Az elemek eredete
A geokémia csoportosítása: - Nukleáris tulajdonságok alapján (stabil, radioaktív); - Illékonyságuk (kondezációs képesség) alapján gáz-szilárd rendszerben (Univerzum); - Affinitásuk alapján (megjelenésük a földi szférákban) (pl. sziderofil, biofil); - Kompatibilitásuk szerint (szilárd/olvadék (oldat) relációban); - Gyakoriságuk alapján (mennyi a kéregben, talajban, folyókban, magban);
A Föld kontinentális kérgében ma 90 elem (H U): - Tc és Pm kivételével az első 82 (Pb) elem stabil nuklid formában is, - 83 (Bi) ≤ Z ≥ 92 (U) csak radioaktív nuklid formában fordul elő (~30 további elem radioktív nuklidjai ismertek; Np-237 /Tl-205, Bi-209/, Po, Pu /244/; kisérleti úton legalább további 1000, különböző stabilitású radionuklidot állítottak/anak elő!) - elemi sokszínűség Fémek Alkálifémek Alkáliföldfémek Átmenetifémek Lantanoidák és aktinoidák Másodfajú fémek Félfémek Nemfémek Egyéb nemfémek Halogének Nemesgázok
A hét leggyakoribb elem a Földben
Relative atomic abundances of the seven most common elements that comprise 97% of the Earth's mass. An Introduction to Igneous and Metamorphic Petrology, by John Winter , Prentice Hall.
The 10 most abundant elements by mass in the earth's crust and in the human body. All are main-group elements except Fe and Ti.
/Kontinentális/
H, O, C, N mellett Ca, S, Na, K, Cl, Mg 0,X-0,0X at% Univerzum (csillagok): H>He>O - H a világegyetem leggyakoribb eleme (~90 at%), - He a csillagokban a H tizede, - O a He százada - H- és He-től >Z elemek a H és He magreakciójából jött létre?
Az elemek szintézise • Ősrobbanás (Big Bang) (kozmológiai nukleoszintézis) • Csillagok magja (sztelláris nukleoszintézis) • Szupernóva robbanás • Kozmikus sugárzás (spalláció) Burbidge, Burbidge, Fowler, Hoyle (1957) B2FH Alpher, Bethe, Gamow (1948)
Ősrobbanás Ősrobbanás (Big Bang): 15 milliárd éve Univerzum kialakulása (energia, tömeg); nagy sűrűségű (~1096 g/cm3), nyomású (komprimált) és hőmérsékletű ún. quarksoup hirtelen felrobbanása csökkenő sűrűsség és T: ~1032 K-ről ~1012 K-re Robbanást követő tágulásban (~3. percben): elemi részecskékből (kvark) a protonok (H), neutronok, majd magfúzió (T elegendően lecsökken: 109 K ) deutérium (1p+1n), trícium (1p+2n) és hélium magok (2p+1n) és (2p+2n) keletkezése; Az Univerzum egy forró, sebesen táguló tűzgolyó volt.
Big Bang Nucleosynthesis • •
•
•
• •
Universe starts at temperature (or energy) too hot for normal matter At about 1 second, the universe was a hot and dense mixture of free electrons, protons, neutrons, neutrinos and photons. The ratio of protons to neutrons is kept at unity as long as energy is high enough for matter to interact strongly with neutrinos. At about 2 seconds, neutrino mediation ends. Since free neutrons decay with half life of 900 seconds, the proton-to-neutron (p/n) ratio began to increase. After ~30 minutes, when p/n ~ 7, temperatures reached stability range of small nuclei and 4He (and a bit of 2D and 3He) nuclei consumed the free neutrons. This predicts a mass fraction 4He/(4He+H) ~ 25%, which is indeed observed…powerful evidence in favor of big bang hypothesis Since there is no stable mass 5 nucleus and synthesis of He occurred on cooling (not heating), no heavy nuclei are formed!
A kezdet… Anyag + antianyag Anyag kedvező állapotban Baryonok kvarkok, leptonok, elektronok, fotonok Hadronok protonok, neutronok Hidrogén, hélium (10:1 = H:He) (magok, néhány perc) + egyéb könnyű elemek magjai?
