Roadmaps Topsector Chemie (zoals opgenomen in de Kennis- en Innovatieagenda 2016-2019)
Vastgesteld door het Topteam Chemie op 1 juni 2015
Inleiding Kennis- en Innovatieagenda 2016-2019
INHOUD Inleiding A.
Thema’s en focus
B.
Werkwijze en gebruik instrumenten
Executive summaries Grafische samenvattingen Roadmap Chemistry of Advanced Materials Roadmap Chemistry of Life Roadmap Chemical Conversion, Process Technology and Synthesis Roadmap Chemical Nanotechnology and Devices APPENDIX 1: Organisatiestructuur Topsector Chemie APPENDIX 2: Samenstelling Programmaraden TKI Chemie APPENDIX 3: Bedrijven betrokken bij PPS in de Topsector Chemie APPENDIX 4: Onderzoeksagenda Biobased Economy 2015-2027
Inleiding Kennis- en Innovatieagenda 2016-2019
INLEIDING A.
THEMA’S EN FOCUS
1. Beschrijving thema’s Kennis- en Innovatieagenda 2016-2019 De Topsector Chemie heeft zich drie ambitieuze doelen gesteld: •
In 2050 staat Nederland wereldwijd bekend als hét land van de groene en duurzame chemie.
•
In 2050 staat Nederland in de mondiale top 3 van producenten van slimme materialen met een hoge toegevoegde waarde en slimme oplossingen.
•
Via hoogwaardig grensverleggend wetenschappelijk onderzoek in Nederland worden nieuwe gebieden van wetenschap en innovatie ontsloten.
Om deze doelen te bereiken stimuleert de topsector innovatie en samenwerking tussen bedrijven en kennisinstellingen langs vier hoofdlijnen: • Chemistry of Advanced Materials •
Chemistry of Life
•
Chemical Conversion, Process Technology & Synthesis
•
Chemical Nanotechnology & Devices.
Deze hoofdlijnen zijn gebaseerd op maatschappelijke uitdagingen, industriële sterktes en de wetenschappelijke kennisbasis. Het zijn gebieden waarop Nederland het verschil maakt, waarbinnen innovaties waardevolle nieuwe producten kunnen opleveren, en waarbinnen een bijdrage kan worden geleverd aan verschillende (internationale) maatschappelijke uitdagingen. Het Topteam heeft bij het TKI Chemie voor elk van de hoofdlijnen een programmaraad ingesteld, bestaande uit vertegenwoordigers van bedrijfsleven en kennisinstellingen. Zie voor een overzicht van de organisatiestructuur van de Topsector Chemie en de samenstelling van de programmaraden respectievelijk Appendix 1 en 2. De programmaraden hebben de hoofdlijnen uitgewerkt in roadmaps. Executive summaries van de roadmaps staan op bladzijde 3 tot en met 6. Tijdens het schrijfproces hebben de programmaraden contact gehouden met en input gevraagd aan bestaande communities en andere achterbannen. Appendix 3 geeft een overzicht van reeds betrokken bedrijven bij het TKI Chemie via lopende PPS-projecten voortkomend uit de vorige innovatieagenda van de Topsector Chemie. Chemie is een belangrijke enabler voor tal van andere industrieën en sectoren. Multidisciplinaire en cross-sectorale samenwerking en samenwerking in en over de kennisketen en ketens van toeleveranciers, producenten en afnemers behoren tot het wezen van de chemie. In elk van de roadmaps wordt in detail ingegaan op deze samenwerking. De roadmaps zijn opgesteld langs de vier hoofdlijnen. Vanzelfsprekend zijn enabling sciences en technologies zoals big data, modelleren, computationele chemie & spectroscopie, complexity, chemometrie en analytische chemie, van groot belang om de in de roadmap genoemde onderwerpen met succes te kunnen aanpakken. De Topsector Chemie onderscheidt twee belangrijke cross-sectorale prioriteiten: biobased economy en resource efficiency. Biobased Economy (BBE) doorsnijdt de topsectoren Agri&Food, Energie en Chemie. Het TKI BBE is uit de aard van de thematiek die het behartigt, cross-sectoraal. Bestuurlijk staat het TKI BBE onder verantwoordelijkheid van het Topteam Chemie. De BBE-aspecten die passen binnen de vier hoofdlijnen van de Topsector Chemie zijn geïntegreerd in de vier roadmaps van het TKI Chemie. Daarnaast is het streven naar grondstofefficiëntie geïntegreerd in de
Inleiding Kennis- en Innovatieagenda 2016-2019
vier roadmaps. In Appendix 4 is de cross-sectorale “Onderzoeksagenda Biobased Economy 2015-2027” opgenomen, die daarmee integraal deel uitmaakt van de kennis- en innovatieagenda van de topsector Chemie, net zoals zij dat is van de kennis- en innovatieagenda’s van de topsectoren Agri&Food en Energie. De “Onderzoeksagenda Biobased Economy 2015-2027” is input geweest voor de vier programmaraden van het TKI Chemie om tot de vier roadmaps te komen in deze Kennis- en Innovatieagenda. Grafische samenvattingen van zowel de roadmaps als van de belangrijkste relaties met andere topsectoren en de Europese onderzoeksthema’s zijn te vinden op bladzijde 7 tot en met 13.
2. Valorisatie InnovatieLink In 2014 heeft het ministerie van Economische Zaken besloten het MKB Steunpunt Energie en Chemie op te richten. Deze organisatie is als stichting, onder de handelsnaam InnovatieLink, in maart 2015 gestart met de aanstelling van een bestuurder/directeur onder toezicht van de Raad van Toezicht, waarin de Topsectoren Energie en Chemie vertegenwoordigd zijn. De organisatie positioneert zich als tweedelijns functie tussen organisaties met een groot bereik, die dagelijks in contact staan met MKBbedrijven. In de onderstaande figuur wordt dit model weergegeven.
CoCi’s
InnovatieLink, als tweedelijns organisatie, positioneert zich tussen de eerste en derde lijn in. Het wordt mede inhoudelijk gevoed door de vier hoofdlijnen in de Topsector Chemie. Met eerste- en derdelijns activiteiten zal nadrukkelijk de samenwerking opgezocht worden. Het ligt immers niet voor de hand dat InnovatieLink deze functies nog eens overdoet.
Inleiding Kennis- en Innovatieagenda 2016-2019
Typisch voor de tweedelijns activiteiten is het werken vanuit twee richtingen, en de hieruit volgende insteek op het innovatieproces.
Kennisinfrastructuur
MKB kringen waarde oriëntaties
MKB Waarde
Innovatieproces
Kennis
De eerste richting is die vanuit het MKB zelf. InnovatieLink moet de cultuur, motieven en drijfveren van het MKB diep snappen en hierbij nauw aansluiten. Dit kan onder andere worden bereikt door mensen in te zetten die netwerken en ervaring hebben in een specifieke sector. We maken dan ook optimaal gebruik van reeds in Nederland goed functionerende MKB-ondersteuning. De tweede richting is die vanuit de kennisinfrastructuur, het draait hier om kennis. We moeten met elkaar die kennis inbrengen die de kracht van het MKB versterkt. Kennis ontwikkelen, kennis laten stromen, kennis co-creëren en organiseren in clusters en netwerken. Beide richtingen zijn belangrijk, en komen bij elkaar in het innovatieproces in het midden. Innovatie heeft kennis als invoer en creëert waarde. De kunst is samen die kennis te organiseren die de door de MKB ondernemer gezochte waarde genereert. Dat gebeurt door het waardegerichte innovatieproces in het midden. Praktische doorvertaling Vanuit het MKB De praktische doorvertaling vanuit de richting van het MKB (vanuit de waardeontwikkelingsbehoefte) resulteert op hoofdlijnen in de volgende in te vullen functies voor InnovatieLink: 1.
Het beantwoorden van open vragen van het MKB, in samenwerking met Kamer van Koophandel en de regio’s, zoals: a.
vragen over financieringsmogelijkheden en ondersteuning daarbij
b.
vragen over kennispartners in Nederland (waar kan ik terecht en hoe word ik
c.
vragen naar collega-bedrijven, die de samenwerking kunnen aangaan (MKB voor MKB/
geholpen?) peer-to-peer-voorziening) 2.
Het bieden van overzicht (generiek met voldoende diepgang) over: a.
het innovatielandschap in Nederland met als doel de vindbaarheid en kansrijkheid van kennis voor het MKB te vergroten
b.
de financieringsmogelijkheden en de ontwikkelingen daarin (bijvoorbeeld de opkomst van alternatieve financiering)
c.
hands on ondersteuning bij bijvoorbeeld het opzetten van businessplannen en verzilveren van subsidiekansen; dit vaak met gerichte doorverwijzing naar partijen die hierin gespecialiseerd zijn
3.
Het opzetten van specifieke samenwerkingsverbanden naar de derde lijn, door: a.
proactief activiteiten op te zetten waar het MKB wordt uitgenodigd
b.
regionale samenwerkingsverbanden aan te gaan met provincies, gemeenten en regionale ontwikkelingsmaatschappijen (ROM’s)
c.
innovatiemanagers in te zetten die tot op zekere hoogte het MKB begeleiden naar gesmede samenwerking en ‘launching customers’
d.
mechanisme onderhouden voor het beantwoorden van inhoudelijke innovatievragen
e.
doorverwijzingsmechanismen inrichten voor inbedding in of contact met relevante (kennis)gemeenschappen.
Inleiding Kennis- en Innovatieagenda 2016-2019
Vanuit de Kennisinfrastructuur De praktische doorvertaling vanuit de richting van de kennisinfrastructuur resulteert in de volgende functies voor InnovatieLink: 1.
het helpen opschalen van ontwikkelomgevingen in de chemie in de vorm van nieuwe Innovatielaboratoria (Ilabs) en Centre’s for Open Chemical Innovation (COCI’s), door: a.
gesprekken aan te gaan met kennisinstellingen die in aanmerking kunnen komen voor een Ilab-, of COCI-status en het begeleiden van die potentiële locaties
b. 2.
ervaringen van reeds bestaande instellingen over te brengen op nieuwe initiatieven
het coördineren van de landelijke samenwerking tussen Ilab’s en COCI’s, door: a.
een landelijk informatie- en community-medium op te zetten rond deze start-up omgevingen (web, social media, etc.)
b.
specifieke themabijeenkomsten te houden waarin uitwisseling van ervaringen en samenwerking centraal staan
3.
het bevorderen van MKB-betrokkenheid bij de Centre’s of Expertise (COE’s, HBO) en Centra voor Innovatief Vakmanschap (CIV’s, MBO) door: a.
MKB te informeren over de faciliteiten die COE’s en CIV’s bieden
b.
top-stages e.d. te organiseren onder goede begeleiding
c.
specifieke bijeenkomsten te organiseren voor uitwisseling van ervaringen en samenwerking
4.
het bevorderen van MKB-betrokkenheid bij de Centers of Innovation door: a.
MKB te informeren over de faciliteiten die COE’s en CIV’s bieden
b.
specifieke bijeenkomsten te organiseren voor uitwisseling van ervaringen en samenwerking.
Uitvoeringsorganisatie InnovatieLink opereert als een kleine lean and mean backoffice met inzet van specifieke deskundigen in het veld. In de uitvoering zal zoveel mogelijk gewerkt worden vanuit het principe van cofinanciering.
Inleiding Kennis- en Innovatieagenda 2016-2019
B. WERKWIJZE EN GEBRUIK INSTRUMENTEN 1. Totstandkoming richtinggevende PPS-projecten & samenwerking met overheden Voor elk van de hoofdlijnen neemt de Topsector Chemie zich voor om in 2016-2017 samen met partners zoals NWO en TNO richtinggevende PPS-programma’s te starten om uitvoering te geven aan de roadmaps. Het gaat niet alleen om programma’s binnen Nederland, maar ook om Europese samenwerking en om samenwerking met specifieke doellanden buiten Europa zoals China, de Verenigde Staten en Brazilië. Het gaat daarbij in ieder geval om de volgende op voorhand beoogde initiatieven. Daarnaast reserveert de topsector Chemie nadrukkelijk ruimte om bottom-up initiatieven tussen bedrijfsleven en kennisinstellingen te faciliteren (zie hieronder): Chemistry of Advanced Materials •
Een Advanced Research Center (ARC) op het gebied van conversie & materialen (cross-over met hoofdlijn Chemical Conversion, Process Technology & Synthesis)
•
Polymeren
•
Biobased Materialen (via het Biobased Performance Materials programma, BPM)
•
Science industry cooperation met China (publiek-private samenwerking in de chemie met China)
•
M-ERA.net (Europees samenwerkingsprogramma op het gebied van materialen)
Chemistry of Life •
Programma Bouwstenen van Leven
•
De Europese faciliteit INSTRUCT (voor onderzoek naar biologische macromoleculen en
• • •
processen) Design and synthesis of new biomolecular/cellular entities Enabling technologie voor diagnose en analyse Initiatieven om (deel)communities te versterken
Chemical Conversion, Process Technology & Synthesis •
Een Advanced Research Center (ARC) op het gebied van conversie & materialen (cross-over met hoofdlijn Advanced Materials)
•
Bio-geïnspireerde energieopslag in chemische bindingen
•
Elektrificatie van de chemische industrie
•
ERAnet cofund op gebied van biotechnologie
Chemical Nanotechnology & Devices •
Well- being - Bio-active sensing and actuation devices
•
Biomembrane on chip
•
Microfluidic devices for synthesis and formulations in medicine and food
•
Resource Efficiency and closed value added chains (gate-to-gate) material and energy flows
•
Novel multi-model analytical technologies with ultimate chemical resolution
•
Development of new nanomaterials for solar cells
Roadmapoverstijgend is daarnaast het programma Maatschappelijk Verantwoord Innoveren, samen met alle andere topsectoren. Naast deze vooraf geoormerkte initiatieven per hoofdlijn zal de Topsector voor “bottom-up”-initiatieven het succesvolle PPS-Fonds Chemie (voorheen Fonds NCI) voortzetten. Dit Fonds, dat beheerd wordt door NWO, staat open voor alle PPS’en met een chemiecomponent, dus ook multidisciplinaire en/of topsectoroverstijgende initiatieven. De Programmaraden van het TKI Chemie gaan beoordelen of de initiatieven passen binnen de roadmaps. Een andere belangrijke Topsectorbrede activiteit is de ondersteuning van het MKB, die de Topsector Chemie samen met de Topsector Energie vormgeeft in de nieuwe organisatie Innovatief Ondernemen. 1
Inleiding Kennis- en Innovatieagenda 2016-2019
Passend bij de discussie over de Nationale Wetenschapsagenda zet de Topsector Chemie, in nauwe afstemming met andere Topsectoren, in op de volgende overkoepelende thema’s: •
Samenwerking in een op te zetten Advanced Research Center (ARC) op het gebied van chemische bouwstenen voor energiedragers, coatings en materialen (samenwerking met topsectoren Energie/HTSM)
•
Samenwerking op gebied van Materialen (Energie/HTSM) – activiteit: matchmaking/joint call
•
Samenwerking op gebied van Chemistry of Life/Molecular life sciences (food/pharma-industrie) –
•
Samenwerking op gebied van Nanotechnology & Devices (HTSM/LSH/Energie) – activiteit: match
met LSH en AgriFood – activitieit: matchmaking/joint call making/joint call •
Samenwerking op gebied van Biobased Economy; Energieopslag in chemische bindingen (samen met Energie) – activiteit: joint call
•
Samenwerking op het gebied van Big Data/Complexity (HTSM/ICT) – activiteit: joint call
•
Samenwerking Maatschappelijk Verantwoord Innoveren (samen met alle topsectoren) – activiteit: joint call
2. NWO en KNAW-instituten Volgens de afspraken in de “Spelregels Topsectoren” stelt NWO jaarlijks een bedrag van minimaal M€ 12,5 (op een totaal van M€ 100) beschikbaar aan de Topsector Chemie voor nieuwe PPS-initiatieven. Over de inzet voor 2016-2017 hebben het Topteam en NWO nog geen definitieve afspraken gemaakt. Op verzoek van het Topteam zal NWO de succesvolle werkwijze met het PPS-Fonds Chemie voortzetten. De kern van deze werkwijze is dat bedrijven en onderzoekers bottom-up nieuwe PPS-initiatieven tot stand brengen. Tot 1 januari 2015 zorgde het TKI NCI voor toetsing op passendheid binnen de Topsector Chemie. Vanaf 1 januari 2016 nemen de programmaraden van het TKI Chemie deze taak over. In het overgangsjaar 2015 verzorgt de PPS-raad van het NWO-gebied Chemische Wetenschappen de toets op passendheid, in goede afstemming met het TKI Chemie. NWO zorgt voor toetsing van de voorstellen op wetenschappelijke kwaliteit en het innovatiepotentieel. Het PPS-Fonds Chemie biedt vier samenwerkingsvormen voor PPS met één of meerdere (grote) bedrijven, met het MKB, met meerdere kennisinstellingen, incl. het HBO en met consortia, namelijk: •
CHIPP = Chemical Industrial Partnership Program
•
TA = Technology Area
•
LIFT = Launchpad for Innovative Future Technology
•
KIEM = Kennis en Innovatie Mapping projecten met het MKB
Afhankelijk van de samenwerkingsvorm varieert de bedrijfsbijdrage van 50% (CHIPP), tot 33% (TA), 25% (LIFT) en 20% (KIEM). Er is aandacht voor de verhouding cash/in-kind in de gevraagde bedrijfsbijdrage in de verschillende PPS-vormen, ook in relatie tot de participatie van het MKB en met name ook het echte kleinbedrijf, bijvoorbeeld 1-persoons start-up bedrijven. Naast deze bottom-up-initiatieven is er ook ruimte voor gerichte programmering door middel van specifieke calls. In de afgelopen periode hebben communities als ISPT, DPI en COAST van deze mogelijkheid gebruik gemaakt. Ook de komende jaren zal deze mix van bottom-up en top-down worden voortgezet (zie ook vorige paragraaf). De flexibele werkwijze met het PPS-Fonds Chemie is succesvol gebleken. Het bedrijfsleven en andere partners dragen gemiddeld zo’n 35% in cash bij aan de totale projectkosten. Er zijn momenteel geen afspraken met de KNAW over een structurele inzet vanuit KNAW-instituten voor de Topsector Chemie. Incidenteel zijn vanuit de hoofdlijn Chemistry of Life contacten met onderzoekers in het Hubrecht laboratorium. Van de NWO-instituten zijn er (op projectniveau) contacten met AMOLF en DIFFER.
