APPENDIX
Brand Image Factor Analysis
Notes Output Created
14-Jul-2011 19:08:00
Comments Input
Active Dataset
DataSet0
Filter
<none>
Weight
<none>
Split File
<none>
N of Rows in Working Data
100
File Missing Value Handling
Definition of Missing
MISSING=EXCLUDE: User-defined missing values are treated as missing.
Cases Used
LISTWISE: Statistics are based on cases with no missing values for any variable used.
Syntax
FACTOR /VARIABLES BI28 BI29 /MISSING LISTWISE /ANALYSIS BI28 BI29 /PRINT INITIAL CORRELATION SIG DET KMO INV REPR AIC EXTRACTION /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /ROTATION NOROTATE /SAVE REG(ALL) /METHOD=CORRELATION.
xvii
Resources
Processor Time
00 00:00:00.156
Elapsed Time
00 00:00:00.218
Maximum Memory Required Variables Created
FAC1_4
1192 (1.164K) bytes Component score 1
[DataSet0]
Correlation Matrixa BI28 Correlation
Sig. (1-tailed)
BI29
BI28
1.000
.380
BI29
.380
1.000
BI28
.000
BI29
.000
a. Determinant = .856
Inverse of Correlation Matrix BI28
BI29
BI28
1.169
-.444
BI29
-.444
1.169
KMO and Bartlett's Test Kaiser-Meyer-Olkin Measure of Sampling Adequacy. Bartlett's Test of Sphericity
.500
Approx. Chi-Square
15.208
df
1
Sig.
.000
Anti-image Matrices BI28
BI29
xviii
Anti-image Covariance
Anti-image Correlation
BI28
.856
-.325
BI29
-.325
.856
BI28
a
.500
-.380
BI29
-.380
.500a
a. Measures of Sampling Adequacy(MSA)
Communalities Initial
Extraction
BI28
1.000
.690
BI29
1.000
.690
Extraction Method: Principal Component Analysis.
Total Variance Explained Initial Eigenvalues Component
Total
% of Variance
Extraction Sums of Squared Loadings
Cumulative %
1
1.380
69.002
69.002
2
.620
30.998
100.000
Extraction Method: Principal Component Analysis.
Component Matrixa Component 1 BI28
.831
BI29
.831
Extraction Method: Principal Component Analysis. a. 1 components extracted.
xix
Total 1.380
% of Variance 69.002
Cumulative % 69.002
Reproduced Correlations BI28 Reproduced Correlation
BI28 BI29
Residualb
BI29 a
.690
.690
BI28 BI29
.690 a
.690
-.310 -.310
Extraction Method: Principal Component Analysis. a. Reproduced communalities b. Residuals are computed between observed and reproduced correlations. There are 1 (100.0%) nonredundant residuals with absolute values greater than 0.05.
Karakteristik Produk Factor Analysis
Notes Output Created
14-Jul-2011 19:02:38
Comments Input
Active Dataset
DataSet0
Filter
<none>
Weight
<none>
Split File
<none>
N of Rows in Working Data
100
File Missing Value Handling
Definition of Missing
MISSING=EXCLUDE: User-defined missing values are treated as missing.
Cases Used
LISTWISE: Statistics are based on cases with no missing values for any variable used.
xx
Syntax
FACTOR /VARIABLES KP17 KP18 /MISSING LISTWISE /ANALYSIS KP17 KP18 /PRINT INITIAL CORRELATION SIG DET KMO INV REPR AIC EXTRACTION /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /ROTATION NOROTATE /SAVE REG(ALL) /METHOD=CORRELATION.
Resources
Processor Time
00 00:00:00.296
Elapsed Time
00 00:00:00.406
Maximum Memory Required Variables Created
FAC1_4
Component score 1
[DataSet0]
Correlation Matrixa KP17 Correlation
Sig. (1-tailed)
KP18
KP17
1.000
.263
KP18
.263
1.000
KP17
.004
KP18
.004
a. Determinant = .931
Inverse of Correlation Matrix KP17
KP18
KP17
1.074
-.282
KP18
-.282
1.074
1192 (1.164K) bytes
xxi
KMO and Bartlett's Test Kaiser-Meyer-Olkin Measure of Sampling Adequacy. Bartlett's Test of Sphericity
.500
Approx. Chi-Square
6.963
df
1
Sig.