~700 000 év (3*103 K): az anyag és sugárzás elkülönülése elektron + H, He mag = ATOM és FÉNY anyag szerveződése (csillagok, galaxisok)
Az Ősrobbanás fő eseményei Univerzum átmérője 1025 m
1m 10-35 mp
kvarkok, leptonok proton, neutron
1 mp 180 mp 300 000 év
0,5 milliárd év
neutrínó “leválása” az anyagról
100 milliárd K
könnyű magok (H, He)
fény
kvazárok galaxisok, csillagok
50 K
Gravitáció okozta sűrűségkülönbség
nehéz elemek szupernóvákból
15 milliárd év
3K
Nukleáris fúzió • A tágulás miatt ~25% He formálódott (a legidősebb csillagok ezt a gyakoriságot mutatják nukleáris reakció T>109 K nincs). • Kezdetben csak H és He magok keletkeztek, azonban:
Be, Li, B szintézise az Ősrobbanásban? a korábbi reakciók mellett: 3He + 4He 7Be + γ; 7Be + e- 7Li + γ; p-ben ill. n-ben sűrűbb tartományok kialakulása esetén: p-dús térben: 7Li +p 24He, n-dús térben: 7Li +n 8Li (t1/2 = 0.84 s β- + 24He), de bomlás előtt: 8Li + 4He 11B + n, ami p-dús térben: 11B + p 34He egyéb n-gazdag részecskék is keletkezhettek: 7Li +3H 9Be + n 9Be +3H 11B + n
The predicted abundance of elements heavier than hydrogen, as a function of the density of baryons in the universe
Bizonyítékok Kozmológiai nukleoszintézis: H, D, T, 3He, 4He /7Li/ Deutérium: - csillagközi felhőben kimutatható állandó koncentrációban (0.001%), (sőt: 7Li/2H = 10-9) - csillagokban nem keletkezik, egyetlen forrása az Ősrobbanás Hélium: - előfordulása mindenhol ~25%-os Csillagok vöröseltolódása: - a távoli galaxisokról érkező fény annál inkább a vörös felé mozdul el, minél nagyobb a fényforrás távolsága (Hubble megfigyelése) a világegyetem tágul Kozmikus mikrohullámú háttérsugárzás (Penzias & Wilson, 1964): - H atommag - foton lecsatolódása (~3000 K) sugárzás formájában detektálható - a T lecsökkent (~3 K) hullámhossz megnőtt, tágulás (a kozmikus háttérsugárzás az ősrobbanás maradványa)
Nukleoszintézis a csillagokban Az Ősrobbanást követően (~500 milliomodik évben) az Univerzumban a többé-kevésbé homogén forró gázban az agyagsűrűség megnövekszik (gravitáció miatt) inhomogenitás protogalaxisok, majd kollapszussal csillagok keletkeznek. Sűrűség = 6 g/cm3, a gravitációs energia kinetikus (hő) energiává alakul át T = 10*106-20*106 K, ami túllépi a magfúzió aktiválási energiáját és megkezdődik a csillag magjában az ún. hidrogénégés, a H kiindulási ”üzemanyag”, amiből He keletkezik. Az elemek szintézise, illetve a tapasztalt mennyiségi eloszlása több lépcsőben írható le nukleáris reakciókkal, amelyek az ún. első generációs csillagok (kvazárok) különböző fejlődési stádiumában játszódn(t)ak le.
Stellar Nucleosynthesis I • • • •
Until stars form, there is nothing except H and He Gravitational instabilities develop which lead to formation of galaxies and collapse of molecular clouds to form stars At sufficient temperature and density (~107 K), nuclear fusion begins in star cores Due to Coulomb repulsion between positively charged nuclei, nonresonant nuclear reaction rates obey a law of the form: nuclear charges reaction rate
number densities
reduced mass
1 Z 2 Z 2 A3 1 2 r12 N1N2 exp z T
temperature
• So reaction is fastest between most abundant, least charged pairs of nuclei, and increase in T is needed to make slower reactions significant 20
Herzsprung-Russel-diagram (HRD)
He-égés
H-égés
A csillagok fejlődése a Herzsprung-Russel-diagramon a születési vonaltól a fősorozatig. A kis tömegű csillagok majdnem függőlegesen (állandó hőmérséklettel) fejlődnek (Hayasi-nyom), a nagy tömegű csillagok majdnem vízszintesen (állandó fényesség, Henyeynyom).