2
Inleiding Kennis- en Innovatieagenda 2016-2019
3. TO2 Programmering Het Topteam maakt met TNO afspraken over de bijdrage die de organisatie kan leveren aan de uitvoering van de kennis- en innovatieagenda Chemie. Het Topteam ziet tal van inhoudelijke raakvlakken met de TO2-instituten ECN en DLO, waarmee in een aantal programma’s ook al wordt samengewerkt. Het is heeft de ambitie om de komende twee jaar de samenwerking verder uit te bouwen. 4. Universiteiten en hogescholen De Topsector werkt intensief samen met alle Nederlandse universiteiten waar onderwijs wordt gegeven en onderzoek wordt gedaan in chemie en moleculaire wetenschappen. Het Topteam volgt met grote belangstelling de uitvoering van het Sectorplan Natuur- en Scheikunde, dat leidt tot structurele versterking van universitaire zwaartepunten. Een vervolgtraject in voorbereiding heeft de hartelijke steun van de Topsector, omdat voortgezette profilering van het universitaire onderzoek van essentieel belang is voor PPS. Er zijn goede contacten met de drie chemische HBO Centres of Expertise (RDM Rotterdam, GreenPAC Zwolle en COE BBE Breda) en met het Domein Applied Sciences (DAS). De Topsector onderkent echter dat de samenwerking intensiever kan en neemt zich voor om daaraan de komende tijd te gaan werken. Om te beginnen zullen de banden met het Regieorgaan Praktijkgericht Onderzoek SIA worden aangehaald. 5. EU en regionale partners De samenwerking met regionale partners geeft de Topsector vorm via Innovatief Ondernemen, het MKB Steunpunt Energie en Chemie (zie pagina 14 en 15). De Europese programmering van Horizon2020 beidt vele mogelijkheden voor de Topsector Chemie (zie pagina 11 t/m 13). Op tal van thema’s en onderwerpen wordt al vele jaren samengewerkt met Europese partners. Een aantal van deze samenwerkingsverbanden wil de Topsector versterken door middel van Nederlandse cofinanciering die via NWO beschikbaar wordt gesteld. Het gaat om: •
Eranet Cofund on Biotechnologies Dit voorstel, getrokken door het huidige ERA-IB, richt zich op “to speed up research and innovation in industrial biotechnology, establishing systems biology and synthetic biology as technology drivers while focussing on downstream applications”. Beoogd TRL-niveau is 3 tot 6. Het omvat ook “social sciences and humanities elements”. Ook de twee Eranetten SynBio en SysAPP gaan hierin op. Het is opgenomen in het NMP-werkprogramma voor 2016 (NMBP 312016). De Commissie denkt aan een bijdrage van M€ 10 tot 15. ERA-IB is tevens van belang voor de samenwerking met de topsectoren Agri&Food en Energie en het TKI BBE. Benodigde Nederlandse cofinanciering: circa M€ 2.
•
M-Eranet Cofund Het materialen Eranet, waaraan NWO meedoet, heeft recent een Cofund voorstel bij de EC ingediend (NMP 14-2015). Het betreft: “Continuing the activities started by M-ERA.NET (2/20121/2016), the M-ERA.NET 2 consortium will support relevant fields of materials research and innovation, such as -for example- surfaces, coatings, composites, additive manufacturing, computational materials engineering. Research on materials enabling low carbon energy technologies will be particularly highlighted as a main topic of the cofunded call (Call 2016) with a view to implementing relevant parts of the Materials Roadmap Enabling Low Carbon Energy Technologies (SEC(2011)1609), and relevant objectives of the SET-Plan (COM (2009)519)”. M-ERA is tevens van belang voor de samenwerking met de topsectoren HTSM en Energie.
3
Inleiding Kennis- en Innovatieagenda 2016-2019
Benodigde Nederlandse cofinanciering: circa M€ 2. •
INSTRUCT, Europe's research hub for structural biology INSTRUCT bestaat uit een network van faciliteiten in 12 Europese landen dat belangrijk is voor de achterban van Chemistry of Life. “[The] overall goal [of INSTRUCT] is to promote innovation in biomedical science. [It] was set up to provide open access to cutting edge structural biology, specifically supporting research that uses integrated approaches and technologies. The core instrumentation includes electron microscopy, NMR, X-ray methods, protein production, mass spectrometry and other biophysical methods and can be viewed in a catalogue of access platforms on the Instruct website (www.structuralbiology.eu). It provides peer-reviewed access for users to a broad integrated palette of state-of-the-art structural biology equipment and know-how, facilities include up to 34 technology subcategories. Instruct supports access with expert staff on-site and training for users of the instrumentation.” De Commissie denkt aan een bijdrage van M€ 10. INSTRUCT is tevens van belang voor de samenwerking met de topsector LSH. Benodigde Nederlandse cofinanciering: circa M€ 0,4.
4
Kennis- en Innovatieagenda 2016-2019
Executive Summary Chemistry of Advanced Materials Artificial materials are the cornerstone of our global society. Progress in the field of materials chemistry has enabled numerous new technologies and applications ever since the Stone Age, and will continue to do so in the coming decades. The Netherlands has a very strong position in various fields of advanced materials, and has a high ambition level for extending on this position; in the period 2030-2040, The Netherlands will have settled its name globally as “rational material design” technology provider for high value-added materials and clean energy materials. In keeping with this long-term ambition level, the emphasis of materials chemistry research on the short term should be on mechanistic insight to be obtained for each of a plethora of desired functionalities and on the medium to long term on moving from increasing insight and understanding towards rational material design capabilities. For the latter, a broader scientific foundation of functionality of materials should be developed, including (predictive) modelling of formulations and properties. The roadmap Chemistry of Advanced Materials has focused on three tasks: Materials with added Functionality, Thin films and Coatings, and Materials for Sustainability. All three tasks revolve around the key word “functionality” and prepare for a future in which advanced materials exert new functions, new combinations of functions, or true step-change improvements in their functions. Under the first task, the functionality is defined by the continuum (or “bulk”) intrinsic properties of the materials, whereas surface effects dominate those properties under the second task. Under the third task, the functionality is related to sustainability. Either directly, when the material itself is made in a sustainable way, or indirectly, when the material enables sustainable energy harvesting or energy storage, reduction of energy consumption or requiring less (scarce) resources for production. Intrinsic design of advanced materials based on or allowing for circular economy or replacement of advanced materials with more sustainable alternatives is bridging task 3 with tasks 1 and 2. Of course, these three tasks are not mutually exclusive. The overall ambitions of each task and the specific steps that should be taken between now and 2040 are summarized in the table below. This roadmap on the chemistry of advanced materials is mainly sustained by the Top sector Chemistry roadmap on Making Sustainable Chemical Products and the cross sectorial platform for Biobased Economy, by providing sustainable raw materials and (catalytic) technology for control of conversion of these raw materials into advanced materials. This connects to the EU Horizon 2020 theme of Resource Efficiency. In turn, the major beneficiaries of this roadmap are in the Top sector Chemistry roadmaps on Chemistry of Life (Biomedical Materials) and on Nanotechnology and Devices, as well as in the top sectors High-Tech Systems and Materials, Energy and Water for applications of these advanced materials. These applications are fully in line with the EU Horizon 2020 themes Health, Energy, Transport, and Nutrition Security.
1
Kennis- en Innovatieagenda 2016-2019
Executive Summary Chemistry of Life Understanding of Life on a molecular level (Chemistry of Life) provides a key that unlocks unlimited opportunities for breakthrough innovations, needed to address our global challenges for people today, and generations to come. The unifying aim in Chemistry of Life is therefore to bring about the chemical means and molecular understanding leading to an improved (precise), more and more personalized healthcare as well as more sustainable and healthy food for the benefit of mankind. Our life is dependent on molecules that enable, regulate, improve or threaten Life. During the past century scientific breakthroughs led to the identification of molecules which are building blocks of life. We understand better and better their functions, how they interact with small molecules and how they contribute to life. This fundamental understanding is applied today in industry to develop products creating a better life for individuals and society as a whole. While progress was enormous, leading to novel and targeted medicine and securing our food supply for a growing population, we still face major gaps in understanding life on a molecular level, and we are still faced with great challenges in healthcare as well as a sustainable healthy food supply. What are the next scientific breakthroughs in Chemistry of Life? How can The Netherlands contribute to these by using and further developing our excellent knowledge infrastructure and network of world class Universities, Knowledge Institutes and the private sector? How can we capture innovations and economic growth in The Netherlands based on these breakthroughs (e.g. expanding current vibrant biotech startups and establishing novel ventures)? The answers will come from collaborations. Collaborations across disciplines, across industries (value chains), and across the world. The Chemistry of Life roadmap is therefore set up with a focus on molecular insights reaching out to (collaborating with) all sectors contributing to the scientific and economic breakthroughs the top sector wants to enable. These connections are further specified in section 4. A three-pillar (task) roadmap has been developed to address the scientific challenges and economic opportunities in healthcare (task 1) and food/nutrition (task 2) and the link between them, connecting health and food/nutrition. The first pillar (task 1) focuses on ‘Molecular entities, devices and approaches for understanding, monitoring and improving personalized health’. Various human diseases are the result of altered or malfunctioning molecular/cellular mechanisms or genetic mutations. It is of utmost importance to understand the cellular wiring of the diseased state and develop (therapeutic) approaches to prevent this or reprogram and revert cells to a normal healthy state or to trigger cell death (apoptosis). Genomics, transcriptomics, proteomics, metabolomics data (omics, or panomics when integrated) from patient material, including the gut microbiota, constitute a treasure trove to understand and redirect molecular pathways. These pathways may be targeted by existing or newly developed drugs, thereby offering an avenue towards personalized medicine. The second pillar (task 2) focuses on ‘Molecular entities, devices and approaches for understanding, monitoring and improving food security’. Unraveling the precise mechanisms that govern molecular interactions is at the very heart of Chemistry of Life. The Netherlands has always been a stronghold with respect to recognizing the importance of the interaction of chemistry and chemical biology in the life science sector. Such a molecular understanding will also enable the food sector to get to the next level answering fundamental scientific questions to provide breakthrough innovations that address societal needs related to food quality and security throughout the whole lifespan. The third pillar (task 3) creates a deeper understanding of the building blocks of life and developing enabling technologies while providing valuable input for understanding, monitoring and improving health and food security.
2
Kennis- en Innovatieagenda 2016-2019
Executive Summary Chemical Conversion, Process Technology & Synthesis: Making Sustainable Chemical Products The roadmap of the program council “Chemical Conversion, Process Technology and Synthesis” addresses the grand challenge to transform our fossil-resource dependent economy into a low-carbon society that fully relies on sustainable and abundant resources. Innovations and breakthroughs in catalysis and process technology are recognized as key enabling technologies. The anticipated transition involves a three-pronged approach. Step improvements in the efficiency of current chemical process are needed to decrease energy and raw material consumption. In the short term, new sustainable resources such as biomass for the manufacture of chemical products will require new combinations of designer catalysis and advanced process technology, in fields such as C1chemistry, waste recycling, and novel processes for the separation, purification and conversion of biomass. Integration of renewable energy in the form of electricity is a medium term challenge to enable the desired long-term transition to a circular economy in which materials and CO2 recycle are key elements. Synthesis routes for complex functional molecules need to be developed that allow sustainable production of any functional chemical product in a minimum of process steps and with 100% efficiency. The desired breakthroughs that will drive these innovations require investments in fundamental science and technology. New spectroscopic tools will provide insight at molecular level, which will be combined with theory-based rational design of chemical processes and catalysts for the conversion and storage of energy, as well as for the synthesis of sustainable chemical products and materials. This will eventually lead to complete control over chemical process design and operation from atomic scale all the way up to reactor scale. In order to reach the goals described in this roadmap, it will be necessary to invest in an Advanced Research Center (ARC) targeting chemical building blocks in the area of Catalysis, Process Technology and Synthesis, with a maximum impact for cooperating private and academic partners, and with international reputation. The envisioned scope would be a program of about 14 million euros per year for a period of ten years.
3
Kennis- en Innovatieagenda 2016-2019
Executive Summary Chemical Nanotechnology & Devices: Mimicking, Measuring & Sensing, key in creating an ultimate insight into Bio & Synthetic (inter & intra) molecular processes The roadmap “Chemical Nanotechnologies & Devices” refers to technologies and devices able to mimic, measure and sense (bio) chemical processes and is as such of crucial importance for the majority of the top sectors (Water, Life Sciences and Health, Agriculture & Food, Energy), and the top sector Chemistry in particular. From a technological point of view and envisioning a society in 2040, having free access to “personalized diagnostic sensors”, the “factory of the future” and “sunlight as primary energy source”, extensive technological breakthroughs in chemical, spatial (sub nm length scales) and temporal resolution are regarded vital. In this roadmap, a focused and prioritized program comprising (bio)sensors, micro/nanofluidics, flow-(micro)reactors, analytical technologies with ultimate (chemical, spatial & temporal) resolution and the third generation solar cells is described. These technologies are an integral part of the three main tasks, Well-being, Cradle to Cradle 2.0 and Energy, which are highly related to “People, Planet & Profit”.
4
Kennis- en Innovatieagenda 2016-2019
GRAFISCHE SAMENVATTINGEN
5
Kennis- en Innovatieagenda 2016-2019
Traditional Materials
Task 1: Designing Materials with the Right Functionality
?
Mult-Functional Materials
High-Tech Materials
Biomedical Materials
Traditional Coatings, Packaging Films, and Membranes
Task 2: Thin Films and Coatings
Multifunctional and Responsive Coatings and Thin Films
Bio-(inter)active sensors, coatings and films
Coatings for energy creation / saving
Replacement of petrochemical feedstocks by bio-based feedstocks
Task 3: Materials Improved waste management by recycling of materials, re-use and recovery of product for Sustaina- components and / or compound bility Sustainable materials for energy
Roadmap Adv Mat facilitates development in connecting platform Roadmap Adv Mat benefits from development in connecting platform Roadmap Adv Mat and connecting platform both facilitate and benefit from activities
6
TS: Creative Industry
TS: Water
TS: Energy
TS: HTSM
TS: LSH
TS: Agri/Food
TKI BBE
TKI Chemistry: Chem Conversion, Process Tech, Synthesis TKI Chemistry: Nanotechnology and devices
Connections/cross-overs Roadmap Advanced Materials
TKI Chemistry: Chemistry of Life
Roadmap Chemistry of Advanced Materials
Kennis- en Innovatieagenda 2016-2019
Task 1: Molecular entities, devices and approaches for understanding, monitoring and improving personalized health
Task 2: Molecular entities, technologies and approaches for understanding, monitoring and improving food (security)
Development of analytical and biophysical devices Creation of new chemical, molecular and cellular entities Biomedical Materials for improved functionalities Biochemical tailoring of food Increased nutritional availability Sustainable production and consumption
Task 3: Enabling technologies and approaches for fundamental understanding, monitoring and improving molecular entities in the Chemistry of Life
Roadmap CoL facilitates development in connecting platform Roadmap CoL benefits from development in connecting platform Roadmap CoL and connecting platform both facilitate and benefit from activities
7
TS: Energy
TS: HTSM
TS: LSH
TS: Agri/Food
TKI BBE
TKI Chemistry: Chem Conversion, Process Tech, Synthesis TKI Chemistry: Nanotechnology and devices
Connections/cross-overs Roadmap Chemistry of Life
TKI Chemistry: Advanced Materials
Roadmap Chemistry of Life
Kennis- en Innovatieagenda 2016-2019
Feedstock diversification: C1chemistry
Task 1: Making Feedstock diversification: Sustainable Molecules resources, Solar, Wind and others Efficiently Efficiency in chemical production (Thermo-)Chemical Biomass
conversion Task 2: Making Biomass conversion using Industrial Molecules (White) Biotechnology from Biomass Biorefining and Circular Economy
High performance materials
Task 3: Making Speciality, pharma and fine chemicals Functional Molecules Process technology for manufacturing functional molecules
Roadmap CC, PT & S facilitates development in connecting platform Roadmap CC, PT & S benefits from development in connecting platform Roadmap CC, PT & S and connecting platform both facilitate and benefit from activities
8
TS: Water
TS: Energy
TS: HTSM
TS: LSH
TS: Agri/Food
TKI BBE
TKI Chemistry: Nanotechnology and devices
TKI Chemistry: Chemistry of Life
Connections/cross-overs Roadmap Chemical Conversion, Proces Technology & Synthesis
TKI Chemistry: Advanced Materials
Roadmap Chemical Conversion, Process Technology and Synthesis
Kennis- en Innovatieagenda 2016-2019
Bio-active sensing and actuation devices
Task 1: Well-being (Quality of Life)
Human disease and organ modelsystems on a chip Microfluidic devices for synthesis and formulations in medicine and food Resource efficiency and closed value added chains (gate to gate) material and energy flows
Task 2: Cradle to cradle 2.0
Time to market speed up of the process development
Process Reliability & Unification
Task 3: Energy Efficiency and Storage
Electrochemical reduction of CO2 with minimum over-potential
Towards a third generation solar cell
Roadmap Nano & D facilitates development in connecting platform Roadmap Nano & D benefits from development in connecting platform Roadmap Nano & D and connecting platform both facilitate and benefit from activities
9
TI COAST
Horizon2020
TS: Water
TS: Energy
TS: HTSM
TS: LSH
TS: Agri/Food
TKI BBE
TKI Chemistry: Chem Conversion, Process Tech, Synthesis
TKI Chemistry: Chemistry of Life
Connections/cross-overs Roadmap Nanotechnology and Devices
TKI Chemistry: Advanced Materials
Roadmap Chemical Nanotechnology & Devices
Kennis- en Innovatieagenda 2016-2019
RELATIE TOPSECTOR CHEMIE MET EUROPESE THEMA’S: KANSEN VOOR DE TOPSECTOR CHEMIE Maatschappelijke uitdagingen: de zeven Europese uitdagingen, en de kernthema’s uit de innovatieagenda’s van de topsectoren:
Thema 1 Langer gezonder leven Thema’s E-health, zelfmanagement; telegeneeskunde; domotica; ITinfrastructuur Biomedische materialen Moleculaire biologie, verouderingsbiologie, regeneratieve geneeskunde Voeding op maat Medicijnen op maat Diagnostiek Medische instrumenten
Topsectoren Creatief; HTSM; LSH;Chemie
LSH; Chemie; HTSM Chemie; HTSM; LSH A&F; T&U; LSH; Chemie LSH; Chemie HTSM; LSH; Chemie HTSM; LSH; Chemie
Thema 2 Voedselveiligheid, duurzame langdbouw, circulaire economie, biodiversiteit Thema’s Topsectoren Duurzame voedselproductie door recycling A&F; T&U; Water; Chemie en hergebruik, vermindering van emissies Biobased materialen A&F; Chemie; Creatief; T&U Precisielandbouw HTSM;T&U; Chemie Ketenintegratie A&F; T&U Klimaat- en ziektebestendige A&F; Water; T&U teeltsystemen Nanotechnologie voor voedsel HTSM, LSH; A&F; Chemie
Thema 3 Schone energie, circulaire economie Thema’s Topsectoren Biobased materialen A&F; Chemie; Water; T&U Energiebesparing gebouwde omgeving Creatief, T&U; Energie; Water; Chemie Smart grids Creatief, T&U; Energie; HTSM Wind op zee Energie, Water Energiebesparing in de industrie Energie; Water; Chemie Efficiënte teelttechnologie T&U; A&F Led-technologie HTSM; T&U; Chemie Nanotech voor zon HTSM; Chemie Getijdenenergie, blue energy, energie uit Water; Chemie afvalwater
10
Kennis- en Innovatieagenda 2016-2019
Thema 4 Klimaat en hulpbronefficiëntie, grondstoffen circulaire economie Thema’s Emissiereductie Meerlaagsveiligheid, klimaatadaptief bouwen
Topsectoren A&F; Water; Chemie Water
Inputreductie door verandering genetisch materiaal
T&U; HTSM; Chemie
Conversie: nieuwe chemische bouwstenen voor energiedragers en materialen
Chemie
Productie met minder grondstoffen, energie, water, bestrijdingsmiddelen
A&F; T&U; Chemie
Ecologisch ontwerp waterinfrastructuur
Water
Grondstoffen terugwinning afvalwater
Water; A&F; T&U; Chemie
Duurzame zoetwatervoorziening, waterverdeling, watergebruik
Water; A&F; T&U; Chemie
Thema 5 Slim, groen, geïntegreerd vervoer Thema’s Intelligente wegen en voertuigen, voorspelling verkeersstromen Geïntegreerde vervoersoplossingen en ketenintegratie Afhandeling Levenscyclus kapitaalintensieve systemen Verbeterde aandrijfsystemen Nieuwe materialen en aandrijving luchtvaart Schone schepen Slim en veilig varen, o.a. door ict Effectieve, duurzame infrastructuur havens en vaarwegen
Topsectoren HTSM; Logistiek Logistiek; A&F; T&U Logistiek Logistiek; Chemie HTSM HTSM; Chemie Water; Chemie Water; HTSM; Logistiek Water
Thema 6 Inclusieve en innovatieve samenleving Thema’s Topsectoren ICT en maatschappij HTSM (Her)inrichting gebouwde omgeving, Creatief winkelcentra, kantoren e.a. Herbestemming cultureel erfgoed Creatief Gaming ter ondersteuning van leerprocessen Creatief Thema 7 Veilige samenleving Thema’s Voedselveiligheid en terreur Lichttechnieken en crowd control Cyber security Access control; privacy bescherming; bescherming kritische IOT-infrastructuur Printing voor nieuwe veiligheidskenmerken ICT voor waarschuwingssystemen en crisismanagement
11
Topsectoren A&F; T&U; Chemie Creatief HTSM HTSM; LSH HTSM; Chemie Water; Chemie
TKI Chemistry – Roadmap Chemistry of Advanced Materials
ROADMAP CHEMISTRY OF ADVANCED MATERIALS
0. Executive Summary Artificial materials are the cornerstone of our global society. Progress in the field of materials chemistry has enabled numerous new technologies and applications ever since the Stone Age, and will continue to do so in the coming decades. The Netherlands has a very strong position in various fields of advanced materials, and has a high ambition level for extending on this position; in the period 2030-2040, The Netherlands will have settled its name globally as “rational material design” technology provider for high value-added materials and clean energy materials. In keeping with this long-term ambition level, the emphasis of materials chemistry research on the short term should be on mechanistic insight to be obtained for each of a plethora of desired functionalities and on the medium to long term on moving from increasing insight and understanding towards rational material design capabilities. For the latter, a broader scientific foundation of functionality of materials should be developed, including (predictive) modelling of formulations and properties. The roadmap Chemistry of Advanced Materials has focused on three tasks: Materials with added Functionality, Thin films and Coatings, and Materials for Sustainability. All three tasks revolve around the key word “functionality” and prepare for a future in which advanced materials exert new functions, new combinations of functions, or true step-change improvements in their functions. Under the first task, the functionality is defined by the continuum (or “bulk”) intrinsic properties of the materials, whereas surface effects dominate those properties under the second task. Under the third task, the functionality is related to sustainability. Either directly, when the material itself is made in a sustainable way, or indirectly, when the material enables sustainable energy harvesting or energy storage, reduction of energy consumption or requiring less (scarce) resources for production. Intrinsic design of advanced materials based on or allowing for circular economy or replacement of advanced materials with more sustainable alternatives is bridging task 3 with tasks 1 and 2. Of course, these three tasks are not mutually exclusive. The overall ambitions of each task and the specific steps that should be taken between now and 2040 are summarized in the table below. This roadmap on the chemistry of advanced materials is mainly sustained by the Topsector Chemistry roadmap on Making Sustainable Chemical Products and the Topsector Biobased Economy, by providing sustainable raw materials and (catalytic) technology for control of conversion of these raw materials into advanced materials. This connects to the EU Horizon 2020 theme of Resource Efficiency. In turn, the major beneficiaries of this roadmap are in the Topsector Chemistry roadmaps on Chemistry of Life (Biomedical Materials) and on Nanotechnology and Devices, as well as in the topsectors High-Tech Systems and Materials, Energy and Water for applications of these advanced materials. These applications are fully in line with the EU Horizon 2020 themes Health, Energy, Transport, and Nutrition Security.
