Seminar Nasional Teknologi Informasi dan Komunikasi (SNASTIKOM 2013)
ISBN 978-602-19837-2-0
Sistem Pendukung Keputusan Untuk Menentukan Lokasi Pasar Dengan Menggunakan Fuzzy Multi Atribut Decision Making (FMADM) Metode Simple Additive Weighting (SAW) Reny Wahyuning Astuti1), Muhsin2) Program Studi Teknik Informatika STMIK Nurdin Hamzah Jambi1,2) Jl. Kol. Abundjani, Sipin, Jambi E-mail :
[email protected]),
[email protected])
Abstrak Dalam membuat rencana bisnis, pemilihan lokasi usaha adalah hal utama yang perlu dipertimbangkan. Lokasi strategis menjadi salah satu faktor penting dan sangat menentukan keberhasilan suatu usaha. Banyak hal yang harus dipertimbangkan dalam memilih lokasi, sebagai salah satu faktor mendasar, yang sangat berpengaruh pada penghasilan dan biaya, baik biaya tetap maupun biaya variabel. Pasar sebagai salah satu unit bisnis juga memerlukan lokasi strategis dalam proses penentuannya. Tak jarang, aset ekonomi sangat disesuaikan dengan keberadaan konsumen yang mendominasi lokasi tersebut. Tak hanya aspek konsumen, aspek jangkauan atau akses juga menjadi pertimbangan ketika suatu aset ekonomi hendak dirintis. Fuzzy Multri Atribut Decision Making (FMADM) metode Simple Additive Weighting (SAW) dalam hal ini merupakan salah satu metode yang dapat digunakan dalam proses penentuan lokasi untuk pembangunan pasar tersebut. Dalam hal ini yang merupakan input dari aplikasi adalah keramaian masyarakat, kedekatan dengan pasar lain, kedekatan dengan pusat kota, kondisi keamanan lokasi dan infrastruktur jalan. Hasil penelitian ini berguna untuk mendapatkan lokasi yang paling optimal untuk pembangunan pasar sesuai dengan kriteria yang telah ditetapkan sebelumnya. Kata kunci : Fuzzy Multri Atribut Decision Making, Simple Additive Weighting (SAW), Pasar, Kriteria.
1.
Pendahuluan
1.1 Latar Belakang Dalam pengertian sederhana, pasar adalah sebagai tempat bertemunya pembeli dan penjual untuk melakukan transaksi jual-beli barang dan jasa. Sedangkan arti pasar adalah suatu tempat dimana pada hari tertentu para penjual dan pembeli dapat bertemu untuk jual-beli barang. Adapun definsi pasar adalah sebagai mekanisme (bukan hanya
sekedar tempat) yang dapat menata kepentingan pihak pembeli terhadap kepentingan pihak penjual. Mekanisme tersebut jangan hanya dimengerti sebagai cara pembeli dan penjual bertemu dan kemudian berpisah, tetapi lebih dari itu harus dimaknai sebagai tatanan atas berbagai bagian, yaitu para pelaku seperti pembeli dan penjual, komoditas yang diperjualdiperjualbelikan, aturan main yang tertulis maupun tidak tertulis yang disepakati oleh para pelakunya, serta regulasi pemerintah yang saling terkait, berinteraksi, dan secara serentak bergerak [1]. Pasar sendiri memiliki tiga fungsi, yaitu: fungsi distribusi, fungsi pembentukan harga, dan fungsi promosi. Interaksi yang terjadi antara penjual dan pembeli akan menentuakn tingkat harga suatu komoditas (barang atau jasa) dan jumlah komoditas yang diperjual belikan. Sehingga dalam ilmu ekonomi bila kita berbicara tentang pasar, maka secara otomatis kita akan membicarakan mengenai pertemuan antara penjual dan pembeli, barang/jasa yang dijual, serta harga tertentu atas barang/jasa yang dijual tersebut. Dalam membuat rencana bisnis, misalanya pasar, pemilihan lokasi adalah hal utama yang perlu dipertimbangkan. Lokasi strategis menjadi salah satu faktor penting dan sangat menentukan keberhasilan suatu usaha. Banyak hal yang harus dipertimbangkan dalam memilih lokasi, sebagai salah satu faktor mendasar, yang sangat berpengaruh pada penghasilan dan biaya, baik biaya tetap maupun biaya variabel. Lokasi usaha juga akan berhubungan dengan masalah efisiensi transportasi, sifat bahan baku atau sifat produknya, dan kemudahannya mencapai konsumen. Lokasi juga berpengaruh terhadap kenyamanan pembeli dan juga kenyamanan Anda sebagai pemilik usaha. Untuk itu pengusaha disarankan untuk melakukan survei untuk mencari tempat yang sesuai bagi usahanya. Amati kondisi pasarnya, potensi permintaannya dan jangan lupa cari juga informasi bagaimana prospek perkembangan daerah itu ke depannya, karena hal ini bisa mempengaruhi kelangsungan usaha Anda [2].