.008
Anti-image Matrices KP17 Anti-image Covariance
Anti-image Correlation
KP18
KP17
.931
-.244
KP18
-.244
.931
KP17
a
.500
-.263
KP18
-.263
.500a
a. Measures of Sampling Adequacy(MSA)
Communalities Initial
Extraction
KP17
1.000
.631
KP18
1.000
.631
Extraction Method: Principal Component Analysis.
Total Variance Explained Initial Eigenvalues Component
Total
% of Variance
Extraction Sums of Squared Loadings
Cumulative %
1
1.263
63.127
63.127
2
.737
36.873
100.000
Extraction Method: Principal Component Analysis.
xxii
Total 1.263
% of Variance 63.127
Cumulative % 63.127
Component Matrixa Component 1 KP17
.795
KP18
.795
Extraction Method: Principal Component Analysis. a. 1 components extracted.
Reproduced Correlations KP17 Reproduced Correlation
KP17 KP18
Residualb
KP18 a
.631
.631
.631a
.631
KP17 KP18
-.369 -.369
Extraction Method: Principal Component Analysis. a. Reproduced communalities b. Residuals are computed between observed and reproduced correlations. There are 1 (100.0%) nonredundant residuals with absolute values greater than 0.05.
xxiii
Life Style Factor Analysis
Notes Output Created
14-Jul-2011 19:05:33
Comments Input
Active Dataset
DataSet0
Filter
<none>
Weight
<none>
Split File
<none>
N of Rows in Working Data
100
File Missing Value Handling
Definition of Missing
MISSING=EXCLUDE: User-defined missing values are treated as missing.
Cases Used
LISTWISE: Statistics are based on cases with no missing values for any variable used.
Syntax
FACTOR /VARIABLES LF22 LF23 LF25 /MISSING LISTWISE /ANALYSIS LF22 LF23 LF25 /PRINT INITIAL CORRELATION SIG DET KMO INV REPR AIC EXTRACTION /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /ROTATION NOROTATE /SAVE REG(ALL) /METHOD=CORRELATION.
Resources
Processor Time
00 00:00:00.405
Elapsed Time
00 00:00:00.484
Maximum Memory Required Variables Created
FAC1_3
2028 (1.980K) bytes Component score 1
xxiv
[DataSet0]
Correlation Matrixa LF22 Correlation
Sig. (1-tailed)
LF23
LF25
LF22
1.000
.539
.363
LF23
.539
1.000
.444
LF25
.363
.444
1.000
.000
.000
LF22 LF23
.000
LF25
.000
.000 .000
a. Determinant = .555
Inverse of Correlation Matrix LF22
LF23
LF25
LF22
1.448
-.682
-.223
LF23
-.682
1.566
-.447
LF25
-.223
-.447
1.279
KMO and Bartlett's Test Kaiser-Meyer-Olkin Measure of Sampling Adequacy. Bartlett's Test of Sphericity
.651
Approx. Chi-Square
57.265
df
3
Sig.
.000
Anti-image Matrices LF22 Anti-image Covariance
LF22
LF23
.691
xxv
-.301
LF25 -.120
Anti-image Correlation
LF23
-.301
.639
-.223
LF25
-.120
-.223
.782
LF22
a
-.453
-.164
LF23
-.453
a
.615
-.316
LF25
-.164
-.316
.721a
.646
a. Measures of Sampling Adequacy(MSA)
Communalities Initial
Extraction
LF22
1.000
.643
LF23
1.000
.712
LF25
1.000
.545
Extraction Method: Principal Component Analysis.
Total Variance Explained Initial Eigenvalues Component
Total
% of Variance
Extraction Sums of Squared Loadings
Cumulative %
1
1.901
63.355
63.355
2
.651
21.706
85.061
3
.448
14.939
100.000
Extraction Method: Principal Component Analysis.
Component Matrixa Component 1 LF22
.802
LF23
.844
LF25
.738
xxvi
Total 1.901
% of Variance 63.355
Cumulative % 63.355
Extraction Method: Principal Component Analysis. a. 1 components extracted.