12
TKI Chemistry – Roadmap Chemistry of Advanced Materials
Short Term Now – 2020 Materials with Added Functionality
•
•
•
Thin Films and Coatings
•
• •
Materials for Sustainability
•
•
•
Enabling Science/ Technology
•
•
•
Medium Term 2020-2030
Improved performance of existing materials. Development self-healing polymers and ceramics. Mechanistic insight for functional polymers, nanocomposites, metals, high tech materials. New corrosion protection technologies for automotive, construction and Hi-Tech Coatings with antimicrobial properties. Sensoring response coatings Self-healing technologies for thin films and membranes.
•
Predict and design circular material streams, start-ups. Improved control molecular architecture of polymerisations with lower energy input Design of novel materials for energy harvesting and storage Electrochemistry and research on energy storage (batteries) Basic research in emerging classes of advanced materials. Initiatives like NanoNextNL Large scale infrastructure
•
• •
•
•
•
•
•
•
Long Term 2030 - 2040
Higher strength polymers industrially produced Rational material design capabilities. Knowledge base for startups future materials, e.g. biomedical and self-healing.
•
First responsive and active coatings industrially produced Development of nanolayer production technologies. Growth of start-up companies in areas like specialty coatings, ion/molecule sensing and air/water purification New technologies for material replacement, reduction, reclaim and reuse. Dedicated polymer additives for biobased polymers
•
Modelling and computational chemistry on different length scales. Material surface analysis and characterizatio n of thin films (microscopy, spectroscopy, scattering, ellipsometry).
•
13
•
•
•
•
•
•
•
Program Line Ambition
Reinforced composites and multi-functional materials successful in market. High tech materials proven in prototypes for automotive and home. Biomedical materials in clinical trials.
NL will have settled its name as “rational material design” technology provider for high value-added functional materials and clean energy materials.
Bio-interactive coatings industrially produced. Implementation of nanolayer production technologies. New energy creation concepts developed to prototypes.
NL will be a world leader in thin film technology and provide high value-added functional coatings, protective coatings and membranes combining sensory functions with separation technology.
Implement energy production and storage solutions in industrial commercial context. Multifunctional (bio)catalysts for effective recycling. Use of green solvent
NL will be leading as technology provider for circular use of high value (functional) materials, biobased materials, and sustainable energy materials.
Integration of multiple length scales. Understanding of how functional properties on the nanoscale translate to functionalities on larger length scales, leading to implementation in new products.
TKI Chemistry – Roadmap Chemistry of Advanced Materials
1. Introduction Mastering materials has paved the progress of mankind ever since the Stone Age. Now, thousands of years later, artificial materials are the cornerstone of our global society. Materials are present everywhere in our daily life in buildings, furniture, clothes, transportation, and electronic applications but likewise they are part of food and healthcare products, diagnostics, and biomaterials. Progress in the field of materials chemistry has enabled numerous new technologies and applications in this period. Recent examples are found in composite materials for aerospace, smart phones and tablets, energy efficient lighting, solar energy conversion, self-cleaning coatings and materials, rechargeable batteries. Next to these examples, materials chemistry has also substantially contributed to developments in food packaging, in biobased materials and in enabling regenerative medicine and making artificial skin and organs. Advanced Materials in the context of the roadmap are defined as materials that offer superior levels of performance or additional features and added value compared to existing materials for a specific application. However, one can also argue that Advanced Materials are those of which the true relevance still needs to be firmly established, but that offer, at present, new exciting opportunities in terms of properties or applications. In this sense also known materials that can be processed via innovative techniques, such as 3D-printing, self-assembly, or additive manufacturing, should be designated as advanced. Advanced Materials do not exist without materials chemistry. Chemists are able to design materials and control their structure from the atomic and nanometer scale up to macroscopic dimensions. Advanced materials chemistry involves assembling atoms or molecules in a controlled fashion, covering microscopic, mesoscopic, and macroscopic dimensions. Whether this control is achieved by sophisticated (macro)molecular synthesis, directed crystallization or deposition or by advanced processing, understanding the interactions in these dimensions is key. Theory and computational methods will increasingly be used in materials discovery. Controlling matter and understanding its behavior over up to ten orders of length scales is a unique aspect of all modern materials: from stainless steel to specialty polymers, and from concrete to membranes for artificial kidneys. Advanced material science unites chemistry with aspects of physics, biology and engineering to understand and control materials properties and their interplay with artificial and living systems. Advanced Materials is a vibrant field of research and new developments. Novel materials, being organic, inorganic or hybrid in nature, with unprecedented properties are being discovered almost on a daily basis and are revolutionizing our society. Super strong polymer fibers, new carbon allotropes such as carbon nanotubes and graphene, gallium nitride for energy efficient lighting, and new perovskite semiconductors for solar cells and biodegradable plastics are just a few examples of materials that were unknown 25 years ago but are expected to change our world. The whole life cycle of these new and technologically advanced materials needs to be taken into account to provide solutions to the societal challenges of 21st century in areas of energy, water, health, environment, sustainability, transport, and food. New materials will improve our planet and the wellbeing of its people. The Netherlands has a very strong position in various fields of advanced materials. Several excellent academic research groups, prominent research institutes, world leading multinationals, and innovative SMEs and start-up companies exist. The Netherlands can strengthen its position as a key player in the area of Advanced Materials, but contributing to true innovation requires focus and collaboration between all stakeholders. This roadmap provides a framework for research and innovation in Advanced Materials in The Netherlands as part of the Top Sector Chemistry in three main fields related to societal challenges: 1. Materials with added functionality, related to Energy, Health, Transport 2. Thin films and coatings, related to Food security, Energy, Wellbeing 3. Materials for sustainability, related to Resource efficiency, Energy, Health
14
TKI Chemistry – Roadmap Chemistry of Advanced Materials
2. Overview of Tasks 2.1.
What tasks can be defined and how does the programme council prioritize these?
In this chapter, we describe the grouping of advanced materials research in relation to the societal needs we see for the coming decades. A growing population (aspiring higher living standards) and the rapid depletion of natural resources pose future challenges. Material science is instrumental in finding solutions. In the prioritization of research areas that will be addressed within the Chemistry of Advanced Materials program of the top sector Chemistry the societal relevance is important, as well as the excellence of materials research in The Netherlands in specific areas. Both existing and future opportunities for economic activities related to these materials research areas have resulted in the selection of three main tasks: 1)
2)
3)
Materials with added functionality. Our society needs materials “to do more with less”: less weight but higher strength or performance, and able to “do” more things too. Materials combining multiple functionalities (“smarter” materials) provide an added societal and economic value. Thin films and coatings. Besides the intrinsic properties of materials, in thin films and coatings the effects of the surface on its properties, as well as the functionality that the surface properties brings in the use of the material, add to the complex needs in society for “smart surfaces”. Materials for sustainability. Doing more with less should ultimately result in a smaller footprint of material use on our planet and less dependency on geopolitical developments. The resources of fossil fuel and raw materials are dwindling, and climate change forces society to alter the sourcing of its materials, and use materials for saving energy, sustainable production of energy and reduce, replace or recycle the use of scarce elements.
We have defined these tasks based on a priority analysis of the factors described in the following paragraphs (contribution to People, Planet and Profit, fit with Horizon 2020 overarching themes, fit with the Dutch landscape, and technology gaps), with the aim of being as inclusive as possible for Dutch universities, institutes and companies, and allowing for the highest possible thematic overlap with other Topsector Chemie roadmaps (e.g. Nanotechnology and Devices, Chemical Conversion), other Top sectors (e.g. High Tech Systems and Materials, Energy, Life Sciences & Health, AgriFood) and existing vision documents. 1 All three tasks revolve around the key word “functionality”. Every material has a specific purpose for its use, based on one or more implicit functions it has to fulfill. For example, a ‘simple’ coating on a metal bridge combines two essential functions: to protect (the bridge, from corrosion) and to decorate (appealing look). Or a food package that protects the food from getting dirty, but also increases shelf life. In that respect, there are no (current or future) materials that are not functional. However, the vision documents mentioned all display a future in which advanced materials exert new functions, new combinations of functions, or true step-change improvements in their functions. For example, when the coating on the bridge can last 40 years instead of 15, can also sense and signal stresses, or be selfcleaning, it offers additional functionality. Or the food packaging material that also signals increased bacterial activity. We have tried to capture this under the term “added functionality”, where “added” refers to the newness introduced in comparison to the currently known uses of the materials. Under the first task, the functionality is defined by the continuum (or “bulk”) intrinsic properties of the materials, whereas surface effects dominate those properties under the second task. Examples of the first include low-weight car parts or construction materials, biomedical implants, whereas membranes, specialty packaging, antimicrobial coatings and thin-film sensors are examples of the second. Under the third task, the functionality is related to sustainability. Either directly, when the material itself is made in a sustainable way, or indirectly, when the material enables sustainable energy harvesting or energy storage, reduction of energy consumption or requiring less (scarce) resources for production. Intrinsic design of advanced materials based on or allowing for circular economy or replacement of advanced materials with more sustainable alternatives is bridging task 3 with tasks 1 and 2. Of course, these three 1
Vision Paper 2025 Chemistry and Physics (commissie Dijkgraaf) Catalysis - Key to a Sustainable Future (Science and technology Roadmap Catalysis 2015) Dutch Materials, Challenges for Materials Science in the Netherlands (FOM, 2015)
15
TKI Chemistry – Roadmap Chemistry of Advanced Materials
tasks are not mutually exclusive, nor meant to be. It is well possible (and well accepted) that certain innovative ideas can find connections with all three simultaneously. In the next chapter, we will describe in more detail what functions can be envisioned under these challenge themes, while we depict for each the Dutch profitability balance: with the available know how infrastructure and manufacturing capabilities in the Netherlands, are we globally competitive, can we develop the material/technology and extract the value in the Netherlands (delivering jobs in R&D as well as full scale production, a full footprint in the Dutch economy)? Or can the technology (only) be patented and valorized via worldwide licensing of Dutch technology? Which areas can be identified for which the position in The Netherlands is not strong yet but have the potential to develop if we invest?
2.1.1.
Materials with added functionality
2.1.1.1. Description of the task and the relevance for society, industry and science Advanced materials are characterized by their high degree of functionality. Society has always been looking for stronger, faster, thinner more efficient and lighter, say ‘superior’ materials. Solutions are therefore developed based on market-pull mechanisms and science and technology play a dominant role in the development of materials that can bridge the actuality with societal desires and needs. 2.1.1.2. Solution for this task described SMART (present-2040) • 2015-2020 Starting from a strong point of NL, with excellent R&D infrastructure and a good basis for public-private partnerships in material technology development, a mechanistic insight should be obtained for each of a plethora of desired functionalities (see 3.1) in e.g. functional polymers, nanocomposites, metals, high tech materials aimed at aiding implementation of new functionalities in products in cooperation with industrial partners. From a fundamental science perspective, specific functionalities should be fully understood, also in relation to each other and other material requirements. Basic research in emerging classes of advanced materials is strengthened as a seedling for novel applications that we cannot think of yet. • 2020-2030 Moving from increasing insight and understanding towards rational material design capabilities, a broader scientific foundation of functionality of materials is developed, including (predictive) modelling of formulations and properties. Several new technology platforms are expected that make NL an attractive manufacturing area as price per kilogram will be replaced by price per economic value added. The entrepreneurial climate, as well as strong “designer material” knowledge base will allow the growth of start-up companies (e.g. example for future materials like biomedical and self-healing materials) and expand the materials field in an area without cheap resources. This will be in support to typical EU industries like agricultural, car manufacturing, medical, high tech, and energy related industry and in full support of the ageing population. • 2030-2040 Two decades from now, NL will have settled its name as “rational material design” technology provider for high value-added materials, and clean energy materials, based on its knowledge infrastructure and IP position, and its demonstrated infrastructure for introduction of new technologies to the market. 2.1.1.3. What existing competences, technologies, knowledge contribute to this task? Traditionally, the Netherlands has a strong and internationally renowned basis in the development of sophisticated functional materials. This is due to the presence of a variety of companies in the areas of materials, and devices, as well as a well-developed R&D infrastructure (TOP institutes and technology campus models). This ranges from polymers to computer chips and from bio-medical applications to car manufacturing. Large scale infrastructure (synchrotron radiation, free-electron lasers, neutron scattering, electron microscopy, nuclear magnetic resonance, etc.) are increasingly used to investigate and characterize materials properties. The Netherlands has access to and strong expertise with materials research using these large scale facilities. 2.1.1.4. What additional competences, technologies, knowledge do we need? Investment in the area of bottom-up micro-meso-macro scale morphology analytics and control of polymers and/or inorganic particles (nanometer – micrometer size), 16
TKI Chemistry – Roadmap Chemistry of Advanced Materials
nanotechnology/nanoscience and nature inspired self-assembly is crucial for the development of advanced materials. This area is highly multidisciplinary in nature and requires intimate collaboration between chemistry, physics and bio-medicine, with a strong input from rapidly advancing analytic techniques (allowing functionality and morphology characterization on the nanoscale). In addition, integration of multiple length scales in the research is crucial to understand how functional properties on the nanoscale affect functionalities on larger length scales and can be implemented in new products. This needs to be supported by modelling and computational chemistry on all these different length scales (micro: MD, meso: coarse graining, macro: finite elements). 2.1.1.5. How do the tasks connect to grand challenges in H2020? This task can be connected to many of the overarching Horizon 2020 themes, but most prominently with: • Smart, Green and Integrated Transport. For example energy saving by reducing weight of vehicles (based on new designs, enabled by new functions and self-healing capabilities), or developing new materials for use in (manufacture of) new high-tech devices. • Health, Demographic Change and Wellbeing. For example biomedical materials, new materials enabling life style (sports, clothing, ICT) and quality of life (ageing population, health care, diagnostics).
