Proteksi Radiasi
BAB I Jenis Radiasi dan Interaksinya dengan Materi Radiasi adalah pancaran energi yang berasal dari proses transformasi atom atau inti atom yang tidak stabil. Ketidak-stabilan atom dan inti atom mungkin memang sudah alamiah atau buatan manusia, oleh karena itu ada sumber radiasi alam dan sumber radiasi buatan. Sumber radiasi itu sendiri dapat dibedakan menjadi sumber yang berupa zat radioaktif dan sumber yang berupa mesin, seperti pesawat sinar-X, akselerator, maupun reaktor nuklir. Adapun jenis radiasi dapat dibedakan menjadi radiasi partikel bermuatan, radiasi partikel tak bermuatan, dan gelombang elektromagnetik atau foton. Ketiga jenis radiasi ini mempunyai karakteristik fisis dan cara interaksi dengan materi yang sangat berbeda.
A. Radiasi Partikel Bermuatan Radiasi ini merupakan pancaran energi dalam bentuk partikel yang bermuatan listrik. Beberapa jenisnya adalah radiasi alpha dan beta yang dipancarkan oleh zat radioaktif (inti atom yang tidak stabil), serta radiasi elektron dan proton yang dihasilkan oleh mesin berkas elektron ataupun akselerator. q
Alpha Partikel alpha terdiri dari dua buah proton dan dua buah neutron, identik dengan inti atom Helium, serta mempunyai muatan listrik positif sebesar 2 muatan elementer. Radiasi alpha dipancarkan oleh zat radioaktif, atau dari inti ataom yang tidak stabil. Jumlah proton dan jumlah neutron di dalam inti atom yang memancarkan radiasi alpha akan berkurang dua.
2
Pusat Pendidikan dan Pelatihan
Proteksi Radiasi
Gambar 1: proses peluruhan alpha q
Beta Terdapat dua jenis radiasi beta yaitu beta positif dan beta negatif. Beta negatif identik dengan elektron, baik massa maupun muatan listriknya sedangkan beta positif identik dengan positron (elektron yang bermuatan positif). Elektron mempunyai massa yang sangat ringan bila dibandingkan dengan partikel nukleonik lainnya (≈ 0) sedangkan muatannya sebesar satu muatan elementer.
Gambar 2: proses peluruhan beta Radiasi beta dipancarkan oleh zat radioaktif atau inti atom yang tidak stabil. Ketika memancarkan radiasi beta negatif, di dalam inti atomnya terjadi transformasi neutron menjadi proton, sebaliknya pada saat memancarkan beta positif terjadi transformasi proton menjadi neutron.
Pusat Pendidikan dan Pelatihan
3
Proteksi Radiasi
q
elektron Radiasi elektron mempunyai sifat yang sama dengan radiasi beta negatif, yang membedakan adalah asalnya. Partikel beta berasal dari inti atom sedangkan elektron berasal dari atom. Radiasi elektron dapat berasal dari zat radioaktif yang meluruh dengan cara “internal conversion” atau dari mesin berkas elektron (akselerator).
q
Proton Radiasi proton merupakan pancaran proton yang mempunyai massa 1 sma (satuan massa atom) dan mempunyai muatan positif sebesar satu muatan elementer. Radiasi proton dihasilkan dari akselerator proton.
B. Interaksi Radiasi Partikel Bermuatan Interaksi radiasi partikel bermuatan ketika mengenai materi adalah proses Coulomb, yaitu gaya tarik menarik atau tolak menolak antara radiasi partikel bermuatan dengan elektron orbital dari atom bahan. q
Ionisasi Proses ionisasi adalah peristiwa lepasnya elektron dari orbitnya karena ditarik atau ditolak oleh radiasi partikel bermuatan. Elektron yang lepas menjadi elektron bebas sedang sisa atomnya menjadi ion positif. Setelah melakukan ionisasi energi radiasi akan berkurang sebesar energi ionisasi elektron. Peristiwa ini akan berlangsung terus sampai energi radiasi partikel bermuatan habis terserap. Radiasi alpha yang mempunyai massa maupun muatan lebih besar mempunyai daya ionisasi yang lebih besar daripada radiasi yang lain.