a csillagok 4 tartományban helyezkednek el
HERTZSPRUNG-RUSSELL DIAGRAM (HRD)
A csillagokat jellemző paraméterek nem függetlenek egymástól, közöttük különböző empirikus összefüggések léteznek. Kapcsolat van a sugár és az abszolút fényesség, a sugár és a tömeg, valamint a felszíni hőmérséklet és az abszolút fényesség között is. Ezek az összefüggések nem véletlenek, hanem az ún. Vogt-Russell tétel következményei, mint ahogyan ebből származtatható a csillagászat legfontosabb állapotdiagramja, a Hertzsprung-Russell diagram. Ejnar Hertzsprung 1905-ben vette észre, hogy ugyanahhoz a színképtípushoz különböző abszolút fényességű csillagok tartozhatnak, törpék is és óriáscsillagok is. 1913-ban Henry Norris Russell olyan grafikont rajzolt fel, amelynek vízszintes tengelyén az S p spektráltípust, függőleges tengelyén pedig az M V abszolút fényességet tüntette fel. Azonnal feltűnt, hogy a grafikonon a csillagok különböző ágak mentén, szabályosan helyezkednek el. Az ilyen típusú grafikonoknak a csillagászatban nagy jelentőségük van, s Hertzsprung-Russell diagramnak, vagy röviden HRD-nek hívjuk. A csillagok a HRD-n különböző ágak mentén helyezkednek el. A bal felső saroktól a jobb alsó felé húzódó ágat főágnak, a jobb felső sarokban található csoportosulást pedig óriáságnak nevezzük. A főágbeli csillagok az ún. fősorozati csillagok, míg az óriáság csillagai az ún. óriáscsillagok. A diagramon a bal alsó sarokban is vannak csillagok, ezek kb. 10m-val halványabbak, mint az ugyanolyan színképtípusú fősorozati csillagok, ezért sugaruk is jóval kisebb azoknál. Ezeket a csillagokat fehér törpéknek nevezzük.
H-égés (pp folyamat) - a csillagok főág csoportjában 0,422 MeV 5,493 MeV 12,859 MeV
T=107 K, ς=6 g/cm3 elegendő H-égéshez, ~10% H égés után a gravitációs vonzás összehúzódás a magban, T, ς nő, a csillag tágul
Ez a nukleáris energia az egyedüli forrás az első generációs csillagokban.
He-égés (hármas alfa fúzió), - a csillagok vörös óriások csoportjában a magban He koncentrálódik: 0,094 MeV T=2*108 K, ς=105g/cm3 He égés 7,281 MeV ha a ς és T nem növekszik 7,148 MeV pulzálás, tömegvesztés (H), 4,75 MeV zsugorodás fehér törpe csoport. 20Ne + 4He 24Mg + γ vagy további fúzióval illetve α9,31 MeV 24Mg + 4He 28Si + γ folyamattal (α-részecskék 9,98 MeV 28Si + 4He 32S + γ 6,95 MeV beépülésével) α-részecske alapú 32S + 4He 36Ar + γ magok, a T túl nagy Li, Be, B 36Ar + 4He 40Ca + γ nem stabil nem szintetizálódik, 40Ca + 4He 44Ti + γ de 12C > 16O >> 24Mg képződik, 44Ti + 4He 48Cr + γ miközben T=5*108 K, ς=106g/cm3, 48Cr + 4He 52Fe + γ gravitáció nő 52Fe + 4He 56Ni + γ (elektron befogással: 56Co, majd 56Fe) 56Ni + 4He + γ 60Zn (energia elfogy, a csillag magja összeomlik)
Stellar Nucleosynthesis II : Hydrogen Burning •
None of the two-particle reactions between the major species in juvenile H+He matter produce a stable product: – – –
•
+ 1H = 2He (unstable) = 1H + 1H 1H + 4He = 5Li (unstable) = 1H + 4He 4He + 4He = 8Be (unstable) = 4He + 4He
However, Hans Bethe (1939) showed how hydrogen burning can begin with the exothermic formation of deuterium: –
•
1H
1H
+ 1H = 2D + + + + 1.442 MeV
This reaction initiates the PPI chain: 2 (1H + 1H = 2D + + + 1H + 2D = 3He + 3He + 3He = 4He + 2 Net: 4 1H = 4He + 2 +
•
2D/1H
quickly approaches equilibrium value, but this is 1013 times smaller than the terrestrial value…terrestrial 2D is made elsewhere!