2.1.2 Thin films and coatings 2.1.2.1 Description of the task and the relevance for society, industry and science Thin films and coatings are everywhere as they form important barriers to selectively protect or selectively allow permeation. For many applications the desired properties are not met, as is exemplified by the still unsolved problem of metal corrosion. . 2.1.2.2 Solution for this task described SMART (present-2040) • 2015-2020 Similarly to the first task, NL has the luxury of strong starting position due to the active presence of coating companies (AKZO, DSM, DOW, SME’s), water treatment companies and TOP institutes (Wetsus, DPI, MESA+, DIFFER, etc.). Building on this strength, connections should be made between the different actors in pre-competitive cooperation consortia, with the aim to obtain mechanistic insight into desired functionalities of thin layers (see 3.2) with emphasis on surface effects. Recent advances give an unprecedented control over layer thickness and composition, down to the atomic level, and allows for tunable physical properties. However, more is needed. The strong position of NL in this field requires further investments in expensive infrastructure both for short term and long term advanced materials development. • 2020-2030 Moving from increasing insight and understanding towards rational material design capabilities, a broader scientific foundation of functionality of thin films and coatings is to be developed, including (predictive) modelling of properties. Several new technology platforms are expected that make NL an attractive manufacturing area as price per kilogram will be replaced by price per square meter surface value added, yielding high profit margins for coatings with added functionalities (e.g. sensing capabilities) and/or better protective capabilities with applications ranging from ‘smart’ food packaging to coatings for the aeronautics industry. The entrepreneurial climate, as well as strong “designer film” knowledge base will allow the growth of start-up companies in areas like specialty coatings, medical diagnostics, ion/molecular sensing and air/water purification based on thin film and membrane technology. • 2030-2040 Two decades from now, NL will be a world leader in thin film technology and provide high value-added functional coatings for a wide range of applications where NL presently already has a strong position (protective coatings, (food) packaging). A strong industrial activity based on functional coatings and membranes combining sensory functions with thin film separation technology is established in areas like medical diagnostics and clean air/water industry. 2.1.2.3 What existing competences, technologies, knowledge contribute to this task? Traditionally, NL has a very strong position in coatings and packaging materials, both in research institutes and industry. Advanced infrastructure allowing control down to the level of a single 17
TKI Chemistry – Roadmap Chemistry of Advanced Materials
atomic layer, as well as characterization techniques (including large scale facilities like synchrotrons) has been established in NL (with support from programs like NanoNed and NanoNextNL) and requires continued investments. 2.1.2.4 What additional competences, technologies, knowledge do we need? The same needs exist here as under 2.1.1.4, but more focused on surface driven phenomena in thin films. Material surface analysis and characterization on the level of such thin films has to be developed strongly (microscopy, spectroscopy, scattering, ellipsometry). Adhesion is an example of a crucial performance parameter for thin films in which fundamental understanding needs to increase substantially. Continued support for initiatives like NanoNextNL is crucial to keep the (expensive) infrastructure competitive. Advances in coarse grained modelling are needed to understand surface dynamics (restructuring upon different media contacts). 2.1.2.5 How do the tasks connect to grand challenges in H2020? With the specific focus on surface-dominated material properties, this task can be connected most prominently with: • Food Security, Sustainable Agriculture and Forestry, Marine, Maritime and Inland Water Research and the Bioeconomy. For example new packaging materials that allow the optimal storage atmosphere inside (breathing), sense and signal deterioration, prevent waste of foods and nutritional value. • Health, Demographic Change and Wellbeing. For example self-cleaning coatings, antimicrobial coatings, new membrane materials enabling low-energy water desalination, or new thin(multi)layer materials for use in photovoltaics, sensors or EUV lithography. This will be in support to typical EU industries like architectural, domestic and life style, health, manufacturing and energy related industry and in full support of the ageing population.
2.1.3 Materials for sustainability 2.1.3.1 Description of the task and the relevance for society, industry and science Sustainability is important to accommodate the growth of the world population and its future demand of resources for water, food, energy at higher average life standard. This requires a significant change of today’s practice. Changes include the minimization of the manufacturing footprint of the material, but also the sustainable gains of its use during the life cycle and clever re-use of the material or its components. Resources for energy (fossil origin) and raw materials (rare elements) are depleting and this requires a transition to sustainable energy production and reduction, replacement or recycling of rare elements and the further development of bio-based materials. The transition to a sustainable society will have a tremendous impact and take place in stages. Initial efforts are aimed at reducing the footprint by making existing technologies more efficient. Via temporary solutions in intermediate stages, the final goal is a (circular) society based on truly sustainable resources for energy and materials. In this transition to a sustainable society advanced materials will play a crucial role: a sustainable society cannot be realized without the corresponding materials that enable it. 2.1.3.2 Solution for this task described SMART (present-2040) • 2015-2020. Materials for sustainability are an emerging field for NL, and also worldwide and will have a tremendous (economic) impact. Our country is too small to leave a large footprint on the planet, but it can contribute to a circular economy of the coming decades, based on two competitive advantages: 1) the excellent knowledge infrastructure for generating (and selling) new technologies, and 2) the high population density and existing organization degree of our society in terms of recycling and energy distribution, enabling for example complicated recovery / separation streams for reuse of materials. We need to try and predict and design the circular material streams, stimulate IP and start-ups and test these hypotheses in small-scale demonstration projects. • 2020-2030. In the next decade, regulations (national, EU and global) should be matched with the level of demonstrated circular material use and improved sustainable and clean energy concepts. Supported by this, the scale-up of the envisioned material streams should be implemented. New technologies for material replacement, reduction, reclaim and reuse will lead to large scale industrial activity. Sustainable energy production and storage systems developed 18
TKI Chemistry – Roadmap Chemistry of Advanced Materials
•
in NL, IP protected and sold to areas with larger footprints. This will be supported by the growing image of NL as “designer material” technology provider (2.1.1). 2030-2040. Two decades from now, NL will have settled its name as technology provider for circular use of high value (functional) materials, bio-based materials, and sustainable energy materials, based on its knowledge infrastructure as well as its logistic opportunities and its demonstration infrastructure for new technologies in complicated societal environments.
2.1.3.3 What existing competences, technologies, knowledge contribute to this task? The existing competences in material (polymer, ceramic) synthesis and manufacturing can greatly contribute to the design and making of new materials / polymers to play their role in sustainability. The chemistry, as such, of these materials does probably not need to be altered completely, just adapted, improved, with enhanced control. For example, using the existing principles of polycondensation, polyaddition or polyolefin chemistry, new polymers can be designed with higher functionality than the present ones, based on bio-based building blocks. This leaves every opportunity to use NL’s leading positions in this knowledge field to contribute. NL also has a strong position in research on materials for sustainable energy production, linked to nanomaterials research for harvesting solar energy (PV and more recently solar fuels). The area of clean energy and resource efficient production processes spans a wide range of chemistry and materials science where in many areas NL has relevant expertise due to the innovative role of the NL chemical industry. 2.1.3.4 What additional competences, technologies, knowledge do we need? Raw materials: a closer backward integrating connects needs to be made with the Making Molecules roadmap. Also the design principles (“assemble to disassemble”) need to be rethought to enable circular material use. Research on energy storage (batteries) has declined in NL in the past decades, but offers opportunities for economic activity as the car manufacturing in EU is still strong and NL plays a key role in the supply of materials to this industry. Also in the field of biobased materials, many efforts are underway. This field, however, needs further time to implementation as cost-effective routes to existing products have to compete with optimized fossil-based assets. The focus should therefore be on truly new materials of biomass origin. Molecular modelling and coarse grained modelling are expected to contribute to the understanding of the translation of biomass building blocks into new materials. 2.1.3.5 How do the tasks connect to grand challenges in H2020? This task has a direct or indirect impact on the Climate action and Resource Efficiency theme, for example by renewable materials (via biobased building blocks), low-carbon footprint manufacturing of materials, recovery and reuse of materials, circular economy, materials enabling conservation, generation and storage of energy. But also finding alternatives for rare element based materials are in scope, as well as resource efficient material manufacturing such as 3D printing, enabling both Health and Life-style.
19
TKI Chemistry – Roadmap Chemistry of Advanced Materials
3.
Principal activities of tasks
3.1
Task 1
Materials with added functionality
For many applications the demands on materials become higher, while at the same time the market is very competitive and global, which puts a lot of focus on reducing costs. A number of successful examples from the past have shown that the Dutch industry, together with knowledge institutes (e.g. Dutch Polymer Institute, NanoNextNL, Materials Innovation Institute), can pave the way in the advanced polymer, nano and hybrid (metal) materials and composites arena by using a systems approach. This implies that a strong link is needed between the chemistry of making optimized advanced materials and processing with cost-efficient technologies, so the right application domains can be targeted. This especially holds for the energy (e.g. oil&gas, wind energy and solar energy), health (e.g. in-vivo health monitoring), high tech (e.g. opto-electronics) and transport (e.g. aerospace and automotive) domains. In general, it can be stated that the need for new metallic, ceramic, polymeric, composite/hybrid light-weight materials is growing rapidly. Classic material selection approaches will no longer work. Well-known Ashby material selection charts, as shown in Figure 1, are an initial start, but new applications for the above-mentioned industries can only be realized when new materials become available that offer a combination of properties, e.g. they can be used as a structural load bearing component and in addition offer functionality, e.g. they can sense, actuate and/or self repair. In addition to adding functionality such new materials have to be produced, processed and recycled in a sustainable manner. Value should be created according to a ‘more for less’ philosophy. Reduce the weight of a design but add functionality. The value will be in price per economic value added rather than producing kilograms.
Figure 3.1 Material selection chart as introduced by Michael Ashby. Material properties, in this case density (kg/m3) vs. Young’s modulus (GPa), are plotted in pairs on a chart, allowing the user to find the right material for the right job. (Ashby, Michael (1999). Materials Selection in Mechanical Design (3rd edition ed.). Burlington, Massachusetts: Butterworth-Heinemann. ISBN 07506-4357-9. Cf: www-materials.eng.cam.ac.uk/mpsite/physics/str-tough_article/ of http://store.elsevier.com/Materials-Selection-in-Mechanical-Design/Michael-Ashby/isbn9780080468648/) Also the trend towards more personalization in products with high quality-of-life requires a different mindset toward the design and processing of new functional materials with on the one hand more automated processes, while on the other hand allow for the use of additive manufacturing technologies (3D printing). In that sense, multi-functionality and design go hand in hand, and design encompasses both technical and use or “human interface” aspects. The creative industry can help
20
TKI Chemistry – Roadmap Chemistry of Advanced Materials
the design of materials in the specification of the different functionalities (existing and new ones) to be combined. Although this task encompasses different classes of materials (see also Figure 3.1), a special mention should be made for organic materials, based on “molecules” (mainly polymers), as their design and production from raw materials (petro- or biobased) depends highly on manufacturing capabilities for which we refer to the Roadmap Making Sustainable Chemical Products. 3.1.1
Designing materials with the right functionality In many industries, e.g. automotive, aeronautics, electronics and construction, the driver for innovation is weight and cost reduction together with higher demands on the material properties in terms of thermal, mechanical and chemical properties. In said applications engineers/designers use materials that are typically optimized to fulfill one specific task or one specific function. In this context, functionality can be defined as: 1- Mechanical (e.g. strength, stiffness, flexibility, fatigue or impact stability) 2- Chemical (e.g. chemical stability, biocompatibility) 3- Physical (e.g. thermal and electrical conductivity, magnetic, piezoelectric, optical) A - Traditional materials Over the years, chemists and material scientists have designed and optimized materials for specific applications, e.g. metals for high temperature engine parts, ceramic coatings for high high-temperature turbine coatings and polymers for ductile/light-weight packing materials. Stepchanges are definitely possible in extending the current property portfolio, but the limits of traditional materials have been or will be reached soon. This can be achieved by chemical structure and processing optimization, e.g. polyethylene can be processed into high modulus/high strength yarns. Optimizing the chemistry (catalysis and polymerization conditions) and processing has the potential to further improve the mechanical properties of PE-based yarns by a few percent. Aluminum, as another example, is an alloy and has now been optimized with respect to strength and ductility. In this case, alloy design and processing are expected to result in an overall improvement of a few percent at best. For steel, on the other hand, several issues need to be resolved. Understanding fatigue behavior, improve corrosion stability and how to improve polymer (coating) adhesion on steel are still issues that need to be resolved. The same is true for continuous and non-continuous fiber-reinforced composites. The design of composite structures is sufficiently understood. However, the resin-fiber interface and processing issues need to be resolved and how composite structures fatigue over time. B - Multi-functional materials In order to enable the design of next generation coatings, composites, packaging, sensors, actuators etc., materials are needed that combine some level of structural integrity with one or more additional functions. Self-healing polymers or ceramics with the ability to reverse crack formation have a strong advantage over traditional construction materials. Designing multifunctional materials (MFMs) requires a multidisciplinary approach and the ability to design materials at different length scales (Å to m). MFMs are often multi-component or hybrid systems. Typical building blocks include ceramics, metals and (bio)polymers. Of interest are organic/inorganic nanocomposites where the matrix offers the structural integrity and processing capability and the nanofiller introduces a second functionality, i.e. it reinforces the matrix and adds an electrical, thermal, actuating/morphing or sensing functionality. The envisioned applications could be in photovoltaics, sensors or in bulk applications such as composites. The aim is to reduce weight, add functionality, extend the life cycle and reduce maintenance costs. C - High-Tech materials In the high tech industry the rapid development of new technologies often relies on research at the interface of chemistry and physics, with a strong contribution from the field of nanoscience. The size-dependent physical and chemical properties of nanomaterials allow the design of functional materials with unique properties, e.g. optical, magnetic, photonic, sensory or electronic functionalities that revolutionize rising markets like telecommunication, information 21
TKI Chemistry – Roadmap Chemistry of Advanced Materials
technology and semiconductors. Also more traditional markets like lighting, displays, automotive and aerospace increasingly benefit from high tech materials. Well-being, also for the ageing population, is improved by incorporating high tech solutions in consumer products and homes where due to unique functionalities substantial added value can be created. The Netherlands has a strong position in research on high tech materials and nanomaterials. The high tech industry around Eindhoven, including the high tech campus, is at the forefront worldwide and provides many examples of successful interaction between academia and industry. In the semiconductor industry high tech materials are needed to push the boundary close to the physical limits in processor power. Transparent conductors with high stability and superior conductivity are required for a variety of application, including solar cells and displays. Advanced integrated systems for (remote) control and security of and in homes and businesses rely on high tech solutions incorporating a.o. sensory function, telecommunication, smart windows and lighting. The automotive industry benefits from high tech materials in the development of the car of the future (energy efficient, improved safety by smart lighting solutions and sensors). High resolution imaging systems for science and industry, including electron microscopy and scanning probe techniques, are dependent on new materials for more sensitive detectors for a.o. charge, force and light and materials allowing higher precision and reproducibility in positioning. D - Bio-Medical materials The field of biomedical has made impressive progress in the past decades. Where the discovery of new medicines is slowing down, biomedical materials are increasingly applied in the medical field. Two types of biomedical materials can be distinguished: materials that are used to restore functions in the human body and materials for medical diagnostics, possibly linked to targeted therapeutic action (theranostics). The line between artificial materials and living matter is blurring as interdisciplinary research between the bio-medical field and chemistry now allows for the artificial creation of living matter. In addition, small scale and cheap diagnostic equipment that can be used in the home or in remote areas is a rapidly growing market. There is a strong activity in the Netherlands. Cooperation between large companies and SME’s, in the biomedical field, and universities, university hospitals has been supported in several successful programs (BMM, NANONED, CTMM, HTS&M). Challenges include research on the nanoscale. Bio-molecules of nm dimensions (proteins, DNA) are at the basis of diseases and (bio)chemistry now allows for the controlled synthesis and self-assembly of these molecules. Future prospects in this field include: Control of interaction of living matter with man-made materials will allow to replace or assist dysfunctional organs beyond the traditional implants. Imaging using (multi-functional) nanoprobes in combination with controlled drug delivery and/or release makes a more targeted and personalized medicine possible. Inexpensive small scale diagnostics (e.g. using lab-on-chip technology, even in combination with mobile phones) based on (nano)sensors for diagnosis at home or in remote areas is a growing and requires a continued effort in finding new materials for more reliable and cheaper diagnosis. o
{solution} A strong integration between developing chemistry for advanced materials with added multi-functionalities, i.e. combine a structural component with a functional component, e.g. a sensing, morphing and/or self-healing functionality. The molecular and physical interactions need to be understood and optimized in order to introduce these functionalities. Specific steps required present-2040: • Optimizing protocols for physical/chemical interaction between different material classes as used in hybrid materials/composites, • Understanding/controlling dispersion methods of nanofillers, • Control and tune physical properties (optical, magnetic, electronic) on the nanoscale and translate these to superior high-tech materials
22
TKI Chemistry – Roadmap Chemistry of Advanced Materials
•
To meet these goals, smart solutions and a focused multidisciplinary approach are needed, integrating chemistry with physics, bio-medical and engineering. This requires developing new catalyst systems, the design and synthesis of new building blocks, nanoscience giving control over physical properties, optimized reactor technology, mixing protocols, materials processing techniques and optimized design of products taking into account the specific material properties, which might be highly anisotropic.
•
O {milestones} A- 10 years, B-20 years until 2020: • Improved mechanical properties traditional polymers (TRL6) • Understanding fatigue and improve corrosion stability steel (TRL3) • Insight resin-fiber interface for fiber reinforced composites (TRL 3) • Development self-healing polymers and ceramics (TRL 3) • Development of polymers with additional functionalities (optical, magnetic, electronic) (TL3) • Design of new materials for EUV lithography (TL3) • Development of smart materials and solutions for sensors and actuators in homes and automotive (TRL 3) • Materials for higher precision positioning and improved sensitivity sensors (TRL 3) • Control of interaction of living matter with man-made materials (TRL 3) • New platforms for theranostics (TRL 3) • Development of small scale disease diagnosis schemes (TRL 3) • Development of a technology platform for multiple, selective response factors (TRL 3).
•
2020-2030: • Higher strength polymers industrially produced (TRL 6) • Several insights described above (corrosion, fatigue) will lead to development of improved materials that are tested in a simulated environment (TRL 5). • Superior composites are designed based on new insights (TRL 3) • Prototypes of several products successfully tested (TRL 7) • Self-healing properties for polymers and ceramics demonstrated (TRL 4) • Selection of biomedical materials tested (TRL 5) • Response platform will be broadened by new concepts (TRL 3)
•
2030-2040 • Reinforced composites and multi-functional materials successfully introduced to market (TRL 9) • High tech materials proven to function in several prototypes for automotive and home (TRL 9). • Biomedical materials for diagnostics and/or controlled drug delivery in clinical trials (TRL 7) • Several new concepts for multi-functional materials and biomedical materials will be further developed to prototypes (TRL 7) • Response platform will be broaden by new concepts (TRL 3)
o Expected result present- 2040 {position in innovation chain}; o Scientific/technological goal: Understand the design rules, synthesis and processing conditions of new multi-functional materials and their performance. o Industrial end goal: Utilize new advanced multi-functional materials and processes using cost-efficient and sustainable technologies with the aim to design new enabling materialbased technologies. o Societal goal: Weight, fuel and cost reduction. Sustainable materials for a sustainable future. o Suitable funding frameworks: M2i and DPI 2.0.
