Seminar Nasional Teknologi Informasi dan Komunikasi 2016 (SENTIKA 2016) Yogyakarta, 18-19 Maret 2016
ISSN: 2089-9815
SISTEM REKOMENDASI PRODUK SEPATU DENGAN MENGGUNAKAN METODE COLLABORATIVE FILTERING Arif Kurniawan Program Studi Informatika, Fakultas MIPA, Universitas Jenderal Achmad Yani Jl. Terusan Jendral Sudirman, Cimahi, Jawa Barat 40285 Telp. (022) 6652069 E-mail:
[email protected] ABSTRACT Shoes Platinum is a store that is engaged in the sale of shoes. A large number of products offered, making some customers difficulty in determining the choice about what products customers select and match their tastes. This is what makes the need for a recommendation system that can provide personalized product recommendations to facilitate customers in choosing products to be purchased. This study uses the Item-Based Collaborative Filtering, which the system will look for similarities purchase models (similarity item) to another. Furthermore, the system will look for ratings between items based on the degree of similarity there. After the inter-item rating obtained, then the rating will be used calculated value of the similarity between items by using Adjusted Cosine Similarity approach. Results of similarity between items of calculation will be used for the next stage. This stage predict the value rating that has never been done by the customer to a particular item. This approach uses the Sum formula Weighted the prediction value will be recommended to customers. Keywords: Item-Based Collaborative Filtering, Adjusted Cosine Similarity, Weighted Sum. ABSTRAK Platinum Shoes merupakan sebuah toko yang bergerak dibidang penjualan sepatu. Banyaknya jumlah produk yang ditawarkan, membuat beberapa pelanggan kesulitan dalam menentukan pilihan mengenai produk apa yang pelanggan pilih dan cocok dengan selera pelanggan. Hal ini yang menjadikan perlunya sebuah sistem rekomendasi yang mampu memberikan rekomendasi produk yang sesuai selera pelanggan untuk memudahkan dalam memilih produk yang akan dibeli. Penelitian ini menggunakan metode ItemBased Collaborative Filtering, dimana sistem akan mencari kesamaan model pembelian (similarity item) dengan yang lainnya. Selanjutnya, sistem akan mencari rating antara item-item berdasarkan tingkat kemiripan yang ada. Setelah rating antar item didapat, maka rating ini akan digunakan dihitung nilai kemiripan antara item dengan menggunakan pendekatan Adjusted Cosine Similarity. Hasil dari dari perhitungan kemiripan antar item akan digunakan untuk tahap selanjutnya. Tahapan ini memprediksi nilai rating yang belum pernah dilakukan oleh pelanggan terhadap item tertentu. Pendekatan ini menggunakan rumus Weigted Sum yang nilai prediksinya akan dijadikan rekomendasi kepada pelanggan. Kata Kunci: Item-Based Collaborative Filtering, Adjusted Cosine Similarity, Weighted Sum. Sistem rekomendasi adalah suatu sistem yang menyarankan informasi yang berguna atau menduga apa yang akan dilakukan pelanggan untuk mencapai tujuannya, misalnya seperti memilih produk tertentu. Sehingga pelanggan memilih produk dapat lebih efektif dalam menentukan produk yang diinginkannya. Terdapat beberapa metode dua diantaranya adalah user-based dan item-based. Metode yang digunakan dalam penelitina ini adalah itembased collaborative filtering. Metode ini menggunakan rekomendasi kepada user dihitung dengan menentukan item yang mirip dengan item lain yang disukai oleh pelanggan tersebut. Pada metode ini hubungan atara item-item lebih statis, sehingga membutuhkan perhitungan yang lebih sedikit tetapi mempunyai kualitas yang sama dibandingkan dengan metode user-based.
1.