Artificial Intellegence
3-87
Seminar Nasional Teknologi Informasi dan Komunikasi (SNASTIKOM 2013)
Multi-Attribute Decision Making (MADM) merupakan salah satu model Multiple Criteria Decision Making (MCDM), yaitu suatu metode pengambilan keputusan untuk menetapkan alternatif terbaik dari sejumlah alternatif berdasarkan kriteria tertentu[3]. Inti dari FMADM adalah menentukan nilai bobot untuk setiap atribut, kemudian dilanjutkan dengan proses perankingan yang akan menyeleksi alternatif yang sudah diberikan. Metode-metode MADM klasik tidak cukup efisien untuk menyelesaikan masalah-masalah pengambilan keputusan yang melibatkan data-data yang tidak tepat, tidak pasti, atau tidak jelas. Salah satu cara yang dapat digunakan untuk menyelesaikan permasalahan tersebut adalah dengan mengunakan fuzzy multi attribute decision making (FMADM) [4]. Berdasarkan tipe data yang digunakan pada setiap kinerja alternatif-alternatifnya, FMADM dapat dibagi menjadi 3 kelompok, yaitu: semua data yang digunakan adalah data fuzzy, semua data yang digunakan adalah data crisp, dan data yang digunakan merupakan campuran antara data fuzzy dan crisp [3]. Salah satu mekanisme untuk menyelesaikan masalah fuzzy MADM adalah dengan mengaplikasikan metode MADM klasik seperti SAW (Simple Additive Weighting Method), WP (Weighted Product), ELECTRE (Elimination Et Choix Traduisant realitÉ), dan TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) untuk melakukan proses perankingan, setelah terlebih dahulu dilakukan konversi dari data fuzzy ke data crisp. Pada penelitian ini semua data yang digunakan dalam setiap kinerja alternatifalternatifnya adalah data fuzzy dan metode yang digunakan adalah metode MADM klasik SAW. Metode SAW atau sering disebut metode penjumlahan terbobot, konsep dasarnya adalah mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut dimana metode ini membutuhkan proses normalisasi matriks keputusan X ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada.
1.2 Tujuan Penelitian Adapun tujuan dari penelitian ini adalah untuk membantu menentukan lokasi [asar sesuai dengan criteria yang telah ditentukan sebelumnya dengan beberapa criteria menggunakan Metode Fuzzy Multi Atribut Decision Making (FMADM)
2.
Metodologi Penelitian
Penelitian dilakukan sebagai berikut :
3-88
dengan
tahapan-tahapan
ISBN 978-602-19837-2-0
a. Representasi masalah meliputi : identifikasi tujuan, identifikasi alternatif, identifikasi criteria, membuat table keputusan dari setiap alternatif pada setiap atribut dan menetapkan nilai bobot (W) dari setiap atribut. b. Evaluasi himpunan fuzzy dari alternatif keputusan meliputi : menentukan bilangan fuzzy untuk masing-masing variable dan mengkonversikannya kedalam bilangan crisp, membuat matrix keputusan X, dan melakukan normalisasi matrix dengan cara menghitung nilairating kerja ternormalisasi (rij) dari alternatif Ai pada atribut Cj berdasarkan persamaan yang disesuaikan dengan jenis atribut (maksimum untuk keuntungan/benefit atau minimum untuk atribut biaya/cost). c. Mencari nilai preferensi fuzzy untuk merangking semua alternatif yang optimal.