23
TKI Chemistry – Roadmap Chemistry of Advanced Materials
3.2
Task 2
Thin films and coatings
In addition to the challenges described for functional materials in the previous paragraph, there are specific other challenges for functional thin films and coatings, related to their surfacedominated property demands. In this task we focus on those additional functionalities, but it is clear that for a large number of applications the required thin film / coating properties also involve the continuum characteristics described earlier (mechanical, chemical, physical) as well as the dependency on the manufacturing capabilities of the (macro)”molecules” that have to constitute these functionalities. The science in this field has made impressive progress in the past 15 years. For example, surfaces which are self-healing or self-replenishing, possess specific barrier properties, are switchable from hydrophobic to hydrophilic by response to external triggers such as temperature have been explored. Other response triggers known today are for example light, heat and scratching. Further development of the underlying technologies, however, will open new opportunities. 3.2.1
Designing thin film / coating materials with the right functionality Specific surface-dominated functionalities are listed below. o {solution} 1. Mechanical: adhesion of thin layers on substrates or between thin layers in multilaminates, resistance against scratch and wear stress. 2. Chemical: resistance against high-energy radiation such as UV, ozone, weather and moisture. Creation of active molecules upon absorption of high-energy radiation such as UV (photo-oxidation). 3. Physical: roughness and surface topology, optical properties of thin layers (in/outcoupling of light, matting versus gloss, reflection or antireflection), photo-active properties (photon conversion), thin layer electro-conductivity and electrical breakdown resistance. Barrier properties and perm-selectivity of thin layers and membranes. 4. Interfacial properties: solid-liquid: (super)hydrophilicity and (super)hydrophobicity, switchability. solid-solid: corrosion protection (resistance to ion migration across the buried interface), dusting. solid-cell: antimicrobial properties. solid-tissue: haemocompatibility, anti-inflammation, biostability. A - Traditional coatings, packaging films and membranes. Although coatings and films usually already combine different functions, we will discuss here some step changes that are still highly needed in the already known functions. • Anti-corrosion is still an unsolved challenge. Advanced coatings tailored to corrosion protection of metallic substrates are of the utmost relevance to ensure reliability and long-term performance of coated parts as well as the product value of the coated materials. Durable passivation of the interface (also when damaged) remains an unmet need. • Barrier properties of membranes and packaging films against most prominently oxygen, water and carbon dioxide, or even perm-selectivity are still in need of higher performance materials with tailored micro- and mesomorphology. Examples are in aluminum-free barrier packaging foils (easy to recycle, see 3.3), breathable packaging for fresh foods (water and oxygen in, carbon dioxide out), membranes for fresh water (decontamination), highly selective membranes for industrial separation processes. • In semiconductor manufacturing use is made of photoresists for nanolithography that should be transparent to extreme-UV. Also block-copolymer self-assembled layers are used for that purpose. Challenge is to create smaller but more powerful processors by even higher resolutions in nanolithography. • Prolonged service life time for protective and decorative coatings can result from a marked increase in UV/outdoor exposure resistance by more stable polymer design on the one hand and increased insight in stabilization mechanisms on the other. • Non-toxic marine anti-fouling coatings are highly desired in marine transport, while current technologies work only under release of heavy metals (tin, copper) or high velocities. 24
TKI Chemistry – Roadmap Chemistry of Advanced Materials
•
Increased use robustness of protective and decorative coatings is a ubiquitous unmet need: car body coatings are still vulnerable to scratching, while waterborne coatings are still notoriously difficult to apply on its plastic parts without expensive pre-treatments because of loss of adhesion, membranes for energy saving separation processes have limited lifetime. Increased mechanistic insights into these mechanical properties on the micro- and mesoscale are expected to substantially increase these durability performances.
B - Multifunctional and responsive coatings and thin films Apart from many applications that actually require a combination of the functionalities mentioned under A (new combinations of surface dominated functionalities), the following examples illustrate the needs for combinations of new surface functionalities: • Self-healing capabilities can be incorporated into coatings to repair damages, for instance as a result of insufficient scratch resistance or in order to further increase on anti-corrosion properties or prolonged service lifetime, by transporting material from "reservoirs" to the damage area. Self-healing materials have become a very active field of research since several years, but self-healing technologies of materials which also heals the (surface) functionality are scarcely known. • Self-cleaning coatings can remove (with an external trigger like rainfall or sunlight) liquid or dust autonomously by virtue of their (super)hydrophilic / hydrophobic or photoactive surfaces), while anti-soiling coatings can prevent dusty solids from settling and adhering on their surface. Switchability between lyophilicity even enhances on these effects and creates extra external triggering. • Active ion transport incorporated in water-permeable membranes can enable low-energy desalination devices. • Active scavenging or (chemo)absorption of unwanted species (water, carbon dioxide) inside a packaging material can help to establish the ideal atmosphere for safe storage of food and medicine. All the while, packaging films become thinner, requiring less raw material to be used. This asks for a strong demand in manufacturing processes developments, e.g. multi-, micro- or even nanolayer co-extrusion processes offers enormous unexplored possibilities. • Sensoring and signaling of food packaging materials, indicating for instance heat or oxidative stress, pH change, metabolite or toxin levels, ageing or even microbial activity inside the packaging will help tremendously in prevention of food waste. But also simply monitoring the performances of thin films, coatings and membranes in situ over time without being damaged is of great desire. It will enhance the product security and safety and the response technologies will be applicable in a broad range of applications, e.g. food, water supply, construction industry, automotive, aerospace and medical equipment. A combination of responses will enhance the utility of a thin layer/coating/membrane. In one aspect one response factor might trigger another response factor (cascading response). C - Bio-(inter)active sensors, coatings and films More specific examples of the latter inside the body (in-vivo), as part of biomedical devices or implants are mentioned here because of the expected strong growth of this research area in response to the global need for health care and the ageing population in the West: • Coatings and surfaces that have a positive material-biology interaction, such as sustained release of drugs and other actives, cell growth stimulation and tissue integration will greatly enhance the ability of man-designed technology to become a functional part of the damaged / imperfected human body. • Antimicrobial surfaces. Hygienic conditions and sterile procedures are particularly important in hospitals, kitchens and sanitary facilities, air conditioning and ventilation systems, in food preparation and in the manufacture of packaging material. In these areas, bacteria and fungi compromise the health of both consumers and patients. In these areas there is a strong need for antimicrobial (wet and dry, log-kill rates varying from 3 to 7!), mechanically and chemically robust coatings.
25
TKI Chemistry – Roadmap Chemistry of Advanced Materials
•
Bio-resorbable membranes can temporarily prevent post-operative organ adhesions, or act as a scaffold to grow new skin from stem cells after severe burns. In 3D (printed), layer-on-layer deposition of material-cell combinations in principle holds promise to grow artificial organs from a patient's own cells without immunogenic response. Rate of bio-degradation and resorption of the material residues by the body need to be carefully designed.
D - Coatings for energy creation / saving One of the grand challenges for Europe in the coming decades will be to guarantee a sustainable supply of energy – beyond the use of fossil fuels and nuclear energy. For that purpose, efficient harvesting of renewable energy, e.g. wind or solar, and conversion into a useable form is of utmost importance. In addition, it is of vital importance to reduce the energy consumption. Both in optimizing energy harvesting/conversion en decreasing energy consumption, coatings and films play a key role. • Coatings and films for photovoltaics: light in-coupling/trapping, photon up-/downconversion, ITO replacement, easy-to-clean, anti-dust, printable transparent conductors, passivation, barrier reduction in costs per Watt-peak, improvement in life-time. • Coatings and films for lighting devices: light out-coupling/extraction, photon conversion, ITO replacement, printable transparent conductors, barrier reduction in costs per lumen, improvement in life-time. • Solar control coatings for the built environment: infrared management, switchable coatings (e.g. thermochromic, electrochromic), coatings for greenhouses, aesthetic coatings for solar thermal systems • Coatings for windmills: Impingement resistant coatings are necessary to supply market demand for increasingly larger wind turbine blades. On top of that reduced materials use and recycling are of importance for the a large area applications • Coatings for aerospace: anti-icing, anti-drag (micro-aerodynamics) • Coatings for fridge doors/freezers: anti-fogging, IR reflection, heat diffusion barriers. o
Similar to Task 1, a strong integration between developing chemistry for advanced thin film materials with added multi-functionalities, i.e. combine a protective / decorative component with a functional component, e.g. a sensing, transporting, electron-hole pair creation, surface self-replenishing and/or self-healing functionality. The molecular and physical interactions in said systems need to be understood and optimized in order to support and design these functionalities.
o
Specific steps required present-2040: Development of technology platforms for functional coatings, thin films and membranes with a strong focus on development of new concepts for chemical and physical related properties such as (but not limited to) antimicrobial, corrosion protection and permeation controlled properties and the development of enhanced response technologies and new self-healing technologies which enhances and/or creates new performances with improved product life time (incl predictability) and product security. until 2020: • first multi-functional coating industrially produced and applied • Development of new corrosion protection technologies for automotive, construction and Hi-Tech applications. (TRL 3) • Development of coatings, thin films and membranes with durable antimicrobial properties for domestic hygiene and hospital environments (TRL 3) • Sensoring response: Development of nanosensors and films for e.g. oxygen detection, temperature, UV light (TRL 3) • Development of self-healing and self-replenishing technologies for functional coatings/thin films and membranes (TL3) • Development of a technology platform for multiple, selective response factors (TRL 3).
•
26
TKI Chemistry – Roadmap Chemistry of Advanced Materials
•
•
o
o
o
o
o
2020-2030: • first responsive and active coatings industrially produced and applied • A couple of selected technologies described above (corrosion, antimicrobial) will be demonstrated in operations environment (TRL 7). In-depth knowledge will be obtained for understanding and application of newly developed technologies. Development of nanolayer production technologies. • Sensoring response technologies will be further broadened (TRL 3) • Selected sensoring response technologies will be demonstrated in operations environment (TRL 7) • Self-healing platform for functional coatings will be broadened • Selected self-healing platform for functional coatings will be demonstrated in operations environment (TRL 7) • Response platform will be broadened by new concepts (TRL 3) 2030-2040 • first bio-interactive coatings industrially produced and applied • A couple of prototypes will be fully proven in operational environment (TRL 9). Implementation of nanolayer production technologies. • A couple of new energy creation concepts will be further developed to prototypes (TRL 7) • Response platform will be broaden by new concepts (TRL 3) Expected result present- 2040: from selling coatings per kg material towards selling functionalities (in € per m², or € per piece); forward integration of Dutch companies in the value chain (not only producing polymers, but also applying coating materials and films). Scientific/technological goal: A: understanding that enables step-change improvement in performance of coatings and thin films of known functionality, B: combining known and/or new functionalities in thin films and coatings, C: understand biology-material interactions leading to bio(inter)active coatings and D: design of thin films that enable new energy applications. Industrial end goal: • (1) Optimization of the primary functionality, addition of new functionalities in the same coating (towards multi-functional coating systems), improvement of life time/durability (towards the full lifetime of devices such as photovoltaics or windmills), reduction in costs (parallel to device cost reduction). It will also create leading positions in existing markets, education of talented people, cutting edge research and co-creation platforms, innovation driven high tech material development. • (2) From passive functionalities via responsive and active systems towards interactive ones. These products will open new market opportunities, like for instance for medical devices, improved and “smart” coatings for advanced applications, novel active and sensing packaging materials. Ultimately: coatings that adapt towards their environment. E.g. blocking of light upon interaction with specific wavelengths. Societal goal: The new responsive properties will improved the well-being, safety and food security. The reliability of the performance of a coating will be enhanced. The new response technologies will lead to less (food) waste, improved safety of corrosion damageable constructions, lower carbon footprint an improved quality of life (air, water). Societal goal: reduce energy consumption and improve harvesting of sustainable energy Suitable funding frameworks: Additional funding will be sought from both private and public sources (regional, national and international). Examples of public funding opportunities are Brightlands Materials Center, Cornet, DPI, Interreg, NMP.
27
TKI Chemistry – Roadmap Chemistry of Advanced Materials
3.3
Task 3
Materials for sustainability
Materials for sustainability encompass a wide spectrum of materials and includes materials that are produced in a more sustainable way, make a process/chain more sustainable and/or are used for sustainable energy production or storage” - we include materials based either on polymeric materials, or on inorganic/mineral based materials or hybrid materials. These materials will have in common: less non-renewable energy use (NREU) and less greenhouse gas (GHG) emission during the synthesis, construction, processing, packaging, transportation usage, recycling and re-use of these materials. Specific subsets of such materials will even have a positive impact on NREU production e.g. solar cells. Furthermore, the demand for raw materials increases significantly, such as for oil, rare metals etc. Whereas oil is essential for energy, chemicals and high performance materials (plastics, fibers, etc.), minerals and metals are crucial in numerous products (electronics, catalysts, solar cells, wind turbines, fertilizers, etc.). A list of 20 critical raw materials was recently identified by the EU related to supply risks based and economic importance. Clearly, solutions are needed to overcome this upcoming scarcity. 3.3.1
Replacement of petrochemical feedstocks by bio-based feedstocks A – Polymeric materials There are several options to reduce the environmental impacts related to polymer production and use, many of which are also relevant for other bulk materials. Declining reserves of fossil feedstocks and the need to mitigate CO2 emissions enforces an increased use of biomass in the production of polymeric materials. On the mid to longer term the importance of producing and using biobased materials will be of imminent importance. Such biobased materials will be based upon modified natural biopolymers (e.g. starch cellulose, proteins), but increasingly also as a result of polymerizing biobased monomers into thermoplastic and thermosetting polymers. Biobased polymers produced by polymerizing biobased monomers are anticipated to grow even more in importance than the use of modified naturally occurring polymers. Initially biobased polymers will have physical properties very much alike todays’ petrochemically based polymers. Such biobased polymers can be structurally identical to fossil based polymers (also known as “drop ins” e.g. biobased polyethylene) as well as based upon unique monomers (e.g. polylactic acid). Once having an established market share of at least 10% (envisaged for 2030), it will become increasingly important also to derive biobased materials with novel or added properties such as improved gas barrier- fire retardancy, antimicrobial, self-cleaning and self-healing or selfassembling properties. A huge challenge is furthermore to develop “triggered degradation concepts” enabling the development of materials with a long life span but which nonetheless can be degraded once, unintentionally released into the environment e.g. in the form of “plastic soup”. Challenges: (a) With regard to naturally occurring biopolymers such as polysaccharides (starches and cellulose etc.), there is a need for better understanding of their physical properties in relation to their detailed structure, a need for site specific (bio)catalytic modifications strategies and a need for chemistries that allow the product to be modified while avoiding highly polar, potential hazardous solvents (e.g. NMP, DMAA). With regard to lignin as another natural occurring irregular polymer there is a higher need to develop chemo- or biocatalytic strategies to obtain well defined products at higher value. (b) with regard to identical “drop-in” chemicals (and the polymeric materials based upon them) the challenge is to develop technology to optimize biorefinery systems for generating the feedstocks, and optimizing biotechnological or chemo-catalytic modification methods to get to efficient ways of synthesizing the identical, drop–in chemicals. For unique molecules and materials, development of efficient synthesis routes as well as the synthesis and exploration of new unique materials based upon these monomers should go hand-in-hand. (c) an additional challenge for biobased polymers results from polymer additives (including processing aids, lubricants, heat stabilizers, antioxidants, pigments etc.) and auxiliary agents (e.g. catalyst, solvents) with reduced Health, Safety, Environment (HSE) issues. Materials for sustainability will also require polymer additives with substantially reduced HSE issues compared to many of the current ones (e.g. lead based heat stabilizers, brominated flame retardants etc.). Furthermore
28
TKI Chemistry – Roadmap Chemistry of Advanced Materials
polar solvent that are very important to the current and future industry like NMP, DMSO and DMAA should be replaced. It is of absolute importance to develop new classes of additives, designed and engineered for optimal functioning in new (biobased) polymers. Improved (bio)catalytic modification strategies should enable us to use these products in a broader range of applications, including e.g. water based paints, coatings, adhesives, dishwashing formulations, cosmetics etc., but also in more durable products like agrofibre reinforced materials or biobased plastics. This will also lead to the envisioned novel or added properties. B - Sustainable synthesis - Increased energy efficiency and material efficiency (yields) in all processes in the value chain leading to more sustainable products Over the years, chemical processes have continually improved in terms of their greater utilization of (secondary) raw materials, improved safety and increased productivity whilst minimizing waste and energy use. Yet, chemical industry is still facing the need to restructure and modernize by continuing to reduce energy as well as resources consumption (i.e. both raw materials and water) besides reducing waste as amounts and emissions at the same time. Challenges: To achieve near 100% selectivity in multi-step and complex syntheses. Exploration of new reaction pathways and conditions, reduction of the number of reaction steps, introduction of intensified separation technologies and intensification in the energy input; design of integrated processes, adapted materials (i.e. membranes for hybrid separations), solvents (i.e. ionic liquids for extraction) as well as equipment. 3.3.2
Improved waste management by recycling of materials, re-use and recovery of product components and / or compounds A – Polymeric materials Recycling of petrochemical based polymers is currently dominated by the recycling of PET. Recycling of other polymers like polyolefines should increase in importance and will require the development of novel processing and /or additive technology to be able to maintain material properties and not decrease (“downgrade”) material properties while recycling. In order to enhance the possibilities for recycling, in general materials with less complex formulations will be desired, and the ability to recycle, recover or (bio)degrade in the environment should be regarded as one of the most important performance characteristics of a material. For materials that are supposed to be used (virtually) as new again (“upcycling”), it is important that they can be separated, not just physically, but also chemically. This still requires a lot of basic research. “Back to monomer recycling” of polymers will increase in importance, since recycling and use of polymers will inevitably result in material deterioration; Recycling of thermoset materials is a challenge for which dedicated technology should be developed. Improved thermolysis/ depolymerisation technology, enabling to recover the constituting monomers is highly desired. A promising alternative route is “design for recycling” – during the design of the material future reuse is already anticipated. Challenges: Recycling and chemical/physical recovery is in its infancy in the Dutch academic and industrial landscape. A strong focus should be put on this topic to not miss this important opportunity to close the loop in the field of materials for sustainability. Specific steps required present-2040: (a) design of better recovery rates and more efficient recycling processes (2015-2030); (b) design of the next generation of multifunctional (bio)catalysts for effective recycling (2020-2035); B - Challenge in relation to replacement of scarce metals. The world-market for rare elements is faced with a supply risk for some elements as well as a demand that is rapidly outpacing supply. In 2010 the European commission recognized that raw materials are fundamental to Europe’s economy, and they are essential for maintaining and improving our quality of life. Since the identification of critical raw materials and the publication of the list of 13 critical raw materials in 2011 by the European Commission, the list has been updated and it contains now 20 critical raw materials. The challenge is to develop economic feasible extraction of (some) metals together with the valorization of the mineral fraction into high added value. Electrolysis and leaching are besides
29
TKI Chemistry – Roadmap Chemistry of Advanced Materials