PENDAHULUAN Platinum Shoes merupakan toko yang bergerak dibidang penjualan bebagai produk sepatu. Toko Platinum Shoes mulai berdiri pada tahun 2013 akhir dan beralamat dijalan Warung Cendol - Karangpawitan No. 35 Garut. Biasanya ketika pelanggan berkunjung akan dihadapkan pada beberapa produk pilihan produk yang ada. Sebelum berkunjung ke tempat tersebut terlebih dahulu pelanggan mempunyai pilihan terhadap suatu produk yang dicarinya. Tetapi ada juga pelanggan yang berkunjung tanpa ada tujuan produk yang dicarinya. Bagi pelanggan yang belum ada pilihan kemungkinan merasa kesulitan dengan adanya beberapa produk produk yang ada. Untuk itu diperlukan suatu rekomendasi yang dapat menangani masalah tersebut.
610
Seminar Nasional Teknologi Informasi dan Komunikasi 2016 (SENTIKA 2016) Yogyakarta, 18-19 Maret 2016
Dalam penelitian yang menggunakan collaborative filtering untuk metode untuk menghasilkan sebuah sistem yang dapat merekomendasikan produk kepada pelanggan. Hasil dari penelitian tersebut adalah dapat menyediakan rekomendasi daftar produk cake sehingga pelanggan dapat memilih dan mengambil keputusan untuk memilih cake yang sesuai dengan profil dirinya. menggunakan pengujian algoritma pearson correlation dengan pendekatan conten-based collaborative filtering . Dengan demikian sistem rekomendasi yang akan dibangun menggunakan pendekatan item-based collaborative filtering dan pengujian algoritma adjusted cosine similarity. Dengan adanya sitem rekomendasi, perusahaan berupaya untuk memberikan informasi produk lebih mudah kepada pelanggan untuk memilih produk yang sedang dicari maupun yang direkomendasikan oleh sistem.
ISSN: 2089-9815
memperoleh nilai kegunaan produk. Produk yang memiliki nilai kegunaan tertinggilah yang kemudian dijadikan rekomendasi (Purwanto, 2009). Metode ini muncul sebagai solusi untuk beberapa permasalahan pada user based collaborative filtering yaitu pada masalah keterbatasan (sparsity) dan skalabilitas serta masalah waktu dan memori. Pada metode item based collaborative fitering melakukan similaritas dengan membentuk suatu model similairtas secara offline yang secara otomatis akan menghemat waktu dan memori yang digunakan untuk perhitungan pada saat pengguna mengakses halaman situs. 3.
METODE PENELITIAN Di bawah ini merupakan diagram pemrosesan sistem rekomendasi menggunakan item based collaborative filtering : nilai rating
Input
2. LANDASAN TEORI 2.1 Konsep Dasar Collaborative Filtering Collaborative filtering merupakan proses penyaringan atau menggunakan opini orang lain (Schafer dkk, 2007). Collaborative filtering melakukan penyaringan data berdasarkan kemiripan karakteristik konsumen sehingga mampu memberikan informasi yang baru kepada konsumen karena system memberikan informasi berdasarkan pola satu kelompok konsumen yang hamper sama. Perbedaan minat pada beberapa anggota kelompok menjadikan sumber informasi baru yang mungkin bermanfaat bagi anggota kelompok lainnya.