Stellar Nucleosynthesis III : Helium Burning, etc. •
•
• • • • •
If 1H becomes so depleted that 1H+1H collisions become too rare to drive PPI chain fast enough to maintain thermal pressure (after ~106 y in a red giant star), the core collapses, temperature rises, and at ~2 x 108 K, He burning becomes possible This requires particle velocities fast enough that the reaction rate 4He + 8Be = 12C + exceeds the decay rate of 8Be (half-life 2.6 x 10-16 s!), despite the large Coulomb repulsion: Z12Z22 = 1024 Likewise, when 4He runs out, another core collapse heats up the core enough to initiate C-burning This continues up through Si-burning This type of nuclear burning produces all the alpha-particle nuclides: 4He, 12C, 16O, 20Ne, 24Mg, 28Si, 32S Smaller quantities of 14N, 15N, 13C, Na, P also result Explains excesses of -particle nuclei up to 40Ca, if solar system contains matter expelled from red giants
Három, különböző fejlődési szakaszban lévő csillag szuperóriás
Égés a határfelületeken
szuperóriás Brownlow, 1996
T=600*106 K, ς=5*105g/cm3 (nagy tömegű szuperóriások) C-O-Ne-égés: 12C + 12C 20Ne + 4He + γ /4.62 MeV/ 12C + 12C 24Mg + γ /13.85 MeV/ 12C + 12C 23Na + 1H /2.23 MeV/ 12C + 16O 24Mg + 4He + γ 16O + 16O 28Si + 4He 16O + 16O 31P + 1He 16O + 16O 31S + n 220Ne 16O + 24Mg + γ /4.56 MeV/ +α-folyamat (α-részecske alapú magok): 12C, 16O 20Ne, 24Mg, 28Si (+Al) T=1000*106 K, ς=107g/cm3 (nagy tömegű szuperóriások) Si-égés (Z>Fe nincs fúzió) + α-folyamat: α-folyamat: nehezebb, α-részecske alapú magok: 32S, 36Ar, 40Ca, 44Ca, 48Ti, 52Cr, 56Fe (stabil) + Mg, Al, P és Cl is szintetizálódik, 28Si + γ <-> 24Ne + 4He 28Si + 4He <-> 32S + γ 32S + 4He <-> 36Ar + γ az e-folyamat (a csillag életének utolsó pillanatai, T~3000*106): számos magreakció Ti és Cu közötti nuklidok: 28Si + 28Si 56Ni + γ 56 Ni-ig (6,1 nap) 56 Co-ra (77,2 nap) stabil 56 Fe! 28 27 26
Stellar Nucleosynthesis VII : nuclear statistical equilibrium •
Approach to nuclear statistical equilibrium makes definite predictions about abundance of species in the Si-to-Fe range, and provides a natural mechanism for the high nuclear binding energy of the Fe group to be translated into the peak in the solar abundance pattern This particular model shows a prediction of abundance after 10 seconds of Si-burning at a temperature of 4.2 x 109 K • the lines connect isotopes of the same element • overall agreement is not bad
CNO ciklus nagy tömegű (második és későbbi generációs!) csillagokban (a főágban): nagy tömeg nagy gravitáció a magban nagyobb T nagyobb termelt energia (a pphez képest) 12C
katalizátor - He képződés + viszonylag kis energia képződik (de sok reakció történik)
ν
nemcsak ciklus I, de II és III is működik
White 2003/lect
Sztelláris nukleoszintézist összefoglalva: Mag kollapszus (égés miatt) T és ς növekedés égés (magfúzió) újabb könnyű elemek keletkezése az 56Fe-ig! 1
H 1H 2H e
2
H 2H 4He energy
4
He 4He8Be
8
Be 4He12C
Hidrogén égés
Hélium égés
12
C 4He16O
16
O 12C 28Si
Szén és oxigén égés
Si 28Si 56Fe
Szilicium égés
28
+ CNO-, alfa- és e-folyamat
A szuperóriás csillag magja az égés miatt összeomlik, ami főleg neutron termeléssel jár. Ez a neutron főleg a Fe atommagjához adva biztosítja a nehezebb elemek keletkezését (l. később).
A csillagok tömegüktöl függően kétféle fejlődési utat járhatnak be életük során.
ELTE, FFI, Csillagászti Tanszék
White, 2003
Faure, 1998
Nukleáris reakciók Csak a 5626Fe-ig tart… Hogyan keletkezett a többi elem? The picture can't be display ed.
