contoh soal metode simplex dengan minimum Perusahaan Maju Terus merencanakan untuk menginvestasikan uang paling banyak $ 1.200.000. uang ini akan ditanamkan pada 2 buah cabang usaha yaitu P dan Q. setiap unit P memerlukan uang sebesar $50 dan dapat memberikan rate of return per unitnya per tahun sebesar 10% sedangkan untuk setiap unit Q memerlukan uang sebesar $100, namun memberikan rate of return per unit per tahunnya sebesar 4%. Perusahaan tersebut telah mempertimbangkan bahwa target rate of return dari kedua usaha tersebut paling sedikit adalah $60.000 per tahunnya. Kemudian hasil analisis perusahaan memperoleh data bahwa setiap unit P dan Q mempunyai index risiko masing-masing 8 dan 3. Padahal perusahana ini tidak mau menanggung resiko yang terlalu besar. Kebijakan lainnya yang diinginkan oleh pemimpin khususnya untuk cabang usaha P ditargetkan paling sedikit jumlah investasinya adalah $3.0000. Bagaimana penyelesaian persoalan diatas apabila perusahaan bermaksud untuk tetap melakukan investasi tetapi dengan menekan atau meminimasi resiko sekecil mungkin. Berapa unit masingmasing usaha dapat diinvestasikan ?(metode grafis dan metode simpleks) JAWABAN 1. Metode Grafis Fungsi Tujuan : z = 8x + 3y Fungsi Pembatas : 50x + 100y ≤ 1.200.000 50x ≥ 3.000 5x + 4y ≥ 60.000 Grafisnya : 50x + 100y ≤ 1.200.000 50x + 100y = 1.200.000 Jika x = 0 maka y = 12.000, jadi koordinatnya (0,12.000) Jika y = 0 maka x = 24.000, jadi koordinatnya (24.000,0) 50x ≥ 3.000
50x = 3.000 x = 60 5x + 4y ≥ 60.000 5x + 4y = 60.000 Jika x = 0 maka y = 15.000, jadi koordinatnya (0,15.000) Jika y = 0 maka x = 12.000, jadi koordinatnya (12.000,0)
Jadi Solusi yang ditawarkan : x
y
12.00
Z = 8x + 3y 0
96.000
0
192.000
Keterangan
0 24.00 0 4.000 10.000
62.000 * Minimum
1. Metode Simpleks Fungsi Tujuan : z = 8x + 3y Fungsi Pembatas : 50x + 100y ≤ 1.200.000 50x ≥ 3.000 5x + 4y ≥ 60.000 Bentuk baku diperoleh
dengan menambahkan
variabel
slack pada
kendala pertama, mengurangkan variabel surplus pada kendala kedua. Sehingga diperoleh : Minimumkan : Z = 8x + 3y + 0S1 + 0S2 + 0S3 +MA1 + MA2 50x + 100y + S1 = 1.200.000 50x - S2 + A1 = 3.000 5x + 4y – S3 + A2 = 60.000
Table Simpleks Awal Basi
X1
X2
S1
S2
S3
A1
A2
NK
Rasio
s Z
55M-8
4M-3
0
-M
-M
0
0
63.000M
S1
50
100
1
0
0
0
0
1.200.000 1.200.000:50=24.0 00
A1
50
0
0
-1
0
1
0
3.000
3.000:50 = 60
A2
5
4
0
0
-1
0
1
60.000
60.000 : 5 = 12.000
Iterasi Pertama Basis
X1
X2
S1
S2
S3
A1
A2
NK
Rasio
Z
0
4M-3
0
0,1M-0,16
0
-1,1M+0,16
0
59.700M+480
S1
0
100
1
1
0
-1
0
1.197.000
X1
1
0
0
-0,02
0
0,02
0
60
A2
0
4
0
0,1
-1
-0,1
1
5700
11.970
1.425
Iterasi Kedua Basis
X1
X2
S1
S2
S3
A1
A2
NK
Z
0
0
0
-0,085
M-0,75
-M+0,085
-M+0,75
54.000M+4755
S1
0
0
1
-1,5
25
1,5
-25
1.054.500
X1
1
0
0
-0.02
0
0.02
0
60
X2
0
1
0
0,025
-0,25
-0,025
0,25
1425
Iterasi
kedua adalah optimal karena
koefisien
pada
persamaan
semuanya non positif, dengan X1= 60, X2 = 1425 dan Z = 54.000M+4755
Z
2. Persamaan matematis suatu program linier adalah sebagai berikut : Minimasi : Z = 6X1 + 7,5X2 Dengan pembatas : 7X1 + 3X2 ≥ 210 6X1 + 12X2 ≥ 180 4X2 ≥ 120 X1, X2 ≥ 0 Carilah harga X1 dan X2 ?