3. Hasil dan Perancangan 3.1 Perancangan Untuk bahan pertimbangan pemilihan dan penentuan lokasi yang layak untuk pembangunan pasar, rancangan input dari penelitian ini meliputi : a. Variabel-variabel criteria yaitu : i. Keramaian masyarakat. ii. Kedekatan dengan pasar lain. iii. Kedekatan dengan pusat kota. iv. Kondisi keamanan lokasi. v. Infrastruktur jalan. b. Penilaian terhadap kondisi suatu lokasi untuk masing-masing kriteria yang didapat dari proses survey dilapangan.Sedangkan rancangan output yang ingin dihasilkan dari peneltian ini adalah alternatif yang memiliki preferensi tertinggi sebagai lokasi optimal untuk pembangunan pasar. 3.2. Hasil Terdapat 5 lokasi yang menjadi alternatif yaitu : A1 = Mayang, A2 = Simpang Rimbo, A3 = Kenali, A4 = The Hook dan A5 = Kasang. Terdapat pula 5 atribut (criteria) pengambilan keputusan, yaitu : C1 = Keramaian masyarakat, C2 = Kedekatan dengan pasar lain, C3 = Kedekatan dengan pusat kota, C4 = Kondisi keamanan lokasi dan C5 = Infrastruktur jalan. Langkah 1 : Representasi Masalah a. Identifikasi Tujuan : Tujuan dari peneltian ini adalah mencari lokasi terbaik untuk membangun pasar. b. Identifikasi Alterntif : Ada 5 alterntif yang diberikan, yaitu A = {A1, A2, A3, A4, A5}, dengan A1 = Mayang, A2 =
Artificial Intellegence
Seminar Nasional Teknologi Informasi dan Komunikasi (SNASTIKOM 2013)
Simpang Rimbo, A3 = Kenali, A4 = The Hook, A5 = Kasang. c. Identifikasi Atribut C1 = Keramaian masyarakat (atribut benefit) C2 = Kedekatan dengan pasar lain (atribut cost) C3 = Kedekatan dengan pusat kota (atribut benefit) C4 = Kondisi keamanan lokasi (atribut benefit) C5 = Infrastruktur jalan (atribut benefit) Langkah 2 : Evaluasi Himpunan Fuzzy a. Bobot setiap criteria diberikan sebagai : W=[P C SP P P] dengan vektor bobot : W = [0,75 0,5 0,9 0,75 0,75]
ISBN 978-602-19837-2-0
Gambar 4. Bilangan fuzzy untuk variable kedekatan dengan pusat kota
4. Variabel kondisi keamanan lokasi (C4).
Gambar 5. Bilangan fuzzy untuk variable kondisi keamanan lokasi
5. Variabel kondisi infrastruktur (C5).
Gambar 1. Bilangan fuzzy untuk bobot
b. Menentukan bilangan fuzzy untuk tiap atribut 1. Variable keramaian masyarakat (C1).
Gambar 6. Bilangan fuzzy untuk variable kondisi infrastruktur
Gambar 2. Bilangan fuzzy untuk variable keramaian masyarakat
c. Tabel Keputusan yang diberikan adalah sebagai berikut :
