. Obr. 4. Délka ekotonálních elementů (lesní okraje a jiné liniové elementy – meze porostlé dřevinami) v krajině v 1km segmentech podél transektu.
History of the land-use and its actual reflection The cadastral area Dolní Dvůr (Niederhof) was selected for a detail historical analysis. This area is situated in the central part of the transect (ss. 7–14). The structure of the historical landscape (Tab. 1 and Fig. 5) can be shortly described by representation of forest 73.5 %, pastures 11.3 %, meadows 8.5 % and arable land 4.8 %. Bare soil (without rocks) occupied 0.41 % – it is relatively high share. It was not only plots with unfavorable edaphic conditions, but abandoned areas and plots in surrounding of buildings too.
112
Opera Corcontica 47/2010 suppl. 1
Tab. 1 Relative representation of the historical land-use categories in the former cadastral area Dolní Dvůr (1842) and actual classification of the land-cover according to NATURA mapping. For respective historical map see Fig. 5.
Relativní zastoupení historických kategorií užití země v dřívějším katastrálním území Dolní Dvůr (1842) a současná klasifikace užití země podle mapování NATURA. Příslušná historická mapa viz Obr. 5. Actual biotope group according to NATURA mapping (ha) Category
Share ( %)
1.1 water area
0.56
Alpine sites
Forests
Grasslands
Rocks
Waterlogged sites
13.7
0.2
0
0.2
2261.8
4.8
2.1
1.6
0.1
0.5
Arable land
Ruderal sites
Settlements
Total
0
3.3
17.5
1.3 rocks
0.02
2.1 forests
73.54
2.2 broadleaved forests
0.05
4.1 meadows
8.47
43.1
51.5
119
0.3
7.9
0.1
4.2 pastures
11.3
73.1
242.9
26.1
0.1
2.4
0.1
5.1 arable land
4.79
0.4
45.8
87.2
0.1
0.3
1.2
6.1 barren soils
0.41
1.2
6.4
3.9
0
0.1
7.1 gardens
0
0
0
7.2 courtyards
0.01
0
0
7.3 village square
0.01
0
8.1 wooden buildings
0.14
8.2 masonry buildings
0.01
9.1 paths
0.69
0.4
12.1
4
0
0.4
0
0.6
3.9
21.5
Total
100
119.6
2636.9
245.9
2.6
15.3
1.5
28
58.3
3108
1.2
0.1
0 3.8
0.1
0
0.1
0.6
2.5
2285.5
0
1.7
11.6
29.8
263.2
2.5
3.8
351.1
3.3
10.7
149
0.4
0.6
12.6
0.1
0.1
0.3
0.4
0.2
0.2
9.2
0
0.4
0.6
0.1
0.4
2.9
4.4
0
0
0
0
0.2
0.2
Former estate division and their utilization reflect in actual features of the landscape (Fig. 6, 7, 8 and 9). Actual land cover was derived from the NATURA mapping (Tab. 1). Noticeable changes are visible in lower altitudes – they are linked with recent building of settlements. The actual enclaves with grasslands in the middle altitudes maintain former size and boundary in many cases. The most important shift was discovered in altitudes above 1100 m – surroundings of Přední Rennerovky and Zadní Rennerovky chalets (Fig. 8). A high portion of former pastures is actually overgrown by forests. Altitudinal gradient was reflected in the historical estate structure of selected farmland enclaves: Strážné enclave (650–835 m a.s.l.) contained arable land 27 %, meadows 57 % and pastures 11 %; Husí Boudy chalets (835–975 m a.s.l.; Fig. 7) had shares of arable land 10 %, meadows 66 %, pastures 17 % and very high portion of bare soils – 5.6 %; Lahrovy boudy chalets (995–1118 m a.s.l.; Fig. 8) showed arable land 2.3 % (!), meadows 84 % and pastures 11 %; the Rennerovky chalets complex (1122–1362 m a.s.l.)