Szupernóva robbanás: (már 1054-ben kínia csillagászok és 1604-ben Keppler is megfigyelte) hatalmas anyagmennyiség szétszóródása gravitáció hatására második és harmadik generációs csillag kondenzálódása (a kisebb tömegűekben a nehezebb nuklidok is megmaradnak)
után
előtt
WR 98a
WR 104
Szupernóva robbanás előtt álló objektum (szupernóva jelölt) a Földtől 8000 fényévre, a Nyilas csillagképben található WR 104 katalógusjelű kettős rendszer egyik tagja, egy úgynevezett Wolf-Rayet csillag.
Az Ötös-halmaz (Quintuplet) nevű csillagcsoportosulás, amelynek tagja a WR 104 és a WR 98a, amelyek a kettős rendszert alkotják (Forrás: NASA)
termális expanzió < - > gravitációs kollapszus
For massive stars disaster takes the form of a supernova explosion. The core collapses inward in just one second to become a neutron star or black hole. The material in the core is as dense as that within a nucleus. The core can be compressed no further. When even more material falls into this hard core, it rebounds like a train hitting a wall. A wave of intense pressure traveling faster than sound—a sonic boom—thunders across the extent of the star. When the shock wave reaches the surface, the star suddenly brightens and explodes. For a few weeks, the surface shines as brightly as a billion suns while the emitting surface expands at several thousand kilometers per second. The abrupt energy release is comparable to the total energy output of our Sun over its entire lifetime.
Szupernóva állapot folyamatok:
/e-folyamat (magreakciók)/ s-folyamat (a nukleoszintézissel együtt), r-folyamat (a csillagok magjában a szupernóva állapotban) p-folyamat (szupernóva állapotban)
White, 2003
Szupernóva állapot e-folyamat (egyensúlyi): nagy kötésenergiájú magok nagy T és ς mellett: Ti, V, Cr, Mn, Fe, Co, Ni 5626Fe s-folyamat (lassú n befogása, β vagy γ emisszióval): lassú n forrása (sztelláris nukleoszintézis): 13C + 4He 16O + n 22Ne + 4He 25Mg + n 17O + 4He 20Ne + n 63-209 közötti tömegszámú magok keletkezése (és 23-46 is): pl: 62Ni + n 63Ni + γ 63Ni 63Cu + β- /0.0659 MeV/ 63Cu + n 64Cu + γ 64Cu 64Zn + β- /0.575 MeV/ 64Cu 64Ni + β+ /1.678 MeV/ 69Zn + n 70Zn + γ ` továbbá: 89Y, 90Zr, 138Ba, 140Ce, 208Pb, 209Bi
s-folyamat: stabil magok
Faure, 1998
r-folyamat (gyors n befogása): gyors n forrása (csillag magjának kollapszusa előtt sokk hullám hatására T megnő atommagok szétesnek: fotodezintegráció és szupernóva robbanás, gyors folyamat): 56Fe + γ 134He + 4n 4He + γ 21H + 2n 63-209 közötti tömegszámú és a transzurán n-gazdag magok keletkezése: pl: 65Cu + 5n 70Cu + 5γ 70Cu 70Zn + β- /7.2 MeV/ továbbá: 94Zr, 96Zr, 170Er, 176Yb, 192Os, 204Hg
stabil magok
Faure, 1998
(Ni->Th, U, Np) (Ni->Pb) N = 82
(Pb)
(Sn)
(Ni)
White, 2003
p-folyamat (p befogás): p befogása szupernova állapotban, nagy energia, kis gyakoriságú, p-gazdag nuklidok, az elemek legkönnyebb izotópjai keletkeznek: pl: 72Ge + 21H 74Se 36 izotóp képződik így, valamennyi páros, legkönnyebb: 74Se, legnehezebb: 196Hg Továbbá:84Sr, 130Ba, 144Sm, 174Hf
stabil magok
Faure, 1998
x-folyamat (spalláció): C, N, O kölcsönhatása a kozmikus sugárzással, ami T, 3He, 6Li, 7Li, 9Be, 10B, 11B képződéséhez vezethet nagy energia, kis T a csillagok magjában a nagy T-n ezek a nuklidok nem stabilak, a láncreakció átugorja vagy a H-égési folyamatban eltűnnek /D, 3He hiányzik a csillagok színképéből Ősrobbanás/
Folyamatok:
Big Bang & H-burning He-burning O D
Ne Si Mg S 3He Ar Ca
H-burning
H-égés He-égés alfa (α) egyensúlyi (e) gyors neutron befogás (r) lassú neutron befogás (s) proton befogás (p) kozmikus sugárzás (x)
7Li 11B 6Li
10B
Be
(T~4*109oC)
7Li
Magképződési és -bomlási reakciók a csillagokban (SELBIN)
Papp Kümmel 1992
N B11 B10 Be
Atommagok stabilitása: legstabilabb magok, ahol a legnagyobb a kötési energia/mag (MeV), 56Fe, 4He <--> 1H, 3He, 6Li, 10B H-burning is by far the most effective means of converting mass into energy!