Reproduced Correlations LF22 Reproduced Correlation
Residualb
LF23
LF25
a
.677
.592
LF23
.677
.712a
.623
LF25
.592
.623
.545a
-.138
-.230
LF22
.643
LF22 LF23
-.138
LF25
-.230
-.179 -.179
Extraction Method: Principal Component Analysis. a. Reproduced communalities b. Residuals are computed between observed and reproduced correlations. There are 3 (100.0%) nonredundant residuals with absolute values greater than 0.05.
xxvii
Price Factor Analysis
Notes Output Created
14-Jul-2011 18:58:21
Comments Input
Active Dataset
DataSet0
Filter
<none>
Weight
<none>
Split File
<none>
N of Rows in Working Data
100
File Missing Value Handling
Definition of Missing
MISSING=EXCLUDE: User-defined missing values are treated as missing.
Cases Used
LISTWISE: Statistics are based on cases with no missing values for any variable used.
Syntax
FACTOR /VARIABLES P11 P14 P15 /MISSING LISTWISE /ANALYSIS P11 P14 P15 /PRINT INITIAL CORRELATION SIG DET KMO INV REPR AIC EXTRACTION /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /ROTATION NOROTATE /SAVE REG(ALL) /METHOD=CORRELATION.
Resources
Processor Time
00 00:00:03.229
Elapsed Time
00 00:00:03.791
Maximum Memory Required Variables Created
FAC1_3
2028 (1.980K) bytes Component score 1
xxviii
[DataSet0]
Correlation Matrixa P11 Correlation
Sig. (1-tailed)
P14
P15
P11
1.000
.507
.532
P14
.507
1.000
.576
P15
.532
.576
1.000
.000
.000
P11 P14
.000
P15
.000
.000 .000
a. Determinant = .439
Inverse of Correlation Matrix P11
P14
P15
P11
1.523
-.457
-.547
P14
-.457
1.633
-.697
P15
-.547
-.697
1.692
KMO and Bartlett's Test Kaiser-Meyer-Olkin Measure of Sampling Adequacy. Bartlett's Test of Sphericity
.699
Approx. Chi-Square
79.986
df
3
Sig.
.000
Anti-image Matrices P11 Anti-image Covariance
P11
P14
.657
xxix
-.184
P15 -.212
Anti-image Correlation
P14
-.184
.612
-.252
P15
-.212
-.252
.591
P11
a
-.290
-.341
P14
-.290
a
.694
-.419
P15
-.341
-.419
.678a
.730
a. Measures of Sampling Adequacy(MSA)
Communalities Initial
Extraction
P11
1.000
.660
P14
1.000
.698
P15
1.000
.719
Extraction Method: Principal Component Analysis.
Total Variance Explained Initial Eigenvalues Component
Total
% of Variance
Extraction Sums of Squared Loadings
Cumulative %
1
2.077
69.234
69.234
2
.502
16.717
85.951
3
.421
14.049
100.000
Extraction Method: Principal Component Analysis.
Component Matrixa Component 1 P11
.812
P14
.836
P15
.848
xxx
Total 2.077
% of Variance 69.234
Cumulative % 69.234
Extraction Method: Principal Component Analysis. a. 1 components extracted.
Reproduced Correlations P11 Reproduced Correlation
Residualb
P14
P15
a
.679
.689
P14
.679
.698a
.709
P15
.689
.709
.719a
-.172
-.157
P11
.660
P11 P14
-.172
P15
-.157
-.133 -.133
Extraction Method: Principal Component Analysis. a. Reproduced communalities b. Residuals are computed between observed and reproduced correlations. There are 3 (100.0%) nonredundant residuals with absolute values greater than 0.05.
xxxi
Motivation Factor Analysis
Notes Output Created
14-Jul-2011 19:09:53
Comments Input
Active Dataset
DataSet0
Filter
<none>
Weight
<none>
Split File
<none>
N of Rows in Working Data
100
File Missing Value Handling
Definition of Missing
MISSING=EXCLUDE: User-defined missing values are treated as missing.
Cases Used
LISTWISE: Statistics are based on cases with no missing values for any variable used.
Syntax
FACTOR /VARIABLES M31 M32 M33 M34 /MISSING LISTWISE /ANALYSIS M31 M32 M33 M34 /PRINT INITIAL CORRELATION SIG DET KMO INV REPR AIC EXTRACTION /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /ROTATION NOROTATE /SAVE REG(ALL) /METHOD=CORRELATION.