113
Matějka: Landscape and vegetation of the transect Vrchlabí–Bílé Labe springs
contained meadows 18 % and pastures 82 % (Tab. 2). There are three altitudinal zones with specific value of the ratio area of arable (ploughed) land to area of total agricultural land (arable + meadows + pastures): 1. below 750 m a.s.l. – ratio is above approximately 20 %, this zone is typical submountain agricultural landscape; 2. from 750 to 1150 m a.s.l. – ratio decreases gradually from 15 % to zero; it is the typical zone of contemporary grassland enclaves; 3. above 1150 m a.s.l. – subalpine and alpine zone without ploughed land. Tab. 2 Non-forest enclaves in the history: the area share by the basic estate categories.
Nelesní enklávy v minulosti: zastoupení plochy základních kategorií pozemků. Altitude range (m)
Category ( %)
from
to
arable land
meadows
pastures
barren soils
wooden buildings
Strážné
650
835
26.95
57.18
11.44
3.19
1.24
Hříběcí boudy
745
850
12.79
71.7
14.23
0.74
0.53
Hanapetrova Paseka
772
895
53.68
34.86
6.78
3.92
0.77
Husí boudy
835
975
10.36
65.71
17.58
5.56
0.8
Lahrovy boudy
995
1118
2.31
84.49
11.32
1.21
0.68
Rennerovky etc.
1122
1362
0
17.76
81.51
0.62
0.11
Using superposition of historical maps and actual orthophotos (Fig. 6–9), two following conclusions are obvious: (A) Shape and position of non-forest enclaves are stabile in prevailing part of cases. Individual enclave parts were reforested as can be viewed in Husí boudy chalets (Fig. 7). (B) Forests in higher altitudes (example of segment 13, e.g. surroundings of Zadní Rennerovky chalets on Fig. 9) are completely of secondary origin. It is an area of the former pastures. Ploughed soil disappeared in all forest-free enclaves. Borders between former arable land and mowed or pastured estates can be identified in the actual landscape with difficulties. Grasslands in the transect Set of collected plant coenological relevés contains total 263 plots, from which 252 relevés were selected for further processing (only sampled after 1995, cover tree layer <15 %, cover of shrub layer <15 % and cover of herb layer ≥ 60 %). The TWINSPAN classification (Fig. 10) identifies basic groups of communities. The first top-group *0 contains subalpine and alpine acidophilous communities (alliances Loiseleurio procumbentis-Vaccinion and Nardo strictae-Caricion bigelowii prevails in the group *00; alliances Callamagrostion villosae, Nardion strictae and Genisto pilosae-Vaccinion are the most frequent in the group *01). The second top-group *1 represents typical meadows of MolinioArrhenatheretea class (Chytrý 2007). Sampled plots were clustered into partly overlaid groups according to altitude because of they had been localized in the grassland enclaves in the mainly forested landscape. Basic community classification groups show specific distribution according to altitude (Fig. 11). This distribution together with decreasing species diversity along altitudinal gradient (Fig. 12) form community pattern specific by several sharp altitudinal limits in the grassland distribution: • 890 m a.s.l. (segments 10/11): upper limit of classes *101 and *110 (mainly alliances
114
Opera Corcontica 47/2010 suppl. 1
Fig. 5 The former cadastral area Dolní Dvůr on the vector map of land-use at 1842. Position of the segments (1 km × 2 km in size) of the landscape transect is drawn. Relative land-use category representations are given in Tab. 1. Obr. 5. Dřívější katastrální území Dolní Dvůr na vektorizované mapě užití země v roce 1842. Vyznačena je pozice segmentů (1 km × 2 km) krajinného transektu. Zastoupení kategorií užití země je uvedeno v Tab. 1.
• •
Arrhenatherion and Calthion), lower limit of class *100 (Polygono-Trisetion); it is upper limit of the zone with arable land frequent occurrence in the history; 1200 m a.s.l. (segments 12/13): lower limit of class *010 – limit of subalpine zone; 1400 m a.s.l. (segments 15/16): upper limit of classes *100 and *011 (communities with Carex bigelowii), lower limit of class *001 – alpine zone. This limit coincides with elevation of alpine timberline (1360 m a.s.l.; Treml 2004).