2. Variabel kedekatan dengan pasar lain (C2).
Tabel. 1 Tabel Keputusan Atribut/Kriteria Alternatif
3. Bilangan fuzzy untuk variable kedekatan dengan pasar lain
Gambar
3. Variabel kedekatan dengan pusat kota (C3).
C1
C2
C3
C4
C5
S1
R
D
T
C
B
S2
C
S
S
C
S
S3
SR
D
R
TA
B
S4
R
J
S
A
S
S5
C
D
R
A
S
d. Membuat matriks keputusan x Berdasarkan Tabel diatas, dapat dibentuk matriks keputusan X yaitu matriks keputusan untuk masing-masing kriteria terhadap masing-masing alternatif dengan mengkonversikan bobot setiap alternatif dari bilangan fuzzy ke dalam bilangan crisp
Artificial Intellegence
3-89
Seminar Nasional Teknologi Informasi dan Komunikasi (SNASTIKOM 2013)
0.8 0.6 x 1.00 0.8 0.6
0.3 0.6 0.3 0.9 0.9
0.9 0.6 0.3 0.6 0.3
0.6 0.6 0.3 0.9 0.9
ISBN 978-602-19837-2-0
0.9 0.6 0.6 0.6 0.6
e. Mencari matriks rating kinerja ternormalisasi, dengan rumus Maxxij x i ij rij Min x ij ix ij
jika j adalah atribut keuntungan (benefit)
Gambar 8. Antarmuka Pembobotan Atribut
(1)
c. Data Kriteria
jika j adalah atribut biaya (cost)
Dimana rij adalah rating kinerja ternormalisasi dari alternatif Ai pada atribut Cj; i = 1, 2, ..., m dan j = 1, 2, ..., n. Sehingga di didapat matriks rating kinerja ternormalisasi sebagai berikut : 0.75 0.50 x 1.00 0.75 0.50
0.11 1.00 0.56 1.00 0.56 0.56 0.56 0.50 0.11 0.11 0.11 1.00 1.00 0.56 1.00 0.50 0.11 0.11 1.00 0.50
Gambar 9.Antarmuka Data Kriteria
d. Variabel Kecocokan Krteria
Langkah 3: Mencai nilai preferensi pada setiap alternatif untuk menentukan solusi optimal Nilai preferensi untuk setiap alternatif (Vi) dihitung dengan rumus berikut n
Vi w j rij j 1
(2)
Dengan nilai W = [0,75 0,5 0,9 0,75 0,75], hasil perankingan diperoleh: V1 = 2,688; V2 = 1,954; V3 = 1,736; V4 = 2,692; V5 = 1,654. Nilai terbesar ada pada V4 dengan nilai 2.692 sehingga V4( The Hook ) adalah alternatif yang terpilih sebagai alternatif terbaik
Gambar 10. Antarmuka Variabel Kecocokan Kriteria
e. Data Alternatif
3.3. Implementasi Antarmuka Bagian ini membahas tentang hasil perancangan yang diimplementasi dalam bentuk perangkat lunak yang dirancang dengan menggunakan pemograman Borland Delphi yang terdiri dari antarmuka yaitu Tujuan Masalah, a. Antarmuka Tujuan Masalah
Gambar 11. Antarmuka Identifikasi Alternatif
f. Struktur Hirarki
Gambar 7. Antarmuka Identifikasi T%ujuan
b. Antarmuka Pembobotan Atribut
3-90
Gambar 12. Antarmuka Struktur Hirarki
Artificial Intellegence
Seminar Nasional Teknologi Informasi dan Komunikasi (SNASTIKOM 2013)
g. Indeks Kecocokan Alternatif untuk setiap kriteria
ISBN 978-602-19837-2-0
dalam mencari alternatif lokasi terbaik sebagai tempat pembangunan pasar menurut kriteria-kriteria yang telah ditentukan. Kriteria-kriteria tersebut diterjemahkan dari bilangan fuzzy kedalam bentuk sebuah bilangan crisp, sehingga nilainya dapat digunakan untuk melakukan proses perhitungan dan perankingan guna mencari alternatife terbaik berdasarkan nilai preferensi terbesar. Daftar Pustaka
Gambar. 13 Antarmuka kecocokan nilai alterntif terhadap kriteria
h. Hasil Normalisasi
[1] http://carapedia.com/pengertian_arti_definisi_ pasar_info2000.html [2] http://www.miswans.com/lokasi-usaha.html [3] Peraturan Menteri Dalam Negeri Republik Indonesia Nomor 20 Tahun 2012 tentang Pengelolaan Dan Pemberdayaan Pasar Tradisional. [4] Sri Kusumadewi. Fuzzy Multi Attribute Decision Making (Fuzzy MADM).Yogyakarta : Graha Ilmu, 2006.
Gambar. 14 Antarmuka Hasil Normalisasi
i. Informasi Hasil Proses
Gambar 14. Informasi Hasil Proses
4.
Kesimpulan
Aplikasi Fuzzy Multi Atribut Decision Making (FMADM) metode Simple Additive Weighting (SAW) ini dibuat untuk membantu decision maker
Artificial Intellegence
3-91
Seminar Nasional Teknologi Informasi dan Komunikasi (SNASTIKOM 2013)
3-92
Artificial Intellegence
ISBN 978-602-19837-2-0