Resources
Processor Time
00 00:00:00.280
Elapsed Time
00 00:00:00.390
Maximum Memory Required Variables Created
FAC1_2
3096 (3.023K) bytes Component score 1
xxxii
[DataSet0]
Correlation Matrixa M31 Correlation
Sig. (1-tailed)
M32
M33
M34
M31
1.000
.393
.435
.402
M32
.393
1.000
.421
.504
M33
.435
.421
1.000
.569
M34
.402
.504
.569
1.000
.000
.000
.000
.000
.000
M31 M32
.000
M33
.000
.000
M34
.000
.000
.000 .000
a. Determinant = .362
Inverse of Correlation Matrix M31
M32
M33
M34
M31
1.344
-.278
-.355
-.199
M32
-.278
1.448
-.203
-.502
M33
-.355
-.203
1.627
-.680
M34
-.199
-.502
-.680
1.720
KMO and Bartlett's Test Kaiser-Meyer-Olkin Measure of Sampling Adequacy. Bartlett's Test of Sphericity
Approx. Chi-Square df
.760 98.364 6
Sig.
.000
xxxiii
Anti-image Matrices M31 Anti-image Covariance
Anti-image Correlation
M32
M33
M34
M31
.744
-.143
-.162
-.086
M32
-.143
.691
-.086
-.202
M33
-.162
-.086
.615
-.243
M34
-.086
-.202
-.243
.581
M31
a
-.200
-.240
-.131
-.200
a
-.132
-.318
a
.815
M32
.787
M33
-.240
-.132
.742
-.407
M34
-.131
-.318
-.407
.723a
a. Measures of Sampling Adequacy(MSA)
Communalities Initial
Extraction
M31
1.000
.503
M32
1.000
.563
M33
1.000
.635
M34
1.000
.667
Extraction Method: Principal Component Analysis.
Total Variance Explained Initial Eigenvalues Component
Total
% of Variance
Extraction Sums of Squared Loadings
Cumulative %
1
2.367
59.185
59.185
2
.637
15.928
75.113
3
.585
14.633
89.746
4
.410
10.254
100.000
Extraction Method: Principal Component Analysis.
Component Matrixa
xxxiv
Total 2.367
% of Variance 59.185
Cumulative % 59.185
Component 1 M31
.709
M32
.750
M33
.797
M34
.817
Extraction Method: Principal Component Analysis. a. 1 components extracted.
Reproduced Correlations M31 Reproduced Correlation
M31 M32
Residualb
M32
M33
M34
a
.532
.565
.579
.532
.563a
.598
.613
a
.650
.503
M33
.565
.598
M34
.579
.613
.650
.667a
-.139
-.130
-.177
-.176
-.109
M31 M32
-.139
M33
-.130
-.176
M34
-.177
-.109
.635
-.082 -.082
Extraction Method: Principal Component Analysis. a. Reproduced communalities b. Residuals are computed between observed and reproduced correlations. There are 6 (100.0%) nonredundant residuals with absolute values greater than 0.05.
xxxv
xxxvi
xxxvii
xxxviii
KUESIONER MOTIVASI KONSUMEN DALAM MEMBELI PAKAIAN DI MANGO No
:
Nama
:
(optional, tidak harus diisi)
Telepon
:
(optional, tidak harus diisi)
KUESIONER Kuesioner ini digunakan untuk keperluan penelitian dalam rangka menyusun Tesis dengan judul “Pengaruh Persepsi Harga, Karakteristik Produk, Gaya Hidup, dan Citra Merk”. Untuk itu mohon kiranya saudara-I dapat membantu penulis dalam menjawab kuisioner ini dengan sejujur-jujurnya. Hal ini demi keobjektivitasan penelitian yang sedang penulis lakukan. Atas bantuan dan kesediaanya penulis ucapkan banyak terima kasih.