115
Matějka: Landscape and vegetation of the transect Vrchlabí–Bílé Labe springs
Fig. 6 Hříběcí boudy chalets – superposition of the orthophoto (2007) and the historical land–use map (1842; colors according to legend in Fig. 5). Red line – actual border of forest biotope. Positions of recorded relevés are given by points. Obr. 6. Překryv ortofotomapy (2007) a mapy historického užití země v roce 1842 – Hříběcí boudy (legenda viz Obr. 5). Červená linie – současná hranice lesních biotopů. Pozice fytocenologických snímků je zobrazena body.
Fig. 7 Husí boudy chalets – superposition of the orthophoto (2007) and the historical land-use map (1842; colors according to legend in Fig. 5). Red line – actual border of forest biotope. Positions of recorded relevés are given by points. Obr. 7. Překryv ortofotomapy (2007) a mapy historického užití země v roce 1842 – Husí boudy (legenda viz Obr. 5). Červená linie – současná hranice lesních biotopů. Pozice fytocenologických snímků je zobrazena body.
116
Opera Corcontica 47/2010 suppl. 1
Fig. 8 Lahrovy boudy chalets – superposition of the orthophoto (2007) and the historical land-use map (1842; colors according to legend in Fig. 5). Red line – actual border of forest biotope. Positions of recorded relevés are given by points. Obr. 8. Překryv ortofotomapy (2007) a mapy historického užití země v roce 1842 – Lahrovy boudy (legenda viz Obr. 5). Červená linie – současná hranice lesních biotopů. Pozice fytocenologických snímků je zobrazena body. Fig. 9 Zadní Rennerovky chalets – superposition of the orthophoto (2007) and the historical land-use map (1842; colors according to legend in Fig. 5). Red line – actual border of forest biotope, partly corresponds to alpine timber limit. Positions of recorded relevés are given by points. Obr. 9. Překryv ortofotomapy (2007) a mapy historického užití země v roce 1842 – Zadní Rennerovky (legenda viz Obr. 5). Červená linie – současná hranice lesních biotopů. Pozice fytocenologických snímků je zobrazena body.
117
Matějka: Landscape and vegetation of the transect Vrchlabí–Bílé Labe springs
Fig. 10 The TWINSPAN classification of grassland communities in the transect: the relevé classification groups and their indicators with respective cut-levels (1 – cover up to 1 %, 2 – cover up to 10 %, 3 – cover up to 31.6 %, 4 – cover up to 56.2 %). Obr. 10. Klasifikace lučních společenstev v transektu procedurou TWINSPAN: klasifikační skupiny snímků a jejich indikátory s příslušným jejich zastoupením („cut-levels“: 1 – pokryvnost do 1 %, 2 – pokryvnost do 10 %, 3 – pokryvnost do 31.6 %, 4 – pokryvnost do 56.2 %).
Ordination analysis reveals altitude as the main environmental factor. Nevertheless cumulative percentage variance of species data was low (3.4, 6.5, 9.3 and 11.7 % for the space of first one axis to four axes), first DCA axis can be approximated by regression very well: DCA1 = 3.5237 – 0.0029 altitude (r = –0.80). Regardless of the altitudinal limits in the distribution of the communities, score of 1st DCA axis decrease linear-continuously without signs of abrupt changes. Further processing of collected data set can use precise information on land-use history (e.g. comparing plot origin in former arable land / meadow / pasture) as obvious from Figs. 6–9. In the example of the Hříběcí boudy enclave (Fig. 6), there are some differences between former meadows (7 relevés) and arable land (6 relevés). The species preferring former meadows are Briza media (the per-cent frequencies of this species in the stand of former meadows/arable land are 71/0), Gymnadenia conopsea (29/0), Hieracium laevigatum (29/0), Listera ovata (29/0), Vicia cracca (100/50), Euphrasia
118
Opera Corcontica 47/2010 suppl. 1
1600
Altitude (m)
1400
1200
1000
800
600
400
*000
*001
*010
*011
*100
*101
*110
Mean Mean±SE Min-Max
*111
Classification group Fig. 11 Distribution of the classified relevés according to altitude. Obr. 11. Rozšíření klasifikovaných snímků podle nadmořské výšky. 5.0 4.5 4.0 3.5
H
3.0 2.5 2.0 1.5 1.0 0.5 0.0 400
600
800
1000
1200
1400
1600
*000 *001 *010 *011 *100 *101 *110 *111
Altitude (m) Fig. 12 Species diversity in the altitudinal gradient. Obr. 12. Druhová diversita podél gradientu nadmořské výšky.
