SIMULASI BEBAN STATIS PADA RANGKA MOBIL GOKART LISTRIK TMUG 03 DENGAN MENGGUNAKAN SOLIDWORKS 2014 Agus Supriatna 20412401 Teknik Mesin Pembimbing: Dr. RR. Sri Poernomo Sari, ST., MT.
LATAR BELAKANG Energi terbarukan merupakan energi yang sangat tepat demi untuk keberlangsungan Hidup manusia.
Dengan keadaan saat ini bumi semakin panas dengan konsumsi manusia dengan ketergantungan pada bahan bakar fosil sehingga mengakibatkan pemanasan global.Dengan memanfaatkan energi terbarukan salasatu energi yang efisien diantaranya ialah energi matahari.
Energi matahari yang ramah lingkungan merupakan jawaban yang tepat untuk penerapan sumber energi untuk otomotif dunia saat ini. Terciptanya sumber energi ramah lingkungan merupakan suatu terobosan baru bagi dunia otomotif dunia, dengan tidak menggunakan setengah atau keseluruhan dari bahan bakar minyak. Rangka mobil merupakan bagian yang tidak terpisahkan dari mobil, terutama bagi mobil listrik. Mobil listrik sebagai salah satu hasil perkembangan teknologi saat ini masih banyak yang berupa prototype maupun percobaan, dengan begitu masih banyak melalui tahapan berbagai macam analisa guna menciptakan mobil listrik yang sesuai dengan permintaan pasar
TUJUAN PENELITIAN Tujuan Penelitian
Tujuan dari penelitian yang dilakukan pada Rangka Gokart tersebut, yaitu: •
Menganalisa rangka beban statis Gokart Listrik TMUG 03 dengan menggunakan software Solidworks 2014.
•
Menganalisis Von mises pada rangka Mobil Listrik TMUG03.
•
Mengetahui Displacement pada rangka Mobil Listrik TMUG 03
•
Menganalisis faktor keamanan pada rangka Gokart Listrik TMUG03 setelah diberikan beban dan komponen lainnya
Rangka Rangka merupakan adalah bagian dari kendaraan bermotor yang mendukung mesin, kopling, transmisi, sistem suspensi, sistem rem, bodi (badan) mobil, diferensial, dan komponen lainnya. Rangka mobil mempunyai banyak variasi bentuk. Pada umumnya, rangka disusun dari dua buah balok memanjang dan dihubungkan dengan
balok melintang . Bagian depan rangkaian dibuat sedikit mengecil ke dalam yang berfungsi sebagai tempat pemasangan peralatan kemudi dan untuk dapat memberikan keleluasan pergerakan pengemudi Syarat utama yang harus terpenuhi adalah material yang dimana material tersebut harus memiliki kekuatan untuk menopang beban dari kendaraan.
Bentuk Geometri Membuat gambar 3D rangka Mobil Listrik TMUG 03 dengan menggunakan Solidworks 2014.
Pemilihan Material
Klik tool bar Pilih material yang akan di terapkan terhadap Rangka yang akan di analisis
Constraint Pada suatu analisa statis selalu terdapat bagian pada part yang dianggap kaku atau diam tidak
bergerak (fix). Bagian atau part yang dianggap fix ini dapat berupa permukaan yang rata atau berhubungan dengan komponen yang lainnya
Force Load
Pembebanan pertama sebesar 147,15 N
Force load
Pembebanan kedua sebesar 246, 231 N
Meshing Meshing adalah suatu proses yang digunakan untuk membagi bagian yang dianalisa menjadi
bagian-bagian kecil yang disebut discretinging atau diskristisasi. Bagian kecil ini disebut elemen, yang terdiri dari titik sudut yang disebut sebagai node dan daerah yang terbentuk dari titik-titik tersebut.
Analisa (Simulate) Setelah semua input data (tahapan) sudah
di masukan, maka untuk menjalankan analisis dilakukan dengan cara mengklik kanan pada mesh ” lalu pilih “create mesh” lalu klik “run”
Result Summary
Von mises stress
Von Mises Stress maksimal terjadi pada part komponen di bagian roda belakang , dengan nilai sebesar 64,78 Mpa
Perhitungan Von Mises Untuk menghitung nilai von mises pada Rangka terlebih Setelah didapat nilai luas penampang rangka , maka dilakukan dahulu dilakukan perhitungan luas penampang dan perhitungan tegangan terhadap rangka untuk mengetahui nilai terhadap tegangan geser. Untuk perhitungan luas penampang rangka maka digunakan rumus pada persamaan ( 2.15 ) . Dengan dilakukan dengan persamaan rumus ( 2.16 ) dengan contoh perhitungan sebagai berikut . contoh perhitungan sebagai berikut :
Setelah didapat nilai tegangan geser , maka dilakukan perhitungan untuk Tahap selanjutnya yaitu mencari tegangan geser terhadap
mengetahui
rangka dengan persamaan ( 2.16 ) Dengan contoh
menggunakan persamaan ( 2.24 ) dengan contoh perhitungan sebagai
perhitungan sebagai berikut
berikut .
nilai
dari
tegangan
maksimal.