Petunjuk pengisian : Berilah jawaban pertanyaan berikut sesuai dengan pendapat anda, dengan cara memberikan tanda (√) pada kolom yang tersedia. 1. Bacalah terlebih dahulu dan jawablah semua pertanyaan dengan benar. 2. Berilah tanda (√) pada kolom jawaban anda.
xxxix
Apakah anda pernah menggunakan pakaian merk Mango (Jika Ya, isilah pertanyaan dibawah ini) Ya
Tidak
1. KARAKTERISTIK RESPONDEN a. Jenis Kelamin : Pria
Wanita
b. Usia anda saat ini : < 20 tahun
35- 50 tahun
21-35 tahun
>50 tahun
c. Pendidikan terakhir anda : SMA
S1
S2
d. Pekerjaan anda : Mahasiswa/ Pelajar
Ibu rumah tangga
Wirausaha
Pegawai negeri / swasta
Lainnya, Sebutkan : …………….
xl
e. Pengeluaran per bulan anda : < Rp. 2.000.0000
Rp. 5.000.000 –Rp. 10.000.000
Rp. 2.000.000 – Rp. 5.000.000
> Rp. 10.000.000
f. Frekuensi anda melakukan pembelanjan per bulan : 1 – 2 kali
3 – 5 kali
> 6 kali
g. Berikan tanda (√) pada merk pakaian yang Anda sering gunakan: Mango Top Shop
Zara
GAP
Giordano
Muji
Lainnya, Sebutkan ……………..
h. Bagaimana Anda pertama kali mengetahui produk Mango? (Pilih satu ): Teman
Website
Brosur
Banner
Lainnya, Sebutkan ……………..
xli
Koran / Majalah
2. KUESIONER Anda sebagai pelanggan “ MANGO” diharapkan menjawab pertanyaan dibawah ini sesuai dengan tingkat kesetujuan anda dan berilah tanda silang (X) pada kolom jawaban yang telah disediakan.
Keterangan : Kategori
No
Bobot Nilai
STS = Sangat Tidak Setuju
1
TS
= Tidak Setuju
2
S
= Setuju
3
SS
= Sangat Setuju
4
Harga (Price)
ST S
1
Harga pakaian ini sudah memuaskan bila dibandingkan dengan merk sejenis
2
Harga pakaian mahal
3
Harga sesuai dengan kualitasnya produknya
4
Harga sesuai dengan apa yg diharapkan
5
Harga sesuai dengan manfaat yang saya peroleh
xlii
TS
S
SS
No
Karakteristik Produk
STS
TS
S
SS
1
Dapat dipakai sehari‐hari
2
Bahan pakaiannya nyaman
3
Rapi pengemasannya
4
Desain menarik
5
Cara mencuci mudah
No
GAYA HIDUP
STS
TS
S
SS
1
Saya memakai pakaian ini untuk tampil fashionable
2
Untuk memenuhi kebutuhan sosial saya
3
Merubah Penampilan
4
Saya tertarik untuk memakai pakaian ini
5
Saya memakai pakaian ini agar tidak ketinggalan zaman
No 1
Citra Merek ( Brand image)
STS
Mango adalah pakaian yang dapat digunakan untuk
xliii
TS
S
SS
sehari‐hari 2
Mango adalah pakaian dengan harga yang mahal
3
Mango lebih baik dibandingkan pesaingnya
4
Mango menjual pakaian yang berkualitas
5
Mango sudah mempunyai reputasi
No 1
Motivasi untuk membeli / Minat Beli
STS
Saya tertarik menggunakan pakaian ini karena
TS
S
SS
kualitasnya 2
Saya berencana membeli pakaian ini di lain waktu
3
Saya berharap dapat menggunakan pakaian merk
MANGO selalu 4
Saya akan merekomendasikan merk pakaian ini kepada teman saya
5
Saya membutuhkan model pakaian bermerk MANGO
xliv
WAWANCARA
No
:
Nama
:
Pekerjaan
:
Mahasiwa/ Pelajar
Pegawai Negeri / swasta
Pertanyaan :
1. Apakah Anda ingin membeli produk MANGO dilihat dari harganya ? Jawab :
2. Apakah Anda melihat karakteristik produk pada saat membeli pakaian di MANGO? Jawab :
3. Apakah Anda membeli produk MANGO sebagai lifestyle ?
Jawab :
xlv
4. Apakah Anda ingin membeli produk MANGO dilihat dari citra merek pakaian itu sendiri? Jawab :
xlvi
Regression
Notes Output Created
14-Jul-2011 19:19:54
Comments Input
xliii
Data
D:\Thesis Ve2\Final\100 Rspd.sav
Active Dataset
DataSet0
Filter
<none>
Weight
<none>
Split File
<none>
N of Rows in Working Data File Missing Value Handling
Definition of Missing
100 User-defined missing values are treated as missing.
Cases Used
Statistics are based on cases with no missing values for any variable used.