119
Matějka: Landscape and vegetation of the transect Vrchlabí–Bílé Labe springs
rostkoviana (57/17) and Prunella vulgaris (86/50). In the contrast, species more abundant in the stands on former arable land are Pimpinella saxifraga (0/33), Stellaria graminea (43/100), Trisetum flavescens (29/67), Phyteuma spicatum (29/67) and Rhinanthus minor (29/67). However actual management is substantial for the community species structure, historical land-use impact can be revealed. Similar results were obtained in forest ecosystems of the Bohemian Forest (Matějka 2009a, 2010). Longterm dynamics of alpine and subalpine communities was studied within the transect by Matějka & Málková (2010).
Conclusions Selected landscape transect represents complex altitudinal gradient very well. Landscape types are connected with environmental parameters (altitude, geology, geomorphology, climate etc.), actual land use, and vegetation types. Land use history is a very important fact determining composition of the vegetation. Wide (actual) forest areas in the Giant Mts were used as pastures and grasslands in history. Arable land had notable representation to elevation about 900–950 m a.s.l. The structure of plant communities is determined not only by environmental conditions. Both actual and historical management plays important part as drivers. Acknowledgments This study was supported by the Ministry of the Education of the Czech Republic, Project No. 2B06012 Biodiversity management in the Krkonoše Mts and Šumava Mts.
References Bičík I. & Kupková L. 2007: Chapter 11: Land use development in the Czech Republic and possibilities of generalization and modelling. In: Dostál P., Langhammer J. (eds.), Modelling natural environment and society. Geographical systems and risk processes. – Nakladatelství P3K & Charles University in Prague, pp. 179–203. Chytrý M. (ed) 2007: Vegetace České republiky. 1. Travinná a keříčková vegetace. Vegetation of the Czech Republic. 1. Grassland and heathland vegetation. Academia, Praha, 526 p. Farina A. 2006: Principles and methods in landscape ecology. Toward a science of landscape. Landscape Series, Vol. 3. – Springer, Dordrecht, 412 p. Garnier E., Lavorel S., Ansquer P., Castro H., Cruz P., Dolezal J., Eriksson O., Fortunel C., Freitas H., Golodets C., Grigulis K., Jouany C., Kazakou E., Kigel J., Kleyer M., Lehsten V., Lepš J., Meier T., Pakeman R., Papadimitriou M., Papanastasis V. P., Quested H., Quétier F., Robson M., Roumet C., Rusch G., Skarpe C., Sternberg M., Theau J., Thébault A., Vile D. & Zarovali M. P. 2007: Assessing the Effects of Land-use Change on Plant Traits, Communities and Ecosystem Functioning in Grasslands: A Standardized Methodology and Lessons from an Application to 11 European Sites. Annals of Botany 99: 967–985. Gustavsson E., Lennartsson T. & Emanuelsson M. 2007: Land use more than 200 years ago explains current grassland plant diversity in a Swedish agricultural landscape. Biological Conservation 138: 47–59. Hansen A. J., diCastri F. & Naiman R. J. 1988: Ecotones: what and why? In: diCastri F., Hansen A. J., Holland M. M. (eds), A new look at ecotones: emerging international projects on landscape boundaries. Biology International, Special Issue 17, pp. 9–46. Hill M. O. 1979: TWINSPAN a FORTRAN program for arranging multivariate data in an ordered two way table by classification of individuals and attributes. Cornell Univ. Ithaca, 48 p. Huml M. & Michal J. 2003: Mapování 10. ČVUT, Praha, 319 p. Ivanek O. & Matějka K. 2010: Genetic diversity and spatial structure of the selected young Norway spruce (Picea abies) population in the Giant Mts – URL: http://www.infodatasys.cz/biodivkrsu/ GePK2009_matejka_ivanek.pdf