Matriks iterm rating
Perhitungan Nilai Similarity
Similarity Item-rating ๐ข๐๐ ๐
๐ข, ๐ โ ๐
๐ข ๐ข๐๐(๐
๐ข, ๐ โ ๐
๐ข)2
๐
๐ข, ๐ โ ๐
๐ข ๐ข๐๐(๐
๐ข, ๐ โ ๐
๐ข)2
Perhitungan Prediksi Rating
Prediksi item yang belum pernah di rating
๐๐๐ผ ๐
๐ข, ๐ โ ๐๐, ๐ ๐๐๐ผ |๐๐. ๐|
Hasil Prediksi
2.2 Algoritma Collaborative Filtering Schafer membagi algoritma collaborative filtering ke dalam dua kelas yang berbeda, yaitu :
Output
Hasil Rekomendasi
Gambar 1. Diagram pemrosesan
a) User Based Collaborative Filtering User based nearest neighbor algorithm menggunakan teknik statistika untuk menemukan sekumpulan pengguna, dikenal sebagai tetangga. Yang memiliki sejarah setuju dengan pengguna yang menjadi sasaran. Setelah sekumpuulan tetangga terbentuk sistem menggunakan algoritma yang berbeda untuk menggabungkan kesukaan neighbours untuk menghasilkan predikis atau rekomendasi N-teratas untuk active user. (Sarwar dkk, 2001). b) Item Base Collaborative Filtering Item based collaborative filtering merupakan metode rekomendasi yang didasri atas adanya kesamaan antara pemberian rating terhadap suatu produk dengan produk yang dibeli. Dari tingkat kesamaan produk, kemudian dibagi dengan parameter kebutuhan pelanggan untuk
Pada perancangan sistem rekomendasi yang akan dibangun, menggunakan metode item-based collaborative filtering dimana masukan data awal adalah nilai rating dari pelanggan. Setelah itu dicari kemiripan antar item untuk melakukan prediksi antar item yang belum pernah di rating sebelumnya. Menghitung kemiripan antar data menggunakan adjusted cosine similarity dan weight sum untuk prediksi antar item. 3.1
Proses Data Masukan Data masukan dalam sistem adalah data berupa nilai rating yang di pilih oleh pelanggan pada sistem berupa nilai dari 1-5 dengan keterangan bagus hingga kurang bagus. Terdapat 6 produk yaitu (a, b, c, d, ,e dan f) dan 6 user/pelanggan (p1, p2, p3, p4, p5, p6) Berikut Tabel 3.1.
611
Seminar Nasional Teknologi Informasi dan Komunikasi 2016 (SENTIKA 2016) Yogyakarta, 18-19 Maret 2016
a
P1 P2 P3 P4 P5 P6
Tabel 3.1 Rating Pelanggan b c d e f
5
4 3
3 2
2
1 4 4
5 4 2 5
4
1 3 5
ISSN: 2089-9815
yang berdekatan harus mempunyai nilai rating. Dengan tahap yang sama didapatkan nilai rating 2 dan 2. Contoh selanjutnya adalah perhitungan nilai similairity dengan persamaan.
Rat a2 rati ng 4 2.5 3 2.5 3.25 4.5
Tabel 3.2 Representasi Adjusted Cosine Similarity User Ru,i Ru,j Ru P1 5 4 4 P5 2 2 3.25 S
Mencari Adjusted Cosine Similarity Tahap pada algoritma ini adalah mencari nilai kemiripan antar produk yang dibandingkan. Beriktu tahapannya : 1. Mengecek antara nilai rating yang dimilika oleh produk b dan c 2. cek kolom dan baris pertama produk b dan c apabila ditemukan nilai yaitu 5 dan 4. Jika salah satu diantara produk yang memilik nilai rating maka tidak akan dapat dihitung kemiripannya. 3. Cek kolom dan baris kedua produk b dan c dan mendapatkan nilai rating 2 dan 4. 4. Pengecekan kolo dan baris akan terus dilakukan hingga baris terakhir yaitu baris ke 6. 5. Setelah mendapatkan nilai rating antar produk selanjutnya adalah menghitung nilai kemiripan dari nilai rating yang sudah didapat.
