COMMENTS TO 5th IPCC AR
Rizaldi Boer Centre for Climate Risk and Opportunity Management in South East Asia and Pacific, Bogor Agriculture University
2750 2710 2660 2385 Year 2011
Global emission in 2011 =is 9.9 Gt C, if this continue within 30 years we will reach the ceiling: dead end
275 515
325 515
365
515
1870 Pre-industry
Based on IPCC (2013)
66% 50% 33%
Probability to exceed 2oC
Year 2050
Global Target (Allowable Cumulative total anthropogenic CO2 emission from 1870 (GtCO2) to avoid the increase of GHG 0C) temperature over 2 Gt C
Projection of Indonesian Emission under the BAU up to 2020 (based on SNC; MoE 2010) With 41% ERT (26%+15%) of by 2020, per capita emission
Projection
is expected to be 6.6
tCO2
To meet the global target, we expect to reduce our per capita emission by 2050 to
1.27 tCO2 AFOLU Non-AFOLU Total
3.55 2.26 5.81
7.61 3.09 10.70
6.14 5.01 11.15
Per Capita Emission (ton CO2
The need to decarbonized our development deeply
Development Path Target
Target
Target
ideal
Property Level
Target
Risk of Collapse Current Emission Per Capita
Adaptation and mitigation to reduce impact of Climate Change IMPACT
Without adaptation, impact of CC will be huge and threaten our sustainable development ~ economic lost WB & ADB (2010) equivalent to 7% GDP Effect of adaptation
Residual impact of CC: Depending on effort to mitigate cc and reducing vulnerability through adaptation
Impact CC
Impact of CC with Adaptation Impact NON-CC Need adaptation to reduce the impact
TIME
Economic Loss due to Climate Related Natural Hazards in ASEAN Countries Source: Analyzed based on Gupta, 2010
GHG emissions per capita
LCS scenario in Asia By 2050, under BAU Developed emission from Asia will contribute to about 50% of High Countries global emission
Energy Locked-in Type Development
Developing Countries
Leapfrog Development
Asia is standing at a crossroads. http://2050.nies.go.jp/index.html
With High Damage on Economy and Natural System
If Asian countries introduce innovative 2050 and “leapfrog”Time technologies in their development, they will be able to move down the pathway to low-carbon development (science based policy is important)
AIM/Enduse[Japan]
Countermeasures to implement technologies 3) Carbon pricing Mechanism that reduction effort is economically rewarding -Introduction of emission trading -Green tax, Environmental tax (international competitivenss should be consideres)
50,000
Marginal Abatement Costs (Yen/ktCO2)
40,000
30,000
1) Enhancement of Top Runner 20,000 Top energy efficiency in all sectors -Enhancement of regulation - Introduction of benchmark regulation 10,000
Sets of Measures A
-10,000
Negative abatement costs. Economically feasilbe
-20,000
-30,000
-40,000
0
Source: NIES
30,000
60,000
90,000
Sets of Measures B Marginal abatement costs are under certain level
Sets of Measures C High cost measures. Requires appropriate policy measures 4) Mechanism to enhance technology development and deployment Strategic support for -Enhanced RPS, Feed-in Tariff -Green New Deal - Enhanced standard of energy saving building
2) Visualization of countermeasure activities Information to encourage smart and rational choices - Labeling of GHG emissions - Mechanism to make the choices economically feasible (e.g. combination with carbon offset). 120,000 150,000 180,000 210,000 240,000 270,000 - Real time display of electric consumption GHG reduction(ktCO2eq)
Emission from FOLU in 2010
In 2005 AFOLU contributed 22% of global emission (IPCC). By 2050, without greater efforts to mitigate it, the contribution increase to 30% (FAO).
Climate Smart Agriculture (Modified from FAO, 2012) Komponen SUT Teknologi
Input SUT
Pemanfaatan Lahan SDA
Pasca Panen dan pemasaran Pemanfaatan informasi iklim
SUT Intensifikasi yang konvensional Konversi sumber energi untuk pengelolaan UT dari tenaga manusia ke tenaga hewan dan mesin pertanian dengan BBM Peningkatan penggunaan pupuk, pestisida dan herbisida (sangat tergantung pada BBM) dan umumnya kurang efisien. Perluasan lahan pertanian melalui deforestasi dan konversi dari alang/semak ke lahan pertanian Kualitas SDA (e.g. lahan, air, sumber genetic) yang digunakan dalam sistem produksi menurun/terdegradasi Kehilangan hasil pasca panen tinggi, jenis produk masih terbatas dan strategi pemasaran belum baik Belum memanfaatkan informasi (prakiraan) iklim secara optimal dalam mengelola risiko iklim dan mengembangan kegiatan UT
SUT yang ‘clim ate sm art ’ Penggunaan teknologi yang lebih efisien energi dan sumber energi berbasis non-BBM Penggunaan pupuk non-organik lebih efisien dan pupuk organik meningkat (optimalisasi pemanfaatan limbah organik), Lebih mengintensifkan lahan yang sudah digunakan dari pada memperluas ke wilayah baru Restorasi, konservasi dan penggunaan SDA yang lebih lestari Kehilangan hasil pasca panen rendah, jenis produk semakin beragam (JL), strategi pemasaran yang lebih baik Informasi (prakiraan) iklim digunakan secara efektif dalam mengelola risiko iklim dan dijadikan pertimbangan dalam pengembangan kegiatan UT
Science-Policy Network National Government
Others LowCARNet
IPCC Indonesia
Local/Regional Research Network
Local/Regional Research Network
Local/Regiona l Governments
Local/Regional Research Network
Local/Regiona l Government