120
Opera Corcontica 47/2010 suppl. 1
Kaligarič M., Culiberg M. & Kramberger B. 2006: Recent vegetation history of the North Adriatic grasslands: expansion and decay of an anthropogenic habitat. Folia Geobotanica 41: 241–258. Karlík P. & Poschlod P. 2009: History or abiotic filter: which is more important in determining the species composition of calcareous grasslands? Preslia 81: 321–240. Lacina D., Demek J., Mackovčin P. & Havlíček M. 2007: Land use changes in the town of Železná Ruda and its surroundings (Czech Republic) based on the analysis of historical maps from the period 1843–2005. Silva Gabreta 13: 269–283. Matějka K. 2007: Česká republika z hlediska užití země. – URL: http://www.infodatasys.cz/proj001/ uzitizeme.htm Matějka K. 2009a: Vývoj užití země jako zdroj diversity v krajině Šumavy. Příroda, Praha 28: 140–161. Matějka K. 2009b: Nápověda k programu DBreleve / DBreleve program help. – URL: http://www. infodatasys.cz/software/hlp_dbreleve/dbreleve.htm Matějka K. 2010: Management biodiversity v Krkonoších a na Šumavě – zpráva spoluřešitele za rok 2009. – URL: http://www.infodatasys.cz/biodivkrsu/IDSreport2009.pdf Matějka K. & Málková J. 2010: Long-term dynamics of plant communities in subalpine and alpine zone of the Eastern Krkonoše Mts. Opera Corcontica, 47 Suppl. 1: 123–138. Němec J. & Pojer F. (eds) 2007: Krajina v České republice. MŽP & Consult, Praha, 400 p. Petit C. C. & Lambin E. F. 2002: Impact of data integration technique on historical land-use/land-cover change: Comparing historical maps with remote sensing data in the Belgian Ardennes. Landscape Ecology 17: 117–132. Podobnikar T. 2009: Georeferencing and Quality Assessment of Josephine Survey Maps for the Mountainous Region in the Triglav National Park. Acta Geodaetica et Geophysica Hungarica 44: 49–66. Raffaele P., Leone A. & Boccia L. 2009: Land cover and land use change in the Italian central Apennines: A comparison of assessment methods. Applied Geography 29: 35–48. Semelová V., Hejcman M., Pavlů V., Vacek S. & Podrázský V. 2008: The Grass Garden in the Giant Mts. (Czech Republic): Residual effect of long-term fertilization after 62 years. Agriculture Ecosystems & Environment 123: 337–342. Semotanová E. 2001: Mapy Čech, Moravy a Slezska v zrcadle století. – Libri, Praha, 263 p. Semotanová E. 2009: Territorial development and the transformation of landscape. In: Pánek J., Tůma O. et al., A history of the Czech Lands. – Karolinum, Praha, pp. 23–51. ter Braak C. J. F. & Šmilauer P. 2002: CANOCO reference manual and CanoDraw for Windows user’s guide: Software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca (NY), 500 p. Tolasz R. (ed) 2007: Atlas podnebí Česka. Climate atlas of Czechia. Czech Hydrometeorological Institute, Praha & Olomouc, 255 p. Treml V. 2004: Recentní dynamika alpinské hranice lesa v Krkonoších. Opera Corcontica 41: 367–375. Vacek S., Mikeska M., Podrázský V. & Hejcman M. 2007: Vývoj krajiny v bilaterální Biosferické rezervaci Krkonoše/Karkonosze. Opera Corcontica 44: 497–507. Viewegh J., Kusbach A. & Mikeska M. 2003: Czech forest ecosystem classification. Journal of Forest Science 49: 85–93.
121