JAWABAN Pada kasus ini kita akan menggunakan metode simplex M (BIG – M), hal ini dikarenakan pada kasus ini pertidk samaan pembatasnya menggunakan ≥ (lebih dari sama dengan). Persamaan Tujuan : Z - 6x1 - 7,5X2 - 0S1 - 0S2 - 0S3 = 0 Baris 0 Persamaan Kendala : 7x1 + 3x2 - S1 +A1 = 210 Baris 1 6x1 + 12x2 - S2 +A2 = 180 Baris 2 4x2 - S3 + A3 = 120 Baris 3
Bagi kendala pertidaksamaan jenis ≤, maka variabel slack ditambahkan untuk menghabiskan sumber daya yang digunakan dalam kendala. Cara ini tidak dapat diterapkan pada kendala pertidaksamaan jenis ≥ dan kendala persamaan (=) persamaan diatas diperoleh karena tanda ≥ harus mengurangi variable surplus. Untuk mengarahkan artifisial variabel menjadi nol, suatu biaya yang besar ditempatkan pada A1, A2, dan A3 sehingga fungsi tujuannya menjadi : Z = 6x1 + 7,5X2 + 0S1 + 0S2 + 0S3 + MA1 + MA2 + MA3 Table simplex awal dibentuk dengan A1, A2, dan A3 sebagai variable basis, seperti table berikut : Bas
X1
X2
S1
S2
S3
A1
A2
A3
NK
RASIO
Z
13M-6
19M-7,5
-M
-M
-M
0
0
0
510M
A1
7
3
-1
0
0
1
0
0
210
A2
6
12
0
-1
0
0
1
0
180 180 : 12 = 15
A3
0
4
0
0
-1
0
0
1
120
is
210 : 3 = 70
120 : 4 = 30
Dari table diatas kita ketahui bahwa semua BFS belum optimal. Hal ini dikarenakan seluruh NBV masih mempunyai koefisien yang berharga positif. Oleh karena itu Untuk x2 terpilih sebagai entry variable karena x2 memiliki nilai
koefisien positif yang paling besar, dan A3 menjadi Leaving Variable. Dan yang akan menjadi pivot adalah baris 2 karena memiliki rasio paling kecil. Langkah-langkah ERO Iterasi Pertama : ERO 1 : Menjadikan nilai koefisien x2 berharga 1 pada baris 2 ½ x1 + x2 - 1/12 S2 +1/12 A2 = 15 ERO 2 : Menjadikan nilai koefisien x2 berharga 0 pada baris 0 Z = 9/4 x1 + 0S1 +
15
/24 S2 + 0S3 + MA1 + [ M -
15
/24]A2 + MA3 + 112,5
ERO 3 : Menjadikan nilai koefisien x2 berharga 0 pada baris 1 11
/2 x1 + ¼ S2 + A1 - 1/4 A2= 165
ERO 4 : Menjadikan nilai koefisien x2 berharga 0 pada baris 3 -2x1 + 1/3 S2 - S3 - 1/3 A2 + A3 = 60 Konversi bentuk standard iterasi Pertama : Z = 9/4 x1 + 0S1 +
15
/24 S2 + 0S3 + MA1 + [ M -
15
/24]A2 + MA3 + 112,5
11
/2 x1 + ¼ S2 + A1 - 1/4 A2 = 165
-2x1 + 1/3 S2 - S3 - 1/3 A2 + A3 = 60 ½ x1 + x2 - 1/12 S2 +1/12 A2 = 15 Tabel Iterasi Pertama Bas
is
X1
X2
S1
S2
S3
A1
A2
A3
NK
RASIO
Z
A1
-13/2M-6
11
/2
0
0
0
0
7
/12 -15/24
1
/4
-M
0
0
1
1
/24 - M
-1/4
0 225M – 112,5
0
165
*
165 : 5,5 =
30
A3
-2
0
0
1
/3
-1
0
-1
/3
1
60
*
X2
½
1
0
-1
/12
0
0
1
/12
0
15
15 : 0,5 = 30