=
3.2
=
S
=
S
=
= 0.780869
Setelah melakukan perhitungan dengan menggunakan persamaan adjusted cosine similarity untuk mencari nilai kemiripan antara produk b dan c makan didapat hasil kemiripan dengan nilai 0,780869. Maka nilai kemiripan antara produk b dan b adalah 0,780869. Setelah melakukan perhitungan dengan cara sama maka didapat hasil kemiripan antar produk pada Tabel 3.3 berikut : Tabel 3.3 Hasil Perhitungan Keseluruhan Produk yang Produk yang Nilai dibandingkan dibandingkan Kemiripan A D -1
Dengan mnggunakan persamaan (1) yaitu : S
S
=
Keterangan : S(i,j) = Nilai kemiripan antara item i dengan item j u = Nilai user yang me-rating baik item i maupun item j Ru,i = Rating user u pada item i Ru,j = Rating user u pada item j Ru = Nilai rating rata-rata user u Hasil Perhitungan Adjusted Cosine Similarity Pada Tabel 3.2 menggambarkan antara nilai rating produk b dan c yang pada kolom dan baris pertama b dan c mempunyai nilai 5 dan 4. Dilakukan tehap seterusnya yaitu pindah ke baris dan kolom kedua, Dimana produk c yang mempunyai nilai 3 dan b kosong. Maka tidak dapat dijadikan perhitungan karna tidak memenuhi syarat perhitunga. Syarat perhitungan yang akan dikerjakan jika kedua nilai produk
B
C
0.780869
B
D
-0.96828
B
E
-1
C
D
-0.65517
C
E
1
C
F
-0.94665
D
E
-1
D
F
0.992734
E
F
-1
3.3
612
Seminar Nasional Teknologi Informasi dan Komunikasi 2016 (SENTIKA 2016) Yogyakarta, 18-19 Maret 2016
Proses Tabel 3.3 adalah hasil keseluruhan perhitungan nilai similarity antar produk. Dimana dari perbandingan nilai tersebut didapat nilai similarity yang akan digunakan dalam perhitungan prediksi yaitu 0.780869, 1 dan 0.992734. Setelah nilai kemiripan didapat maka tahap selanjutnya perhitungan pencarian nilai prediksi untuk produk yang belum pernah di rating oleh pelanggan sebelumnya dan akan direkomendasikan kepada pelanggan. Nilai yang akan diambil untuk dijadikan perhitungan adalah <1 dan >= 0.7.
ISSN: 2089-9815
c dan e adalah 1 dan produk d dan f adalah 0.992374. jadi yang akan dicari nilai prediksinya adalah produk e dan f. dan setalah dilakukan perhitungan maka untuk produk e mendapatkan prediksi rating 4 dan untuk produk f mendapatkan prediksi 3. Berikut perhitungannya menggunakan persamaan 2.2.
Perhitungan Prediksi Produk Ru,i(c) Si,j E 4 1
Table 3.4
User P1
3.4
Weighted Sum Weigted sum akan digunakan untuk mencari nilai prediksi produk yang akan direkomendasikan kepada pelanggan. Pertama akan mencari nilai dari user p1 (hermansyah) . perhitungannya dimulai dari kolom user yang belum pernah dirating. Ada 3 kolom produk yang belum rating oleh pelanggan yaitu kolom produk a, e dan f. Tahapan perhitungan sebagai berikut : 1. Pada kolom pertma a akan dicari nilai rating yang tidak kosong yaitu didapat nilai rating produk b yaitu 5 2. Setelah mendapatkan nilai produk 5 maka akan dihitung dengan nilai rating pada produk (b - similairty (a, b) / similarity (a, b)). 3. Sebelumnya dibandingkan apakah similiarity dari kolom produk yang kosong memenuhi syarat perhitungan. Karna a dan b tidak lah mempunyai nilai kemirpan. 4. selanjutnya maju pada kolom yang kosong atau yang akan dicari prediksi nilainya dan dimulai mencari kolom yang ada nilai ratingnya. Setelah mendapatkan nilai rating pada kolom maka dibandingkan kembali apakah similarity antara produk yang ada nilai ratingnya dengan produk yang kosong tersebut. Berikut representasinya pada Gambar 3.4.
Persamaannya ; P(p1,e) =
=
=4
Dari Tabel 3.5 dapat dilihat cara perhitunganya dengan hasil prediksi untuk produk e adalah 4. Dan menggunakan rumus yang sama didapat prediksi produk f adalah 3. Dengan menggunakan perhitungan yang sama maka didapat hasil prediksi pada Tabel 3.5.
Pelanggan
Tabel 3.5 Hasil Prediksi Hasil Produk Prediksi (u,j)
P1
E
4
F
3
P2
B
3
P3
C
3
D
3
C
5
F
4
P6
0.992734 (dihitung)
-1 Nilai kemeripan -0.94665 Nilai kemiripan 1 (dihitung)
A Hermansyah P1
B
C
D
5
4
3
E
F
3.5
Use Case Sistem Use case diagram menggambarkan fungsionalitas yang diharapkan dari sebuah sistem dan merepresentasikan sebuah interaksi antara aktor dengan sistem. Dilihat dari business use case yang ada untuk sistem pada penelitian ini, dapat dilihat pada Gambar 3.2.