4
Pusat Pendidikan dan Pelatihan
Proteksi Radiasi
Gambar 3: proses ionisasi q
Eksitasi Proses eksitasi adalah peristiwa “loncatnya” (tidak sampai lepas) elektron dari orbit yang dalam ke orbit yang lebih luar karena gaya tarik atau gaya tolak radiasi partikel bermuatan. Atom yang mengalami eksitasi ini disebut dalam keadaan tereksitasi (excited state) dan akan kembali kekeadaan dasar (ground state) dengan memancarkan radiasi sinar-X.
Gambar 4: peristiwa eksitasi q
Brehmsstrahlung Proses Brehmsstrahlung adalah peristiwa dibelokkannya atau bahkan dipantulkannya radiasi partikel bermuatan oleh inti atom dari bahan. Ketika radiasi tersebut dibelokkan atau dipantulkan maka akan timbul perubahan momentum sehingga terjadi pemancaran energi berbentuk gelombang elektromagnetik yang disebut sebagai Brehmsstrahlung.
Pusat Pendidikan dan Pelatihan
5
Proteksi Radiasi
Gambar 5: peristiwa brehmsstrahlung q
Reaksi Inti Dalam peristiwa ini, radiasi partikel bermuatan berhasil “masuk” dan ditangkap oleh inti atom bahan, sehingga inti atom bahan akan berubah, mungkin menjadi inti atom yang tidak stabil. Fenomena ini disebut sebagai proses aktivasi. Akan tetapi ada juga yang hanya sekedar bereaksi tanpa menghasilkan inti yang tidak stabil seperti reaksi partikel alpha bila mengenai bahan Berilium akan menghasilkan unsur Lithium dan radiasi neutron. α + Be
ð
Li + n
Berbeda dengan tiga peristiwa di atas, peristiwa reaksi inti ini tidak terjadi pada semua jenis materi.
C. Radiasi Partikel tak Bermuatan (Neutron) Radiasi ini merupakan pancaran energi dalam bentuk partikel neutron yang tidak bermuatan listrik dan mempunyai massa 1 sma (satuan massa atom). Radiasi ini lebih banyak dihasilkan bukan oleh inti atom yang tidak stabil (radioisotop) melainkan oleh proses reaksi inti seperti contoh sumber AmBe di atas ataupun reaksi fisi di reaktor nuklir.
6
Pusat Pendidikan dan Pelatihan
Proteksi Radiasi
Karena tidak bermuatan listrik, mekanisme interaksi radiasi neutron lebih dominan secara mekanik, yaitu peristiwa tumbukan baik secara elastik maupun tidak elastik. Sebagaimana radiasi partikel bermuatan, radiasi neutron juga mempunyai potensi melakukan reaksi inti. q
Tumbukan elastik Tumbukan elastik adalah tumbukan di mana total energi kinetik partikelpartikel sebelum dan sesudah tumbukan tidak berubah. Dalam tumbukan elastik antara neutron dan atom bahan penyerap, sebagian energi neutron diberikan ke inti atom yang ditumbuknya sehingga atom tersebut terpental sedangkan neutronnya dibelokkan/dihamburkan.
Gambar 6: peristiwa tumbukan elastik Tumbukan elastik terjadi bila atom yang ditumbuk neutron mempunyai massa yang sama, atau hampir sama dengan massa neutron (misalnya atom Hidrogen), sehingga fraksi energi neutron yang terserap oleh atom tersebut cukup besar. q
Tumbukan tidak Elastik Proses tumbukan tak elastik sebenarnya sama saja dengan tumbukan elastik, tetapi energi kinetik sebelum dan sesudah tumbukan berbeda. Ini terjadi bila massa atom yang ditumbuk neutron jauh lebih besar dari massa neutron. Setelah tumbukan, atom tersebut tidak terpental, hanya bergetar, sedang neutronnya terhamburkan.