physical processes key processes both in mineral processing as for reuse or regaining critical elements / materials. Chemical interactions can be used for material recovery from (waste) materials to bring back the original element suitable for new applications. This step requires knowledge and processes that enable coupling of material properties and chemistry. In many cases, harvesting these elements from the earth is even too energy consuming since many tons of materials need to be processed to extract a few ppms of the desired metal. This creates a clear need to replace scarce metals by more easily available alternatives, while maintaining the same functionality (i.e. drop-in solutions). Examples of this include the replacement of noble metals by transition metals in Catalysis (Roadmap Catalysis - Key to a Sustainable Future) and the recent development of Al-based batteries that could replace Libatteries that are critical to the development of electrical transportation/sustainable energy. Another challenging problem is to find alternatives for the use of rare earth elements like Neodymium (for Nd2Fe14B alloys in super magnets). Some alternatives have already been developed, but in many applications the search for conservation of functionality based on alternative raw materials still faces challenges. In order to replace scare raw materials, functionality of materials needs to be understood fundamentally better and descriptors for predictive modeling have to be developed to support the quest for alternatives. In the field of catalysis, this has already resulted in examples where new formulations were predicted and validated in the experimental domain. Further development of the toolbox for this is a pre-requisite in this domain. Investment in electrochemical processes towards total resource efficiency. Most material synthesis processes are now thermochemical driven. With the change in the Energy landscape and the switch to more renewable electricity a surplus of electricity will occur giving a stimulus for electrochemical material synthesis processes. 3.3.3
Sustainable materials for energy CO2-related global warming as well as the limited amount of accessible fossil fuel brings the world facing a complete change in energy policy. A shift from fossil to non-polluting, renewable energy sources is demanded to realize the perspective of a greener and sustainable energy future. Costeffective and efficient options for capturing, converting and storing naturally available energy (solar, mechanical etc.) are highly sought. New materials and chemical synthesis routes will have provide these novel materials in the future. Solar cells will be instrumental in the transition towards a sustainable energy supply. The development of more efficient solar cells and realizing a lower price per Wp is an important challenge. Thin film materials plays a crucial role and in section 3.2 important future directions for solar cell research are addressed. For smaller scale solutions, implementation of functionalities into the structural materials such as conductivity, piezoelectricity, magnetic features etc. will render the overall material smart and therefore independent of, for instance, external electricity sources. For now and the foreseeable future, batteries, in particular lithium-ion batteries (LIBs), remain the most promising electrical energy storage system. Thereby, a key factor for population-wide purpose lies in the enforcement of electric (EVs) and hybrid electric vehicles (HEVs). Despite the fact that LIBs already entered the sustainable electric vehicle market, it is well known, that the performance of state-of-the-art systems is still limited. In order to improve the energy and power density of these systems new (nanostructured) electrodes, separators, electrolytes have to be developed. The use of materials for energy storage is expected to develop impressively in the coming decades. The need for storage of electrical energy, generated by a plethora of technologies – on large scale (the “grid”) as well as small local scale, will steeply increase. On the one hand this energy can be stored in reversible chemistry, such as in well-known in batteries (Li cells) but also in for example hydrogen cells. Recent battery developments have shown considerable progress in terms of energy density (J/Kg) but still faces challenges and limitations in terms of power density (W/Kg), while the different needs for energy storage will be requesting breakthroughs at both
30
TKI Chemistry – Roadmap Chemistry of Advanced Materials
fronts (transport, portable devices, local solar facilities). Supercapacitators hold promise for higher power densities, but are still in their (technology) infancy. Polymer supercapacitators are in need for reliable multi-lamination technology of thin films (see also 3.2) with step-change increased electrical breakdown resistance. Specific steps required up to 2040: (a) further development of (bio)refinery technologies (especially relevant for chemical conversion roadmap) (2015-2025); (b) development of improved (bio)catalyst technologies enabling improved control over molecular architecture of polymers and polymerizations at lower temperatures and lower energy input (2015-2030); (c) further development of technologies for biobased additives like plasticizers and lubricants from TRL5-6 to 9 (2015-2025); (d) basic research on alternatives that are equally effective as brominated flame retardants (2015-2025); to higher TRL levels beyond 2025; (e) development of dedicated polymer additives for biobased polymers (2020-2040); (f) development of alternative solvents to NMP,DMAA (2015-2030); (g) development of biobased polymers with new unprecedented properties (2030-2040) The Dutch academic and industrial landscape is one of the global front-runner in the field of biobased materials. Examples include: (a) in the Biobased Performance Materials (BPM) programme in which knowledge institutions and industry are working together on new biopolymers (feedstock for bioplastics) and on applied research to improve the properties of bioplastics. Specific steps required present-2040: (a) design of the next generation of multifunctional (bio)catalysts by integrating knowledge on hetero-, homo-, single-site and biocatalysts (see catalysis roadmap) (2015-2030); (b) intensified reaction and process design (including smart design of the synthetic route, micro process technologies, catalytic reactions, fluid dynamics, separation technology, particle technology, advanced process control, integration and intensification of processes combined with new catalyst concepts and increasingly sophisticated computer modelling of chemical interactions and plant simulation (2020-2035); (c) increase energy- and resource-efficiency and reduce waste as well as emissions generation in all processes in the production chain (2030-2014); (d) use of green solvent (2030-2040) Specific steps required present-2040: (a) design of novel materials for harvesting of solar, mechanical etc. energy (2015-2030); (b) develop academic and industrial research lines centered on energy storage and electrochemistry (2015-2020); (c) using simulations and multi-scale modeling to gain more insight into the behavior of materials from the atomic level to macroscopic scales (2015-2025); (c) implement designed energy production and storage solutions in industrial commercial context (2025-2040) Suitable funding frameworks: Biobased Performance Materials (BPM) programme, regional programs like Op-Zuid, Bio Economy Region Northern Netherlands (BERNN), NWO-, EU programmes, Centers for open chemical innovation
3.4
Connections o Current initiatives o Organizations/companies in the field In the past 15-20 years two large consortia of public and private parties in materials research have evolved; the Dutch Polymer Institute (DPI) and the Materials Innovation Institute (M2i). DPI unites 38 companies and 51 (international) academic partners, while M2i spans 45 companies and 21 academic partners. Companies are assembled in industry associations like NRK (rubber and plastics), VVVF (paints/coatings), VNCI (chemicals), FME (metals), and VA (waste). A non-exhaustive list of companies in the field of (advanced) materials that have ties with the Dutch research community is given below. Sabic. Dow Benelux, Evonik, Bayer, Synbra, Huntsman, Lanxess, Arkema, Tata Steel, Apollo Vredestein, Philips, ten Cate, Fokker, Airborne, DutchSpace, SKF, VDL, Momentive, Oerlemans Plastics, Magnetochemie, AkzoNobel, Solvay, ICL, Eastman, Tejin Aramid, Fuji film, ASML, NXP, ASMI, Océ, Krehalon, PPG, Van Wijhe, Nuplex,
31
TKI Chemistry – Roadmap Chemistry of Advanced Materials
Pervatech, Avery Dennison, Elopak, Unilever, FrieslandCampina, Heinz, Danone, DSM, Shell, Braskem, Cargill, Arizona Chemicals, Avantium, Croda, Avebé, VDL, Solliance, Corbion Purac, and BASF, Given the transition DPI and M2i are currently undergoing as part of the ‘topsector’ policy of the Dutch government, it is likely that the budget for public-private partnership programs in the chemistry of advanced materials requested from other regional (provinces), national (NWO) and international (EU) funding organization will increase. A prudent scenario for 2016-2017 is presented in the overall Kennis en Innovatie Agenda, part C. o Other Top Sectors/program councils The three priority research lines for the TKI Chemie Roadmap Chemistry of Advanced Materials outlined above connect to the research agendas of many of the TKI’s and topsectors. The main connections are pointed out below, grouped per topsector. o Topsector/TKI Chemistry Roadmap Chemistry of Life: biomedical materials Roadmap Conversion Chemistry: synthesis of materials, synthesis of new catalyst materials, catalysts for recycling Roadmap Nanotechnology & Devices: nano-composites, materials for sensors o Topsector Energy materials for (sustainable) energy use and savings o Topsectors Agri&Food, Tuinbouw&Uitgangsmaterialen biobased materials o Topsector HTSM throughout most of the HTSM Roadmaps; where HTSM focusses on the use of (advanced) materials, our Roadmap is more directed towards the design and synthesis of the (advanced) materials concerned o Topsector Water; TKI Watertechnology water purification (membrane technology, sensors) CO2 separation o Topsector Life Sciences & Health biomedical materials materials for controlled release of drugs
32
TKI Chemistry – Chemistry of Life
ROADMAP CHEMISTRY OF LIFE 1.
Introduction
Understanding of Life on a molecular level (Chemistry of Life) provides a key that unlocks unlimited opportunities for breakthrough innovations, needed to address our global challenges for people today, and generations to come. The unifying aim in Chemistry of Life is therefore to bring about the chemical means and molecular understanding leading to an improved (precise), more and more personalized healthcare as well as more sustainable and healthy food for the benefit of mankind. Our life is dependent on molecules that enable, regulate, improve or threaten Life. During the past century scientific breakthroughs led to the identification of molecules which are building blocks of life. We understand better and better their functions, how they interact with small molecules and how they contribute to life. This fundamental understanding is applied today in industry to develop products creating a better life for individuals and society as a whole. While progress was enormous, leading to novel and targeted medicine and securing our food supply for a growing population, we still face major gaps in understanding life on a molecular level, and we are still faced with great challenges in healthcare as well as a sustainable healthy food supply. What are the next scientific breakthroughs in Chemistry of Life? How can the Netherlands contribute to these by using and further developing our excellent knowledge infrastructure and network of world class Universities, Knowledge Institutes and the private sector? How can we capture innovations and economic growth in The Netherlands based on these breakthroughs (e.g. expanding current vibrant biotech startups and establish novel ventures)? The answers will come from collaborations. Collaborations across disciplines, across industries (value chains), and across the world. The Chemistry of Life roadmap is therefore set up with a focus on molecular insights reaching out to (collaborating with) all sectors contributing to the scientific and economic breakthroughs the top sector wants to enable. These connections are further specified in section 4. A three-pillar (task) roadmap has been developed to address the scientific challenges and economic opportunities in healthcare (task 1) and food/nutrition (task 2) and the link between them, connecting health and food/nutrition. The first pillar (task 1) focuses on ‘Molecular entities, devices and approaches for understanding, monitoring and improving personalized health’. Various human diseases are the result of altered or malfunctioning molecular/cellular mechanisms or genetic mutations. It is of utmost importance to understand the cellular wiring of the diseased state and develop (therapeutic) approaches to prevent this or reprogram and revert cells to a normal healthy state or to trigger cell death (apoptosis). Genomics, transcriptomics, proteomics, metabolomics data (omics, or panomics when integrated) from patient material, including the gut microbiota, constitute a treasure trove to understand and redirect molecular pathways. These pathways may be targeted by existing or newly developed drugs, thereby offering an avenue towards personalized medicine. The second pillar (task 2) focuses on ‘Molecular entities, devices and approaches for understanding, monitoring and improving food security’. Unraveling the precise mechanisms that govern molecular interactions is at the very heart of Chemistry of Life. The Netherlands has always been a stronghold with respect to recognizing the importance of the interaction of chemistry and chemical biology in the life science sector. Such a molecular understanding will also enable the food sector to get to the next level answering fundamental scientific questions to provide breakthrough innovations that address societal needs related to food quality and security throughout the whole lifespan.
33
TKI Chemistry – Chemistry of Life
The third pillar (task 3) creates a deeper understanding of the building blocks of life and developing enabling technologies while providing valuable input for understanding, monitoring and improving health and food security.
Molecular entities, devices and approaches for understanding, monitoring and improving personalized health
Short term Now-2020
Mid term 2020-2030
Long term 2030-2040
Programme Line ambition
- Personalized panomic analysis
- Target identification for (multifactorial) diseases
- Development of novel clinically affordable diseaseoriented workflows and devices
Improved and more affordable personalized health
- Multidisciplinary multi-center of Drug Discovery - Understanding material properties contributing to improved compatibility in human cells.
Molecular entities, technologies and approaches for understanding, monitoring and improving food (security)
- Molecular understanding of factors impacting texture/taste - Validated biomarkers of health and disease in order to come from descriptive models to predictive models
- Identification of new, sustainable sources for protein supply Enabling technologies and approaches for fundamental understanding, monitoring and improving molecular entities in the Chemistry of Life
- Insight in the impact of the heterogeneity of proteins and protein complexes on cellular networks - Multidisciplinary center of Synthetic biology
- Structural information on the interaction of NCEs and bio-conjugates with target proteins - Explore new functionalities of Materials in human bodies (e.g. stability, release, mechanical strength, lubrication, antimicrobial). - Novel enzymes/microbes that tailor texture/taste both in situ and ex-situ - Quantitative and mechanistic models of in vitro and in vivo digestion of foods based on biochemical properties of food constituents - Novel biochemical processes for obtaining ingredients with reduced environmental footprint
- Development of NCEs and bioconjugates for use in diagnostics, in vivo imaging, and clinical applications - Piloting and commercialization of new materials and devices - New, biochemically derived health promoting substances, including enzymes and microorganisms - Correlation of in vitro and in vivo models - Novel ingredients to replace current, undesired food additives that are used to reduce spoilage
- Influence of heterogeneity in the dynamics of bio molecular networks and on the robustness of systems
- Utilize the knowledge on network dynamics and cellular heterogeneity to tackle main societal challenges
- Minimal cells that conduct specific biochemical reactions
- Synthetic cell that in a controlled manner carries out
34
Improved and more sustainable food
Accurate cell systems for medical and energy applications
TKI Chemistry – Chemistry of Life - Long term Public Private Partnership Programme on Building Blocks of Life
in a robust manner and that can be used in industrial applications related to bioenergy, biomaterials, chemical production
basic biochemical reactions and that can replicate - “Organ-on-a-Chip” modules that can be used as a disease specific screening platform
Table 1
2.
Collection of tasks
A unifying aim in the Chemistry of Life theme is to bring about the chemical means that facilitate an improved and more affordable personalized healthcare and more sustainable and healthy food, both benefitting the future of mankind. 2.1. Task 1: Molecular entities, devices and approaches for understanding, monitoring and improving personalized health 2.1.1
Development of analytical and biophysical devices
2.1.2
Creation of new chemical, molecular and cellular entities
2.1.3
Biomedical Materials for improved functionalities
2.2. Task 2: Molecular entities, technologies and approaches for understanding, monitoring and improving food (security) 2.2.1.
Biochemical tailoring of food
2.2.2.
Understanding food digestion and metabolism to increase nutritional availability and
health 2.2.3.
Sustainable production and consumption
2.3. Task 3: Enabling technologies and approaches for fundamental understanding, monitoring and improving molecular entities in the Chemistry of Life 2.3.1 Understanding of cellular processes from molecule to organism 2.3.2 Engineering of molecules and cells 3.1 Task 1: Molecular entities, devices and approaches for understanding, monitoring and improving personalized health In the Chemistry of Life Program first of all, analytical and biophysical tools and methods need to be further developed that assist us to monitor the molecular entities, not only in our body, but also in animals, plants, fungi and other organisms. In the future human, animals and plant healthcare will only be more intertwined. For future healthcare such approaches will allow us to develop new diagnostics for early discovery and enable a more personalized, precision, health care monitoring and disease prevention. Additionally they will help to balance safety and efficacy in the nutrition chain. Importantly, new molecular and cellular entities will be synthesized and/or designed, ranging from highly selective small molecule inhibitors to adapted cellular therapies (such as stem cells and gene therapies and tailormade vaccines).
35
TKI Chemistry – Chemistry of Life
3.1.1 Development of analytical and biophysical devices Most human diseases are the result of altered and/or malfunctioning of molecular and/or cellular mechanisms or genetic mutations. The molecular basis of disease is often poorly understood. Moreover, current therapies appear ineffective for some patients and drug resistance may occur. Quantitative patient-derived panomics analysis and model based predictions (using big data) constitute a treasure trove to understand which molecular pathways are affected and may be targeted by (existing) drugs, thus offering an avenue towards precision medicine. To achieve this: Exploration and development of analytical and biophysical devices and approaches for monitoring, understanding and target identification to improve personalized health. Application of novel sensor systems also include low cost, non-invasive systems to monitor the nutritional status of cells and their response to food and nutritional ingredients. Specific steps required present-2040: I. -
Development of diagnostic workflow/devices: Establish large-scale multi-center infrastructures for the quantitative analysis of all bio-molecular entities (genomics, proteomics, metabolomics, structural biology, bio-imaging etc.).
-
Development of high-throughput novel diagnostic analytical workflows and devices for (multifactorial) diseases.
-
Translation into ultra-sensitive, easy-to-use, low-cost micro-devices useable in personalized healthcare.
II. o
Obtain novel insights into molecular mechanisms of disease Develop novel synthetic and cellular platforms and analytical tools for networked biochemical processes, diagnosis and intervention.
o
Identify sets of molecular components and interactions representative for disease state.
Network based analysis of diseases using chemo-/bioinformatics, pharmacogenomics and systems biology.
Identify critical and accessible steps in molecular pathways and networks for novel
(multifactorial) intervention and targeting. Milestones: o
Personalized panomic analysis
o
Target identification for (multifactorial) diseases -
Enabling network-based analysis of disease based on quantitative profiling of patient material using chemo-/bioinformatics, pharmacogenomics and systems biology
o
Device (multi-) targeted therapies for (multifactorial) diseases
Development of novel clinically affordable disease-oriented workflows and devices -
New and affordable personalized diagnosis and care
Expected results present- 2040: Scientific/technological goal: Target-based therapy established on disease network analysis. Industrial end goal: Translation of diagnostic tools and analysis to commercialization. Societal goal: Cohort of patients performing disease related self-diagnosis.
36
TKI Chemistry – Chemistry of Life
3.1.2
Creation of new chemical, molecular and cellular entities
Over the last decade, advances in genetic and proteomic analysis have led to the identification of a large be an enormous challenge. These target proteins need to be studied on a molecular level and their activities perturbed with small molecule compounds or biologicals to validate them as ‘druggable’. This offers enormous opportunities for the Netherlands and especially for chemistry in the life sciences field. Chemistry is key in the development of novel assay technologies, diagnostic agents and it provides the starting point for the development of novel classes of drugs in areas of unmet needs. An investment in target validation on a molecular level, small molecule screening, medicinal chemistry will allow the development of small molecule drugs that allow more effective and affordable treatment of disease next to biologicals. To achieve this: In order to translate current genetic and proteomic knowhow into novel therapies, several steps need to be taken including strengthening of specific expertise and infrastructure establishment. Examples of opportunities for drug development include novel drugs that can be used to treat cancer, infectious-, metabolic-, auto-immune-, and genetic diseases as well as medication that acts on the central nervous system and drugs that aid tissue regeneration. Likewise opportunities exist for the development of biologicals and cell-based therapies. Creation of new chemical, molecular and cellular entities. Novel chemical probes and assays need to be developed for detailed studies of targets on a molecular level. Simultaneously such probes may aid the development of diagnostic agents. Specific steps required present-2040: I. Assay development for selection of bioactive (bio)molecular entities o
Development of novel miniaturized assay formats for HTS and fragment-based approaches (e.g. FRET, fluorescence polarization, activity based profiling) for identification of well-defined target selective new chemical entities (NCEs) and biologicals.
o
Validation of assays for high content screens and cell-based assays for identification of welldefined target selective new chemical entities (NCEs) and biologicals
o
Development of target or class specific probes for studies of drug action in cells and animal models. These probes also offer opportunities for the development of diagnostic and imaging agents.
II. Design and synthesis of new (bio)molecular entities o
Synthesis and biochemical programs aimed at the development of bioactive molecules that can serve as therapeutic agents. Further characterization of novel chemical entities, and the cellular processes and networks they act on.
o
Precision medicine. Development and application of tailor-made new chemical entities (NCEs) and biologicals aimed at (families of) disease-related targets (for unmet disease areas).