Pada fungsi tujuan masih terdapat variable dengan nilai koefisien positif, oleh karena itu lakukan iterasi kedua. Langkah-langkah ERO Iterasi Kedua: ERO 1 : Menjadikan nilai koefisien x1 berharga 1 pada baris 1 x1 + 1/22 S2 + 2/11A1 - 1/22 A2 = 30 ERO 2 : Menjadikan nilai koefisien x1 berharga 0 pada baris 0 Z = 0S1 + 0,725 S2 + 0S3 + MA1 -0,4A1 + [ M – 0,725]A2 + MA3 + 180 ERO 3 : Menjadikan nilai koefisien x1 berharga 0 pada baris 2 0.5 A2 = 0 ERO 4 : Menjadikan nilai koefisien x1 berharga 0 pada baris 3 0,39 S2 - S3 +0,36A1 + 0,21 A2 + A3 = 120 Konversi bentuk standard iterasi kedua : Z = 0S1 + 0,725 S2 + 0S3 + [M -0,4]A1 + [ M – 0,725]A2 + MA3 + 180 x1 + 1/22 S2 + 2/11A1 - 1/22 A2 = 30
0.5 A2 = 0 0,39 S2 - S3 + 0,36A1 + 0,21 A2 + A3 = 120 Tabel Iterasi Kedua Bas
X1
X2
S1
S2
S3
Z
0
0
0
-0,725
0
x1
1
0
0
A3
0
0
X2
0
0
A1
A2
A3
NK
M
-180
is
1
-M+0,4 -1/2M+0,725
/11
-1/22
0
30
0
0
½
0
0
-1
0,36
0,21
1
120
/22
0
0
0
0
0,39
2
Iterasi kedua adalah optimum karena koefisien pada persamaan Z semuanya non positif, dengan x1 = 30, x2 = 120 dan z=-180. 3. PT Unilever bermaksud membuat 2 jenis sabun, yakni sabun bubuk dan sabun batang. Untuk itu dibutuhkan 2 macam zat kimia, yakni A dan B. jumlah zat kimia yang tersedia adalah A=200Kg dan B=360Kg. Untuk membuat 1Kg sabun bubuk diperlukan 2 Kg A dan 6 Kg B. untuk membuat 1 Kg sabun batang diperlukan 5 Kg A dan 3 Kg B. bila keuntungan yang akan diperoleh setiap membuat 1Kg sabun bubuk = $3 sedangkan setiap 1 Kg sabun batang = $2, berapa Kg jumah sabun bubuk dan sabun batang yang sebaiknya dibuat ?
JAWABAN Pemodelan matematika : Maksimumkan : Z = 3x1 + 2x2 Pembatas : 2x1 + 5x2 = 200 6x1 + 3x2 = 360 Persamaan Tujuan : Z - 3x1 - 2x2 = 0 Baris 0 Persamaan Kendala : 2x1 + 5x2 + A1 = 200 Baris 1 6x1 + 3x2 + A2 = 360 Baris 2 Untuk mengarahkan artifisial variabel menjadi nol, suatu biaya yang besar ditempatkan pada A1, A2, dan A3 sehingga fungsi tujuannya menjadi : Z = 3x1 - 2X2 + MA1 + MA2 Basis
x1
x2
A1
A2
NK
Rasio
Z
8M-3
8M+2
0
0
560M
A1
2
5
1
0
200
200:5=40
A2
6
3
0
1
360
360:3=120
Dari table diatas kita ketahui bahwa semua BFS belum optimal. Hal ini dikarenakan belum seluruhnya NBV mempunyai koefisien yang berharga positif. Oleh karena itu Untuk x2terpilih sebagai entry variable karena x2 memiliki nilai
koefisien negatif, dan A1 menjadi Leaving Variable. Dan yang akan menjadi pivot adalah baris 1 karena memiliki rasio paling kecil. Langkah-langkah ERO Iterasi Pertama : ERO 1 : Menjadikan nilai koefisien x2 berharga 1 pada baris 1 0,4x1 + x2 + 0,2A1 = 40 ERO 2 : Menjadikan nilai koefisien x2 berharga 0 pada baris 0 Z = 3,8x1 + [M-0,4]A1 + MA2 - 80 ERO 3 : Menjadikan nilai koefisien x2 berharga 0 pada baris 2 4,8x1 – 0,6A1 + A2 = 240 Konversi bentuk standard iterasi pertama : Z = 3,8x1 + [M-0,4]A1 + MA2 - 80 0,4x1 + x2 + 0,2A1 = 40 4,8x1 – 0,6A1 + A2 = 240 Basis
Iterasi
x1
x2
A1
A2
NK
Z
4,8M-3,8
0
0,4-0,4M 0
X2
0,4
1
0,2
0
40
A2
4,8
0
0,6
1
240
pertama adalah optimum karena
Rasio
240M+80
koefisien
pada
semuanya positif, dengan x1 = 40, x2 = 240 dan z=240M+80.
persamaan
Z