Syntax
REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS CI(95) BCOV R ANOVA COLLIN TOL CHANGE ZPP /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT M /METHOD=ENTER P KP LF BI.
Resources
Processor Time
00 00:00:00.140
Elapsed Time
00 00:00:00.312
Memory Required
xliv
Additional Memory Required for Residual Plots
[DataSet0] D:\Thesis Ve2\Final\100 Rspd.sav
2788 bytes 0 bytes
Variables Entered/Removedb Variables Model
Variables Entered
1
Brand Image,
Removed
Method . Enter
Characteristic Product, Life Style, PRICE a. All requested variables entered. b. Dependent Variable: Motivation
xlv
Model Summary
Model 1
R
R Square a
.647
.419
Adjusted R
Std. Error of the
Square
Estimate .394
.77831650
a. Predictors: (Constant), Brand Image, Characteristic Product, Life Style, PRICE
Change Statistics R Square Change .419
F Change 17.107
df1
df2 4
Sig. F Change 95
.000
ANOVAb Model 1
Sum of Squares
df
Mean Square
F
Regression
41.451
4
10.363
Residual
57.549
95
.606
Total
99.000
99
Sig.
17.107
.000a
a. Predictors: (Constant), Brand Image, Characteristic Product, Life Style, PRICE b. Dependent Variable: Motivation
xlvi
Coefficientsa Standardized Unstandardized Coefficients Model 1
B (Constant)
Std. Error
3.618E-16
.078
PRICE
.131
.086
Characteristic Product
.100
Life Style Brand Image a. Dependent Variable: Motivation
Coefficients Beta
95.0% Confidence Interval for B t
Sig.
Lower Bound
Upper Bound
Correlations Zero-order
Partial
.000
1.000
-.155
.155
.131
1.529
.130
-.039
.300
.362
.155
.082
.100
1.222
.225
-.062
.261
.242
.124
.169
.083
.169
2.033
.045
.004
.335
.354
.204
.484
.086
.484
5.646
.000
.314
.655
.593
.501
Coefficient Correlationsa Charateristic Model 1
Brand Image Correlations
Covariances
Produc
Life Style
PRICE
Brand Image
1.000
-.056
-.203
-.299
Characteristic Product
-.056
1.000
-.159
-.152
Life Style
-.203
-.159
1.000
-.116
PRICE
-.299
-.152
-.116
1.000
Brand Image
.007
.000
-.001
-.002
Characteristic Product
.000
.007
-.001
-.001
Life Style
-.001
-.001
.007
-.001
PRICE
-.002
-.001
-.001
.007
xlvii
a. Dependent Variable: Motivation
Collinearity Diagnosticsa Variance Proportions Characteristic Model
Dimension
Eigenvalue
Condition Index
(Constant)
PRICE
Product
Life Style
Brand Image
1
1
1.733
1.000
.00
.14
.09
.12
.14
2
1.000
1.316
1.00
.00
.00
.00
.00
3
.864
1.416
.00
.07
.73
.01
.21
4
.776
1.494
.00
.25
.10
.77
.00
5
.627
1.662
.00
.53
.07
.09
.64
Collinearity Diagnosticsa Variance Proportions Characteristic Model
Dimension
Eigenvalue
1
1
1.733
1.000
.00
.14
.09
.12
.14
2
1.000
1.316
1.00
.00
.00
.00
.00
3
.864
1.416
.00
.07
.73
.01
.21
4
.776
1.494
.00
.25
.10
.77
.00
5
.627
1.662
.00
.53
.07
.09
.64
a. Dependent Variable: Motivation
Condition Index
(Constant)
PRICE
Product
Life Style
Brand Image
xlviii
BIOGRAPHY
Name
: Felicia Andrey Kalingga
Place and Date of Birth
: Jakarta and 5th May 1988
Last Education
: Bachelor Degree Majoring in English Literature
Occupation
: Staff Admin at PT. Tunas Baru Lampung