Development of first tool compounds, which are entities that validate molecular targets for the treatment of specific diseases.
o
Development of candidate drugs that act on targets validated with tool compounds.
Development of matching probes that can be developed into imaging and diagnostic agents.
Structure-based drug design (SBDD)
Obtain structural information of target protein to develop 3D molecular models of targets.
Binding mode prediction and (virtual) screening for selection of candidate molecules.
Parallel high throughput crystallography and structure determination.
Design and optimization of molecular entities.
37
TKI Chemistry – Chemistry of Life
Milestones: Development of NCEs and bio-conjugates for use in diagnostics, in vivo imaging, and clinical
o
applications. •
Omics data exploited by the development of novel tool compounds and matching diagnostic probes.
•
Proof of Concept realized for several NCEs in Phase 1 and phase 2 clinical trials.
o
Structural information on the interaction of NCEs and bio-conjugates with target proteins
o
Multidisciplinary multi-center of Drug Discovery: •
Establishment of a centralized infrastructure to prepare, store, analyze, model and test Dutch collections of small molecules and bioactive compounds for HTS and high content screening purposes.
•
-
Compound logistics
-
IP issues (or open source innovation plan)
-
Outreach to partners with relevant targets
Further development of drug candidates into new affordable medicines and affordable entities for diagnosis and therapy. -
Coordinated small molecule synthesis and central screening both in vitro and cellbased and high content.
-
Public-private partnerships for further development of NCEs.
Expected result present- 2040: Scientific/technological goal: development (bio)molecular entities for diagnostic and therapeutic applications. This will require a Dutch multidisciplinary center for Drug Discovery providing HTS services and high content screening. Industrial end goal: New diagnostic probes, high quality NCEs for further development towards marketed drugs that serve unmet medical areas. Establishment of novel ventures. Societal goal: New diagnostics and new drugs leading to, healthier living, and better health, and better understanding and control of disease by affordable small molecules or biologicals. 3.1.3
Biomedical Materials for improved functionalities
Development of improved biomedical materials to reduce the burden for a variety of diseases offers an important solution to unceasingly rising healthcare costs and requirements for a better quality of life. Biomedical materials can improve the performance of for instance implants, medical devices , scaffolds and drug delivery systems. Furthermore, superior biomedical materials may help minimize side-effects and the need for invasive surgery. To achieve this: In order to generate novel and improved biomedical materials for safe, cheap and widespread use in surgery and monitoring of disease, several phases of the innovation pipeline need to be strongly connected. Aspects of fundamental chemical research for improved functionalities, production processes and medical evaluation for in vivo use are to be jointly tackled. Examples of application areas for improved biomedical materials include in vivo sensors, cardiovascular surgery, oncology, muscoskeletal, nephrology, drug delivery systems and implants. Specific steps required present-2040: I. II.
Understanding material properties contributing to improved compatibility in human cells. Explore new functionalities of Materials in human bodies (e.g. stability, release, mechanical strength, lubrication, antimicrobial).
III.
Development of new materials and devices.
38
TKI Chemistry – Chemistry of Life
IV.
Piloting and commercialization of new materials and devices.
Milestones: o
New insights in basic principles created
o
proof of principles established
Expected result present- 2040: Scientific/technological goal: New leads for Biomedical Materials developments established, Dutch centers of excellence and international network established (PPPs). Industrial end goal: High quality biomedical materials with wide array of application areas and large market potential in medical interventions. Societal goal: improved health care due to improved quality of life, reduced side effects or need for invasive surgery. Examples of initiatives related to this task: Gravity Programs such as Institute of Chemical Immunology and Cancer GenomiCs.nl, Roadmap Infrastructure Proteins@Work and uNMR.nl, TI-COAST, Pivot Park Oss, European Innovative Medicines Initiative (IMI), FIGON, Roadmap NL-BioImaging AM and DTL. 3.2
Molecular entities, technologies and approaches for understanding, monitoring and improving food (security)
3.2.1
Biochemical tailoring of food
Consumers have increasing demands for the quality of their food. To improve food quality in terms of texture/flavor (sensoric experiences) and health related issues, foods have been tailored by physical even chemical ways. With advances in biochemistry and improving analytical tools combined with computational analysis (including chemometrics approaches), additional means became available to modify foods and/or ingredients in a precise and also more sustainable way. This will greatly enhance the possibility of targeted/personalized nutrition for groups of person or individuals. Biochemical tailoring exploits the versatility of food and food ingredients into the optimal processing, flavor and texture. To achieve this: Biochemical tailoring of food and food ingredients (including live/viable cultures) should include: a.
enzymatic or microbial production of flavor, texture and health supporting substances.
b.
molecular understanding of the food matrix and ingredient (enzymes, microbes) interaction leading to a desired food performance.
Specific steps required present-2040: Short term: I. II.
Identify the molecular basis in foods that determine texture. Identify relevant flavor forming reactions in foods and fermented foods that can or have to be improved, both in situ in foods and ex-situ productions of flavors
III.
Identify suitable health promoting substances that are formed by a limited number of enzymatic reactions, using microbes or are plant derived.
IV.
Advancing sensory science (texture, taste/flavor combination).
Long term: V.
Produce and apply enzymes or microbes to improve or stabilize flavor in foods and/or ingredients.
VI. VII.
Produce health supporting substances within the food matrix. Cascading enzyme reactions.
39
TKI Chemistry – Chemistry of Life
VIII.
Connecting sensory science (incl. texture/taste combination) with molecular understanding to guide food tailoring.
Milestones: Molecular understanding of factors impacting texture/taste.
o o
Novel enzymes/microbes that tailor texture/taste both in situ and ex-situ.
o
New, biochemically derived health promoting substances, including enzymes and micro-organisms.
Expected result present- 2040: Scientific/technological goal: Improved insight in biochemistry of processes occurring during food/food ingredient production. Industrial end goal: more controlled tasty and healthy food, personalized food. Societal goal: Longer shelf life of food products and less waste due to too low flavor or off-flavor formation. 3.2.2
Understanding food digestion and metabolism to increase nutritional availability and health
An important mission to improve the value of food is increased nutritional availability and contribution to health. Modern urban populations suffer from the so called “triple burden” of malnutrition, by which the coexistence of hunger, nutrient deficiencies, and excess intake of calories leading to overweight and obesity create a serious threat to human health. Increased nutritional availability and improved health status by (bio)chemical advances and improved understanding of nutrition and health will greatly reduce this health threat. To achieve this: Increased efficiency of use of foods by increased nutritional availability of food constituents is needed. Key to this is the understanding of the molecular processes and interactions taking place during the digestion of foods, including the role of the gut microbiota. More specifically, this includes: a.
Identifying biomarkers of pre- and probiotics
b.
Nutritional value: Understanding digestion kinetics (in vitro and in vivo). -
Understanding of enzymatic/fermentation kinetics relevant for the food bolus; Enzymology of “Crowded system dynamics”.
c.
Understanding molecular interactions during digestion/fermentation processes.
Dynamic effects of metabolized food components (host, microbiota and interplay between the two) on tissue and organ functions (e.g. brain, muscle, immune system, gut). -
Engineering of food to target specific organs or cells.
Specific steps required present-2040: Short term I.
Establishment of mechanistic molecular descriptors of hydrolysis/fermentation kinetics of food constituents.
II.
Establishment of physico-chemical descriptors of hydrolysis/fermentation processes of food constituents in semi-solids systems.
Quantitative correlations between the microbiota composition and the occurrence and/or formation of prebiotics during intestinal fermentation. Long term III.
Integration of molecular and physico-chemical parameters to describe the spatial and temporal resolution of food digestion/fermentation products in the digestive tract during consumption of foods for healthy and diseased individuals of different ages (from newborns to elderly).
40
TKI Chemistry – Chemistry of Life
Milestones Validated biomarkers of health and disease in order to come from descriptive models to predictive
o
models. Quantitative and mechanistic models of in vitro and in vivo digestion of foods based on biochemical
o
properties of food constituents. Correlation of in vitro and in vivo models.
o
Expected result present- 2040: Scientific goal: Improve insight in connection between nutrition and health by understanding digestion. Industrial end goal: Foods with optimal nutritional value and related added value. Societal goal: Foods with directed impact the (bio)chemistry of health and disease.
3.2.3
Sustainable production and consumption
Accelerated globalization and raised living standards leading to increased production and consumption of food are progressively threatening our climate, deplete natural resources and have a negative environmental impact. Responsible food production and consumption is a crucial aspect of improved food security and availability. Hence, there is a need for the creation of an “efficiency revolution” in the use of agricultural raw materials by developing new technologies for making conversions more efficient and by preventing wastes and nutrient losses without the use of undesired chemicals. A biochemical approach is key to this development, thereby improving the sustainability of food supply. To achieve this: Food manufacturing should be carried out in a more sustainable manner than today. Biochemical routes to be elaborated on in this aspect relate to: a.
More sustainable food/food ingredient processing by less use of chemicals, water, energy (low
temperature processing). b.
enzymatic processes in concentrated and/or crowded systems. replacing “chemical” extraction of ingredients by aqueous enzymatic processes. Understanding biochemical properties of terrestrial, aquatic or other raw materials for
replacement of animal based foods/food ingredients (e.g. proteins). c.
Less spoilage of foods by exploring biochemical production and use of new nature inspired
preservatives, e.g. phenolics, lipid stabilizers, anti-oxidants, microbial preservatives. Specific steps required present-2040: Short term I.
Development/adaptation of analytical methods to be used in concentrated and/or crowded systems.
II.
Identification of critical descriptors of enzyme function (selectivity, activity, stability, etc.) in concentrated/crowded systems.
III.
Identification of highly selective and effective enzymes to release ingredients and/or to produce ingredients from raw materials.
IV.
Understanding at a molecular level of the contributions of individual components within complex ingredients isolated ingredients from existing and novel sources.
V.
Control of biochemical conversion reactions deteriorating the properties of ingredients obtained from novel sources.
Long term VI.
Thermodynamic understanding of enzymatic processes in concentrated and/or crowded systems.
41
TKI Chemistry – Chemistry of Life
VII.
Understanding functionality of food ingredients, (e.g. proteins) from a molecular perspective, thereby enabling implementation of existing and new food sources.
VIII.
Targeted modification of food ingredients from existing and novel sources to enhance functionality and use.
IX.
Establishment of enzymatic or microbial routes to produce ingredients.
Milestones: o
Identification of new, sustainable sources for protein supply.
o
Novel biochemical processes for obtaining ingredients with reduced environmental footprints.
o
Novel ingredients to replace current, undesired food additives that are used to reduce spoilage.
Expected result present- 2040: Scientific goal: Understanding biochemical conversions in complex matrices and concentrated systems. Understanding biochemical production routes for new antimicrobials. Industrial end goal: Improved sustainability of food production and consumption. Societal goal: More efficient use of food and food ingredients to address food security and environmental burden. Examples of initiatives related to this task: Carbohydrate Competence Center (CCC), multiple programmes within WageningenUR Food and Biobased Research, JPI a Healthy Diet for a Healthy Life, Top Institute Food and Nutrition (TIFN).
3.3. Enabling technologies and approaches for fundamental understanding, monitoring and improving molecular entities in the Chemistry of Life 3.3.1 Understanding of cellular processes from molecule to organism Living cells are biochemical reaction factories. Many of the basic elements of enzymatic reactions have been studied in detail for isolated systems but how these integrate in large networks is still mysterious. We aim to understand how biochemical reactions occur in living cells. To advance on these challenges, a basic understanding of cellular systems at the molecular level is required, in particular with respect to functional heterogeneity among individual cells and the dynamics of complex networks. With this knowledge we aim to: engineer cells such that they fulfil specific tasks, use the molecular parts of cells to create new materials or even built designer cells, and build a synthetic cell from individual parts. To achieve this: The cell with all of its constituents forms the basic element of life. Our knowledge on these systems provides the foundation for advanced applications ranging from medicine and health, food, energy and materials. This task is focused on a fundamental understanding of the molecular structures, dynamics and interactions that define biological functions of individual living cells, including interactions with the environment and the heterogeneity within cell populations. Specific steps required present-2040: I. Understanding of complex cellular networks with an emphasis on dynamics. Use of advanced methods in molecular imaging, ribosomal profiling and mass spectrometry to map cellular networks and their dynamics, and employ molecular biology, optobiology, and chemical biology to perturb network processes and identify relevant physiological response. II. Modeling of the network dynamics to allow for the accurate prediction of the behavior of cells under defined conditions.
42
TKI Chemistry – Chemistry of Life
III. Quantitative description of biochemical processes in individual cells. -
Elucidate the molecular basis of cellular heterogeneity by large scale imaging of single cell ‘omics’ such as DNA-, RNA-, protein- and metabolite-analysis.
-
Understand at the single cell level, processes such as cellular differentiation, specialization, and responses to external factors such as drugs.
Milestones: o
Insight in the impact of the heterogeneity of proteins and protein complexes on cellular networks
o
Influence of heterogeneity in the dynamics of bio molecular networks and on the robustness of systems.
o
Impact of (epi-) genomics on the heterogeneity of individual cells, cellular dynamics, differentiation and interactions with the environment.
o
Utilize the knowledge on network dynamics and cellular heterogeneity to tackle main societal challenges.
Expected result present- 2040: Scientific/technological goal: An understanding of the dynamics of networks and cellular heterogeneity will provide a deeper understanding of the collective behavior of cells such as in cell populations, tissue and organs. Develop predictive models for system robustness. Industrial end goal: Application of single cell network theory describing meta-stability in the regulation and functioning of processes such as in plant breeding, antibiotics resistance (persistence), the productivity of micro-organisms in biotechnological applications, and bio-inspired materials. Societal goal: By studying individual processes, important insights will be obtained in the mechanism of aging, cellular differentiation and disease (for instance, the onset of cancer development and neurodegenerative disease), as well as in medical treatments that affect the behavior of individual cells. 3.3.2
Engineering of molecules and cells
During the last decades, technological advances now enable the modification of biological materials at an advanced level. This involves DNA reprogramming and substitution, control of protein production but also the reconstitution of protein complexes, membranes and other macromolecular structures such as the cytoskeleton. Also, synthetic parts with self-assembling properties can be generated such as complex DNA structures (DNA origami) and membranes. Further advances in reconstitution and synthesis methods will enable more directed modifications and the construction of hybrid systems. This technological advance will enable further the directed design and construction of cells. We propose to add networked capabilities to cells to increase their functionality; to construct a minimal cell that is able to perform a basic level of gene regulation, homeostasis with its environment and that even can divide; to build a functional organelle; and to create functionally interacting cellular systems such as an “Organ-ona-Chip”. To achieve this: In order to build functional cells and cellular system both a bottom-up and top-down approach is needed. In the bottom-up approach we have to identify the chemical components and their relevant interaction networks to generate systems with increasing complexity and predicable function. In the top-down approach, existing cells and cellular systems are exploited and modified to re-programme their function for specific tasks. This also involves harnessing cell heterogeneity for complex functions including mimicking organs.
43
TKI Chemistry – Chemistry of Life
Specific steps required present-2040: I.
Development of synthetic and chemical biology, bottom up
Development of a synthetic cell from building blocks capable of performing basic reactions such as lipid biosynthesis, gene regulation, protein synthesis, ion homeostasis and division. Identify the minimal requirements to generate an autonomously operating system. II.
Development of synthetic and chemical biology, top down. -
Development of minimal cells. Identify the requirements to speed up genome editing for genome minimization and the introduction of complex multi component biosynthetic pathways.
-
Development of multicellular biological model systems such as “Organ-on-a-Chip”. Identify the requirements to generate a robust system for high throughput screening.
Milestones: o
Multidisciplinary center of Synthetic biology.
o
Minimal cells that conduct specific biochemical reactions in a robust manner and that can be used in industrial applications related to bioenergy, biomaterials, chemical production.
o
Synthetic cell that in a controlled manner carries out basic biochemical reactions and that can
o
“Organ-on-a-Chip” modules that can be used as a disease specific screening platform.
replicate.
Expected result present- 2040; Scientific/technological goal: Assembly of biochemical reactions into functional cellular concepts up to the creation of a minimal functional cell. Industrial end goal: Designer minimal cells for application and production in bioenergy, biomaterial and chemical production; Tailor made platforms for high throughout drug screening. Societal goal: Alternative systems to replace animal testing in the development and clinical testing of medicines. Examples of connections to other platforms: Gravity Programs such as Institute of Chemical Immunology and Cancer GenomiCs.nl, Roadmap Infrastructure Proteins@Work, uNMR.nl, and Nanofront, Kluyver Centre for the genomics of industrial fermentations, BE-Basic (on sustainable biobased processes), Centre of Synthetic Biology at the University of Groningen, BioSolar Cells, Top Institute Food and Nutrition (TIFN), Human disease model on a chip (hDMT), and FOM Institute AMOLF.
44
TKI Chemistry – Chemistry of Life
4.
Connections / Cross Overs
The Chemistry of Life program has been initiated to strengthen the collaboration within the different programs of TKI Chemistry as well as across the different TKIs. This is important as we realize that innovation doesn't happen is silos (competing for limited resources) but at the interphase of different disciplines and by multi-disciplinary contributions and collaborations (sharing limited resource). While the current roadmap has been designed from the identified specific needs and opportunities in Chemistry of Life, it is not surprising that many desired connects exist with other TKIs and EU initiatives. Some of these connections are presented in table 2 which shows that all (!) proposed tasks and actions of Chemistry of Live are strongly connected. These connections can be worked out for example in designing joint (cross TKI) calls. In these joint calls the contribution (or knowledge gap) of the different disciplines will become visible and might further guide priority setting driven by specific innovation themes.
Chemistry
TKI
of Life
Chemistry
TKI LSH
TKI
TKI Biobased
TKI HTSM
Horizon 2020
Agri/Food
Potentially interested companies
Activity
-Molecular
-Diagnostics
-Health, demographic
DSM, Akzo, Unilever,
1.1
diagnostics
(incl. imaging)
change and wellbeing
multiple (> 100) start-
-Imaging
ups in biotech
Activity
-Pharmacotherapy
-Health, demographic
Synthon, MSD, Crucell,
1.2
-One Health
change and wellbeing
Galapagos, multiple (> 100) start-ups in biotech
(Antimicrobial resistance) Activity
-Advanced
-Regenerative
-Enabling
-Health, demographic
1.3
Materials
medicine
technologies
change and wellbeing
(Materials
DSM, Philips,
(Biomaterials)
with added functionality) Activity
- Proteins,
-Food security,
FrieslandCampina,
2.1
Carbohydrates,
sustainable agriculture
Unilever, AVEBE,
Oils
Danone, Cosun
Activity
- Specialized
- Roadmap
-Food security,
FrieslandCampina,
2.2
Nutrition Health
health (eg
sustainable agriculture
Unilever, AVEBE,
45
TKI Chemistry – Chemistry of Life
and Disease
healthy aging)
-Health, demographic
Danone, Nestlé
change and wellbeing Activity
- Chemical
- New adapted
- Bio-refinery:
-Food security,
FrieslandCampina,
2.3
conversion,
feedstocks
Proteins, oils,
sustainable agriculture
Unilever, AVEBE,
processes
-Ligno-cellulose
carbohydrates
-Climate action,
Danone, Nestlé
and synthesis
as feedstock
separation,
environment, resource
(Biomass and
nutritional and
efficiency and raw
renewable
pharma
materials
resources)
products from plants
Activity 3
-
- Regenerative
- Roadmap
- Solar
-Health, demographic
Nanotechno-
medicine
health (e.g.
capturing (incl.
change and wellbeing
logy (eg
- Enabling
metabolic
micro-
-Food security,
energy
technologies
programming)
organisms)
sustainable agriculture
storage)
-Secure, clean and
- Chemistry &
efficient energy
Physics; Fundamentals for our future, Rapport Commissie Dijkgraaf
Table 2
46
TKI Chemistry – Chemistry of Life
Task 1: Molecular entities, devices and approaches for understanding, monitoring and improving personalized health 1.1
Development of analytical and biophysical devices
1.2
Creation of new chemical, molecular and cellular entities
1.3
Biomedical Materials for improved functionalities
Task 2: Molecular entities, technologies and approaches for understanding, monitoring and improving food (security) 2.1.