Nilai kemirpan 0 Nilai kemirpan 0 Nilai kemiripan -1 Nilai kemiripan 0 Nilai kemiripan -1
Gambar 3.1 Representasi Prediksi
Pada Gambar 3.4 dijelaskan bahwa setiap nilai prediksi yang akan dicari makan akan dibandingkan terlebih dahulu untuk melihat apakan diantaranya ada yang memenuhi syarat perhitungan yaitu nilai kemiripan antara produk
613
Seminar Nasional Teknologi Informasi dan Komunikasi 2016 (SENTIKA 2016) Yogyakarta, 18-19 Maret 2016
Metode Item-based Collaborative Filteringโ. Jurnal Ilmu Komputer Agri-Informatika.
System login
proses
Produk
Rizki Dwi kelimutu. 2012. โSistem Rekomendasi Komunitas Pemuda Di Kota Semarang Berbasis Item-Based Collaborative Filtering Dengan Adjusted Cosine Similarityโ. Skripsi, Fakultas Ilmu Komputer. Universitas Dian Nuswantoro.
Rekomendasi
Registrasi
Pelanggan
ISSN: 2089-9815
Admin
Kelola pelanggan
histori
kelola persediaan
Schafer, J.B., Frankowski, D.,Herlocker,J. dan Sen, S. (2007), Collaborative Filtering Recommender System. Springer-Verlag, Berlin, Heidelberg,
Gambar 3.2 Use Case Sistem 4.
KESIMPULAN . Berdasarkan hasil perancangan dan pengujian, dapat diketahui bahwa untuk fungsionalitas sistem rekomendasi dengan menggunakan secara umum berfungsi susuai dengan perencanaan. Dengan demikian dari hasil tersebut dapat disimpulkan bahwa penelitiam ini sesuai dengan tujuan. Dengan menggunakan persamaan item-based filtering produk yang direkomendasikan adalah yang belum pernah di rating oleh pelanggan sebelumnya. Produk yang direkomendasikan adalah yang mempunyai nilai prediksi tertinggi contoh id_pelanggan 2 mendapatkan rekomendasi produk sepatu vans dan sepatu nb dengan nilai prediksi 4 dan 3. Hasil pengujian pada sistem ini mencapai nilai 95.68% sehingga telah membuktikan bahwa perangkat lunak tealh memenuhi fungsionalitas dan sesuai dengan kebutuhan
McGinty, L. dan Smyth,B. (2006), โAdaptive Selection : analysis of critiquing and preference based feed back in conversational recommender systemsโ International Journal Of Electronic Commerce.II(2), pp 35-37 Lemire, Daniel, Anna Maclachlan. Slope One prediction for online rating-based collaborative filtering. SIAM Data Mining (SDMโ05).2005. Sarwar, B. M., Karypis, G., Konstan, J. A., and Riedl. J. (2000). Analysis Of Recommendation Algorithms For E-Commerce. In Proccedings of the ACM ECโ00 Conference. Minneapolis, MN. Pp. 158-167
PUSTAKA Yudhistira Adhitya Pratama, David Wijaya. Dkk. April 2013. โDigital Cakery Dengan Algoritma Collaborative Filteringโ, Jurnal Teknik Informatika, Shofwatul โUyun, Imam Fahrurrozi, Agus Mulyanto. Febuari 2011. โItem-based Collaborative Filtering Untuk Rekomendasi Pembelian Buku Secara Onlineโ Jurnal Teknik Informatika, Kristiani Dewi, Umi Proboyekti 2014. โImplementasi Weighted Sum Model Dan Least Square Method Dalam Pemberian Nilai Dukung Kelayakan Penerbitan Bukuโ, Bahtera, Putra Jaya Bangun., Sisca Octarina., Gusti Virgo Ahta. 2012. โPembuatan Modul Rekomendasi pada OpenCart Menggunakan
614