Pusat Pendidikan dan Pelatihan
7
Proteksi Radiasi
Gambar 7: peristiwa tumbukan tidak elastik Dalam peristiwa ini, energi neutron yang diberikan ke atom yang ditumbuknya tidak terlalu besar sehingga setelah tumbukan, energi neutron
tidak
banyak
berkurang.
Oleh
karena
itu,
bahan
yang
mengandung atom-atom dengan nomor atom besar tidak efektif sebagai penahan radiasi neutron. q
Reaksi Inti Bila energi neutron sudah sangat rendah atau sering disebut sebagai neutron termal (En < 0,025 eV), maka kemungkinan neutron tersebut “ditangkap” oleh inti atom bahan penyerap akan dominan sehingga membentuk inti atom baru, yang biasanya merupakan inti atom yang tidak stabil. Peristiwa ini yang disebut sebagai proses aktivasi neutron, yaitu mengubah bahan yang stabil menjadi bahan radioaktif. Peristiwa aktivasi neutron ini juga dapat disebabkan oleh neutron cepat meskipun dengan probabilitas kejadian yang lebih rendah.
D. Radiasi Gelombang Elektromagnetik (Foton) Radiasi ini merupakan pancaran energi dalam bentuk gelombang elektromagnetik atau foton yang tidak bermassa maupun bermuatan listrik. Terdapat dua jenis radiasi yang berbentuk gelombang elektromagnetik yaitu sinar gamma dan sinar-X.
8
Pusat Pendidikan dan Pelatihan
Proteksi Radiasi
q
Gamma Radiasi gamma dipancarkan oleh inti atom yang dalam keadaan tereksitasi
(bedakan
dengan
atom
yang
tereksitasi).
Setelah
memancarkan radiasi gamma, inti atom tidak mengalami perubahan baik jumlah proton maupun jumlah neutron.
Gambar 8: proses peluruhan gamma q
Sinar-X Sebenarnya dikenal dua jenis sinar-X yaitu yang dihasilkan oleh atom dalam keadaan tereksitasi (sinar-X karakteristik) dan yang dihasilkan oleh proses interaksi radiasi partikel bermuatan (brehmsstrahlung).
Gambar 9: produksi sinar-X karakteristik Perbedaan kedua jenis sinar-X di atas, selain asal terjadinya, adalah bentuk spektrum energinya. Sinar-X karakteristik bersifat “discreet” pada energi
tertentu
sesuai
dengan
jenis
unsurnya,
sedangkan
brehmsstrahlung bersifat kontinyu. Pusat Pendidikan dan Pelatihan
9
Proteksi Radiasi
E. Interaksi Radiasi Gelombang Elektromagnetik Interaksi radiasi gelombang elektromagnetik ketika mengenai materi lebih menunjukkan sifat dualisme gelombang - partikel yaitu efek foto listrik, efek Compton, dan produksi pasangan. q
Efek Foto Listrik Dalam peristiwa efek foto listrik, foton yang mengenai materi akan diserap sepenuhnya dan salah satu elektron orbital akan dipancarkan dengan energi kinetik yang hampir sama dengan energi foton yang mengenainya.
Gambar 10: peristiwa efek foto listrik q
Efek Compton Peristiwa efek Compton sangat menyerupai efek foto listrik kecuali energi foton yang mengenai materi tidak diserap sepenuhnya sehingga masih ada sisa energi foton yang dipantulkan atau dibelokkan.
10
Pusat Pendidikan dan Pelatihan
Proteksi Radiasi
Gambar 11: peristiwa efek Compton q
Produksi Pasangan Peristiwa ini menunjukkan kesetaraan antara massa dengan energi sebagaimana diperkenalkan pertama kali oleh Einstein. Bila sebuah foton yang mengenai materi berhasil “masuk” sampai ke daerah medan inti (nuclear field) dan mempunyai energi lebih besar dari 1,022 MeV maka foton tersebut akan diserap habis dan akan dipancarkan pasangan elektron – positron. Positron adalah anti partikel dari elektron, yang mempunyai karakteristik sama dengan elektron tetapi bermuatan positif.
Gambar 12: peristiwa produksi pasangan
Pusat Pendidikan dan Pelatihan
11