Adapun
rumusnya
Hasil tegangan von mises maksimal adalah sebesar 63.36 x 10 ^6 N/m2 , maka persentase galat hasil perhitungan manual dengan hasil perhitungan software adalah sebagai berikut
Displacement Displacement atau pergerakan yang terjadi akibat beban yang terdapat pada rangka. Tinggi rendahnya nilai pergerakan tergantung
pada tinggi rendahnya Force Load yang diberlakukan pada setiap part dari rangka mobil tersebut. Berikut adalah Displacement maksimal terjadi pada part pada tempat duduk pengemudi, terjadi perubahan sebesar 2,491 mm
gambar dari hasil simulai Displacement.
Perhitungan Displacement Karena penampangnya berbentuk lingkaran, maka
Setelah diketahui hasil momen inersia, maka didapat nilai
persamaan momen inersianya menggunakan
untuk defleksi yang terjadi pada rangka Gokart mobil listrik
persamaan rumus (2.10 ) dengan contoh perhitungan
TMUG03 dengan menggunakan persamaan rumus ( 2.10 )
sebagai berikut :
sebagai berikut.
Untuk hasil displacement dapat dilihat bahwa rangka dapat menerima beban dari pengemudi dan komponen lainya akan mengalami displacement sebesar 2,16210821 mm. Maka persentase galat dari perhitungan manual dengan perhitungan software dapat dihitung dengan rumus sebagai berikut.
Faktor Keamanan Faktor
Keamanan
adalah
standar nilai keamanan dari suatu komponen yang akan di analisis atau alat yang dimana dibuat
dengan
pembagian.
suatu
Nilai
dari Safety Factor
skala
maksimal
rangka
gokart ini adalah 1.000 fos, sedangkan nilai minimalnya yaitu 8,513 fos.
Perhitungan Faktor Keamanan Safety factor atau faktor keamanan merupakan suatu batas aman dari suatu alat yang sudah menjadi standar ketetapan. Pada hasil simulasi ini di dapat bahwa nilai maksimal dari safety factor adalah 8.513 fos sedangkan untuk nilai minimalnya adalah 1,039 x fos. Safety factor didapatkan dari persamaan rumus ( 2.26 ) hasil perhitungan berikut :
Dari perhitungan tersebut di dapatkan bahwa nilai SF adalah sebesar 8,513 fos. Pada software, jarak antar nilai minimum dan maksimum dari safety factor berkisar dari 1,039 x fos – 8,513 fos . Dengan begitu nilai 3.580 masih dianggap sebagai batas aman. Berikut adalah gambar dari hasil simulasi safety factor.
Perhitungan Pembagian Pembebanan Menghitung Beban pada roda Depan (titik A ) ΣTA = 0 NA + NC – WA –WB – WAC – WC = 0 NA + NC = WA + WB – WAC + WC = 3.5 kg + 60 kg + 20.54 kg + 18.7 kg NA = 102.74 kg – NC NA + NC = 102.74 kg NA = 102,74 – NC
A = Roda depan B = Beban engemudi C = Roda belakang WA
= 3.5 kg (front part) = 3.5 kg
WB
= 60 kg ( beban pengemudi) = 60 kg
WC
= 10 kg ( baterai) + 5 kg ( motor listrik) + 1,3 kg
( rangka atas ) + 2,4 kg (panel surya) = 18.7 kg WAC
= 20,54 kg (rangka)
Selanjutnya mencari gaya atau beban yang dialami roda depan (titik A) :
Tahap kedua mencari beban pada roda belakang (titik c ) : ( NA x 0 ) – ( WA . 0 ) – (WAC. ½ L) – WB . ( LWB ) – LAC .WC + NC . WC 0 = 0 – 0 – 20.54 . 80 – ( 60 . 100 ) - ( 160. 18.7 ) + 160 . NC 0 = - 1643.2 – 6000 – 2992 + 160 . NC 160 NC = 9635.2
Tabel perhitungan simulasi dan Teori
Penutup Kesimpulan Berdasarkan hasil analisis komputer menggunakan Solidwokrs 2014 dapat diambil beberapa kesimpulan sebagai berikut : 1. Dari hasil analisis beban statis pada rangka Mobil Listrik TMUG03 dengan memberikan pembebanan
pertama sebesar 147,15 N untuk beban komponen lainya sebesar 246.231 N. 2. Von Mises Stress maksimum : 64,78 Mpa
3. Displacement maksimum
: 2,491 mm
4. Safety Factor
: 8.513 fos
pengemudi,dan beban kedua untuk motor, baterai dan
Saran dan kritik diharapkan dapat memperbaiki kesalahn skripsi ini
Exit