1H
White, 2003
-56
Albarede, 2006
Ahogy nő a nukleonok száma elérjük a vas környékén a kötési energia maximumát. A nagyobb tömegű magok kevésbé stabilak. (Energia nyerhető a kis magok fúziójából és a nagy magok hasadásából. Jellemző az alfa-bomlás a nehéz magok esetén.)
Plot of Z vs. N for nuclides up to tin (Z=50) showing the "stable" valley of the nuclides. The Z : N ratio is 1 for the light nuclides and increases towards 1.5 for the heavier nuclides. Increases or decreases in N for given element produces increasingly unstable isotopes (decreasing T½).
Magtáblázat Több, mint 2300 ismert nuklid, ebből 288 a primordiális nuklid: 35 (29+6) a radioactive primodiális nuklid 253 (90+163) stabil nuklid (29: t1/2>109; 6: t1/2>80*106) (90: Ep.st.; 163: Eunst, nincs bomlás) A Tc (Z=43), Pm (Z=61) és a Bi-nál (Z=83) nehezebb elemek mind radioaktívak
Magok stabilitásért a neutronok felelnek Mágikus proton- és neutronszámokkal rendelkező magok különösen stabilak - proton: 2, 8, 20, 28, 50, 82 - neutron: 2, 8, 20, 28, 50, 82, 126 - radioaktív mag alfa-bomlással (2p+2n) különösen stabil - számos radioaktív bomlás végtermék magja mágikus p és n szamú
Az elemek relatív gyakorisága a Naprendszerben
- Páros rendszámú elemek gyakoribbak, mint a páratlanok; - A könnyű elemek közül gyakoribbak azok, amelyeknek tömegszáma (A) néggyel osztható (pl. 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca)
Az elemek relatív gyakorisága a Naprendszerben
C O Ne Mg Si N
Naprendszer S Ar Ca
Na Al
Ni Cr
P
Cl K
Ti Mn Zn Co V
Cu Ge Se
Sr Zr
Ga As
Mo Rb Y
Sn Pd Cd
Te Xe Ba
Nb Tc
Ag Sb In
Ce Nd I
La
Sm Eu Pm
Os Yb Hf Lu
Pt
Hg
W
Ta
Ir Au Tl Re
Faure, 1998
X-folyamat
Ha 7Li kivételével Li, Be és B nem képződik az Ősrobbanás során, akkor kozmikus sugár és a csillagközi gáz/por kölcsönhatásával keletkezhetnek: a 1H és 4He valamint a C, N, O magok reakciója során. E reakciók nagyobb energiánál fordulnak elő, mint az Ősrobbanas, de a T kicsi (Li, Be és B túléli). Li, Be és B relatív mennyisége sokkal nagyobb a kozmikus sugárzásban, mint a Naprendszerben.
Elemek relatív mennyisége a Naprendszerben és a kozmikus sugárzásban
White 1998
X-folyamat
Abundances of elements in galactic cosmic rays (GCR) and the solar system (SS) [Lodders, 2003] (adapted from George et al. [2009] and Rauch et al. [2009]). Israel, 2012 Reproduced by permission of the American Astronomical Society.
Elemek gyakorisága az Naprendszerben és az Univerzumban Megfigyelések az elemek gyakoriságával kapcsolatban - A H és He messze a leggyakoribb elem, H:He ~ 9:1 (atm%) - Az első 50 elem mennyisége exponenciálisan csökken, - Az 50-nél nagyobb rendszámú elemek mennyisége kicsi, nem változik nagymértékben a rendszámmal, - A páros rendszámú elemek sokkal gyakoribbak, mint a páratlanok (Oddo-Harkins-szabály), - A Li, Be és B mennyisége rendellenesen kicsi (megsemmisül), - A Fe és Pb mennyisége rendellenesen nagy, - A Tc és Pm nem fordul elő természetben a Naprendszerben, - A 83-nál nagyobb rendszámú (Bi) elemnek nincs stabil izotópja; ilyen elemek csak azért fordulnak elő a természetben, mert az U és Th hosszú életű izotópjainak bomlástermékei