Biochemical tailoring of food
2.2.
Understanding food digestion and metabolism to increase nutritional availability and
health 2.3.
Sustainable production and consumption
Task 3: Enabling technologies and approaches for fundamental understanding, monitoring and improving molecular entities in the Chemistry of Life 3.1 Understanding of cellular processes from molecule to organism 3.2 Engineering of molecules and cells
47
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
ROADMAP Chemical Conversion, Process Technology and Synthesis
Making Sustainable Chemical Products Innovative chemistry for sustainable growth
Today’s society needs to prepare itself for a more healthy future with food for all and sufficient energy and resources to fuel our growing prosperity. The field of chemistry is ready to take on this global challenge. In particular, catalysis, process technology and synthesis are crucial disciplines when it comes to establishing the scientific and technological foundation for making cleaner, more efficient, and economically viable chemical production processes. In this document, the program council describes how it will use current and future feedstocks, how it will use catalysis and process technology for the production of transportation fuels, functional molecules and materials, and how it will integrate reactions, catalyst materials, reactors, and production processes at all length- and time scales of importance, thus retaining the competitive edge of chemical industry and catalyst industry in the Netherlands (2023). The overarching ambition for the year 2040 is to complete the transition from our fossil resource dependent economy to a circular low-carbon economy that relies on sustainable and abundant resources. A roadmap is presented that includes short, mid and long term chemical technologies to realize this ambitious goal.
1. Introduction
This roadmap combines the fields of catalysis, process technology and synthesis of functional molecules. The roadmap is specifically targeted at integrated projects and programs leading to efficient and sustainable new functional materials, products and processes, by more efficient use of energy and raw materials, and aims at processes that limit waste and close the materials loop. It targets multi-scale understanding all the way from active sites (nm), particle agglomerates (μm) to catalyst particles (mm), to reactors (m) and the refineries or chemical plants in which they are integrated, as well as the time-scales governing chemical reactions (ps) via transport phenomena (ms) to the complete lifetime of a catalyst (minutes to years). The integration of the three subjects (catalysis, process technology and synthesis) has led to a coherent view in which three main tasks are defined: • Making Molecules Efficiently, • Making Molecules from Biomass, and • Making Functional Molecules. The Dutch economy and its chemical industry are highly intertwined with the European chemical industry. The European commission has defined seven societal challenges for the next decades in its Horizon 2020 framework program. Most of these challenges are closely related to chemistry, and more specifically to catalysis and process technology. Prominent examples include the design of novel routes to valorize biomass, and the design of materials for energy conversion, transport and storage. Catalysis, Process Technology and Synthesis are also the central sciences in designing more efficient and cleaner routes to new functional materials, producing less (ultimately: zero) waste, and reducing CO2 emissions. Similar considerations hold for transportation fuels and health. Since over 85% of all the chemicals we manufacture today are produced via catalytic processes, new developments in catalysis and process technology are urgently required to achieve the targets set by society.
48
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
In the Netherlands, for instance, the Energy Initiative (Energieakkoord voor Duurzame Groei, 2013) published in 2013, calls for a reduction in energy consumption by 100 PJ in 2020, as well as requiring a 16% share for renewables in energy production. VNCI, the Dutch Chemical Industry Association, targets a 40% reduction of greenhouse gas emissions by 2030. Recent British (EPSRC, 2009) (Royal Society of Chemistry, 2012) and German (GECATS, 2010) (IEA, 2013) roadmaps also recognize the role of catalysis and process technology in reducing GHG’s in the chemical industry. The Dutch Physics and Chemistry research community put forward the recent Vision 2025 for Chemistry and Physics (Commissie Dijkgraaf, 2013), in which it is argued that: a “transition to sustainable energy conversion and storage is required due to finite reserves of fossil fuels and the impact of climate change. This transition is of such a scale that it requires extensive short- and longterm research in physics and chemistry, obviously combined with other sciences […]. In the short term, new technologies will extract and convert solar energy more directly, whereas biomass or re-use of carbon dioxide will be the key resource for many chemicals.” This vision inspired the Top Sector Chemistry to select “Chemical Conversion, Process Technology and Synthesis” as one of the focal point in its new TKI Chemistry. The Dutch Catalysis society translated the various challenges described above into its 2015 Science and Technology Roadmap “Catalysis – Key to a sustainable future” (NIOK, 2015). The “Innovatiecontract Topsector Chemie 2012-2016” (Werkgroep Innovatiecontract Chemie, 2011) contains the most recent roadmap for the Institute for Sustainable Process Technology, ISPT. Elements of these two roadmaps and a variety of similar documents from international, national and regional sources [9-21] will be used to expand the various subjects in the present document.
49
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
1.1 Why should we do this? The research directions proposed in this document relate to key societal challenges described in the H2020 program, such as Climate, Environment, Resource Efficiency and Raw Materials, Energy, Circular Economy, Food and Transport. It will contribute to more efficient use of resources, resource recycling, reduction of waste and pollution, and conversion of waste to useful raw materials. It will create higher educated jobs, and promote resource independence, as well as novel sustainable routes to biomedical, food, feed, fertilisers and speciality products. It will lead to increasing use of progressively lower cost sustainable resources, and improve Dutch competitiveness towards Asia, USA, and the Middle East. 1.2 Why should we do this in the Netherlands? The Chemical industry generates approximately 60 billion euro in revenues, and contributes about 23 billion euros to the trade balance (or 52% of the total). About 57,000 people are employed in the chemical industry. The annual budget for R&D in the Dutch chemical industry is approximately 900 million Euros. About 85% of all chemicals are made through catalytic processes. Since the Netherlands combines a concentration of catalysts and enzyme producers, catalyst and fermentation users, and world-class academic research groups, (bio)catalysis, organic synthesis and process engineering and downstream processing are strongholds. Industrial players are closely involved in academic research, and actively participate in public-private-partnerships. Synthesis of functional materials (e.g. bioactives developed in SME’s), and polymeric materials (through homogeneous or heterogeneous catalysis or fermentation), is another strong point. In addition, the infrastructure in the Netherlands is ideally suited for the realization of a circular economy. The infrastructure in the ARRRA (Antwerp-Rotterdam-Rhine-Ruhr-Area) cluster is well equipped to handle large amounts of biomass (wood and straw type). The agricultural knowledge will provide very high production yield crops (e.g. 15 ton sugar per acre). The combination of sea ports, green energy supplying providers and big refineries give the energy integration required for successful biorefineries.
50
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
2. Overview of Tasks 2.1 Making Molecules Efficiently Energy efficiency is essential to increase the productivity and sustainability of society through the delivery of energy savings. The impact of energy efficiency measures can go far beyond energy savings; energy efficiency improvements can be a key contributor to economic growth and social development. (International Energy Agency (IEA), 2014). From the chemical industry perspective, the dependence on fossil resources as raw material severely limits achieving efficiency gains. Breakthrough technologies are needed to introduce more sustainable resources in the production processes such as biobased carbon as a raw material and renewable energy. Another important challenge is to make rational use of Earth’s resources. In addition to food, soil, water, air and ecosystems, resource efficiency includes natural resources such as fossil fuels, minerals and metals. It will ultimately lead to a circular economy. Technologies are required that enable the transition to a resource-efficient and low carbon economy in which renewable energy conversion and storage will become essential asset. The chemical industry will play a vital role in many renewable energy technologies. In most scenarios, it is recognized that global energy demand will be covered by a mix of various energy resources with an increasing share of natural gas and, on the long term, renewable energy resources. Feedstock diversification and flexibility in chemical operations will become more important in the coming decade. Energy efficiency will also require smart new approaches in the built environment (construction, insulation), automotive, heating and cooling and other energy-related products; in many cases, the chemical industry and SME-based activities will contribute to increasing energy and material efficiency throughout the economy. In the coming decades there will be a focus on developments that enable the transition to a lowcarbon economy where renewable energy conversion and storage play a key role. The ambition is to realize this transition by 2040. To this end, breakthroughs are needed in three areas that are key to realize the ambitions of resource diversification, energy efficient chemical production and sustainability. Firstly, innovations are needed in C1 chemistry, for instance the manufacture of fuels and chemicals from natural gas. Secondly, novel technologies are needed to convert sustainable resources into energy and products. These resources include biomass (see 2.1.2) and other sustainable resources such as solar, wind and others. It is envisioned that natural gas resources and biomass will serve as energy resources to bridge the gap to the envisioned low-carbon economy that will be mostly based on direct or indirect use of solar energy. Within the scope of this roadmap, there will be particular focus on chemical energy conversion and storage of these mostly electrical forms of sustainable energy. A third area of attention is to make step changes in existing chemical processes in terms of energy and resource efficiency, and in new processes that turn waste into high value products. This aspect requires concerted efforts in new breakthrough chemical pathways and advanced process technology. 2.2 Making Molecules from Biomass Up till now, the commercial valorization of biomass to fuel, chemicals, and materials has been narrowly limited to a few value chains, and broad commercialization has yet to be realized. So far, commercial applications include the fermentation of sugar to ethanol, lactic acid and succinic acid, the valorization of vegetable oils and the modification and use of natural fibers. Torrefaction, thermochemical conversion to pyrolysis oil, the catalytic conversion of carbohydrates into furanics and 2nd generation feedstock pretreatment is done at demonstration or pilot scale. A relevant ambition was put forward by the Dutch chemical industry (VNCI) in its roadmap to reduce the emissions of greenhouse gases by 40% by 2030. The use of biomass feedstocks and the production of hydrogen from renewable energy sources, as well as the direct utilization of CO2 in (bio-)chemical synthesis are important pillars to achieve this ambition. This would provide new routes for making 51
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
fuels and chemicals in a truly sustainable way. Gaining a detailed understanding of (bio-)catalysis, process technology, agriculture, and biomass production chains and downstream processing is therefore essential. This would clearly contribute towards tackling the challenges the EU faces in terms of clean energy as well as resource efficiency. Hence, we are often at the stage of explorative research, gaining knowledge on how to valorize different sources of biomass in the most optimal way making use of selective fractionation and conversion steps. All biomass is highly heterogeneous and generally contains a fraction to be used for the production of food and feed, as well as residues and side products that are potential feedstock for materials, chemicals, fuels, and energy. For materials, chemicals, energy, and fuels production, the five main classes of compounds in the biomass that can be used are cellulose, hemicellulose, lignin, lipids, and proteins. Additionally biomass contains extractives, water and inorganic materials. To make optimal use of biomass the required key activities and related solutions are described in the chapters and Biorefining and Circular economy (3.2.1), (Thermo-) Chemical Biomass conversion (3.2.2), and Biomass conversion using Industrial Biotechnology (3.2.3). 2.3 Making Functional Molecules Synthetic chemistry is a key enabling science for the design, synthesis, and modification of functional molecules, which are part of speciality chemicals such as pharmaceuticals, hormones, vitamins, pesticides, personal-care products, and fine chemicals. While these functional molecules are typically relatively small molecules with complex structures, polymeric functional molecules form a wholly different class, and make up materials widely used in the production of textiles, paints, cleaning agents, tires, insulating materials, packaging, for biomedical materials, regenerative medicine. Thus, functional molecules play a vital role in our daily lives and are of high relevance for the pharma, agro, health & food, transport and energy sectors. Currently the synthesis of any functional molecule appears feasible, but superstoichiometric, poorly understood, and inefficient methods are still used in the process of making them. For this reason, replacing current synthetic methods with newly developed, tailor-made sustainable synthetic methods is equally important as the design and synthesis of the next generation of complex functional molecules with novel properties. Both approaches are important as they will decrease cost for the manufacturing industry and the consumer as well as decrease the ecological footprint of production. Innovations will result in new economic activity in the form of novel chemical products with advanced properties. This is in line with the societal challenges defined in the Horizon 2020 framework. The continuous supply of cheaper chemical products for various applications, and “on demand“, sustainable synthesis of any molecular structure needed in our daily life, requires development of novel synthetic methods, fundamentally new concepts in catalysis, and breakthroughs in process technology/production. Apart from this, our mechanistic understanding and predictive power of the structure-reactivity relationship for reagents and catalysts involved in chemical reactions must be advanced. The research effort must be directed towards: 1) sustainable synthesis of small functional molecules with complex chemical structure and novel properties (the discovery and molecular design of the bio-active molecules will be an integral part of the PC Chemistry of Life); 2) sustainable synthesis of polymeric molecules while controlling the properties and functionality of the bulk and/or surface of the corresponding materials; 3) improved process technology for sustainable manufacturing of the end products consisting of functional molecules. To tackle these challenges and to achieve breakthroughs in the sustainable synthesis of functional molecules it is highly beneficial for academia and industry to join forces in collaborative research, as well as to support curiosity driven fundamental research. Process Intensification or flow chemistry in highly efficient, modular plants has been identified as crucial enabling technology especially for the transition towards flexible, scalable, decentralized production of fine and specialty chemicals. The subject is of wider significance also in the other tasks.
52
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
3. Principal activities of tasks 3.1 Making Molecules Efficiently
The following grand challenges are identified in the chemical sciences and engineering as essential in realizing the ambition of a sustainable, low-carbon economy:
• Diversification of feedstock • Rational use of resources • Reduction of CO2 emissions These grand challenges are significant problems that need a long-term, coordinated approach from industry, academia and the government. The chemical industry will be a key player in building a resource-efficient and low-carbon economy. Using energy and raw materials in an as efficient and sustainable manner as possible is important to society and, on the long term, to the competitiveness of the chemical industry. The chemical industry uses natural raw materials including metals, minerals as well as a fossil and biobased resources. An integrated strategy based on efficient use of resources and energy is needed; this implies optimization of all input resources, processing options and product materials, including the use of recycle/ re-use options. The grand challenges are drivers for the shift from fossil to renewable resources. Products and materials with increased resource and energy efficiency will improve efficiency in other sectors throughout the economy (Ryan & Campbell, 2012). Price volatility and local availability of cheap fossil feedstock necessitate the development of novel catalytic processes together with efficient process technology to convert diverse feedstock in an as efficient manner as possible. The expected shortage of non-renewable resources gives more importance to renewable feedstock. This includes biomass (discussed in the task “Molecules from biomass”) and resources such as solar, wind and others. Production growth needs to be decoupled from resource use. This requires major technological developments to enable the circular economy. Another challenge lies in chemistry solutions to use renewable energy effectively. It requires breakthroughs in chemical energy conversion and storage. 3.1.1 Feedstock diversification: C1 chemistry Recent times show strong volatility in feedstock pricing. It is strongly affected by local policies such as the exploration of tight resources (shale gas and oil) in the US and China’s plans to strongly expand coal-based feedstock for fuels and chemicals production. Europe is highly dependent upon imported feedstock, currently mainly oil and with an expected increase of LNG and shale gas. The EU strategy is therefore focused on diversification of feedstock. The focus of the chemical industry will remain on fossil resources such as natural gas and coal for the coming decades. Use of natural gas, specifically methane as feedstock for the chemical industry is increasingly considered. As methane is an unreactive molecule, there is a great need for innovative catalytic processes to convert methane in suitable platform molecules for the chemical industry (e.g., methane to ethylene, methane to methanol, methane to aromatics). Another issue in C1 chemistry is the conversion of locally produced small streams of biogas into methane or liquid products, for which efficient small-sale units are needed. Methanol is considered as an interesting platform chemical from which base chemicals can be produced and it also serves as a suitable transportation fuel (Olah’s methanol economy). Efficient processes to activate ethane into useful base chemicals should also be considered (natural gas usually contains ethane that also has high value as chemical feedstock). Another option is to use coal resources as a carbon source; the concern of greater CO2 emissions compared with other fossil resources can only be resolved by coupling coal conversion to CO2 conversion with renewable H2. The shift in feedstock will also lead to a shift in platform molecules in the chemical industry. For instance, expecting that synthesis gas will continue to grow in importance; requires novel catalytic processes to produce light olefins, the building blocks for plastics, directly from synthesis gas. 53
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
The above innovations also require concerted developments in process technologies to ensure high efficiency of the processes e.g. by controlling/shifting equilibria. In addition, development of more efficient separation technologies for mixtures of hydrocarbons based on principles other than the existing (cryogenic) technologies may enable technologies at lower per pass conversions. Expected results present – 2040 Scientific/technological goal: • Novel processes based on natural gas (methane, ethane), possibly coal; novel catalysts and processes for the direct conversion of methane into reactive intermediates compatible with current chemical industry. Novel catalysts and processes for syngas conversion into a broader range of products than only fuels (olefins, alcohols); also direct Fischer-Tropsch conversion to fuels (optimization current catalysts, catalyst stability, feedstock flexibility, improved product selectivity). Novel catalytic processes for methanol conversion into olefins, gasoline, and diesel. Integrated catalyst/reactor technology research to increase development of novel chemical processes (decrease time from discovery to market). Efficient purification/separation of mixtures of hydrocarbons from each other by other means than the existing technologies (e.g. cryogenic distillation using cold box technology, membranes and sorption technology). Industrial end goal:
•
Decrease dependence on oil as primary feedstock in chemical industry, flexibility in operations.
Societal goal:
•
Realization that transition to low-carbon economy will be time-consuming; novel processes that make use of natural gas help to overcome the maturing of the most advanced technologies.
Suitable funding frameworks:
•
Large-scale programs that combine close industry/academia interactions (CHIPP-type) with broad (TA-type) consortia to address fundamental chemistry/engineering aspects of novel conversion technology. Milestones: • New catalytic processes for methane/ethane upgrading to platform molecules (2023); improved synthesis gas technology (2023). 3.1.2 Feedstock diversification: Sustainable resources, Solar, Wind and others a. Making use of renewable energy in the chemical industry The circular economy concept provides an alternative to the current take-make-waste model by decoupling growth from resource use. Concepts such as Japan’s so-called 3R concept of “reduce, reuse, recycle” will be at the base of a transition in which waste is considered as feedstock. An ambitious goal is to use of CO2 as feedstock for chemicals and fuels; the main reason to do so is to fight climate change. Options are the conversion of CO2 with renewable H2 in methane (Sabatier reaction), in synthesis gas (see above) or directly into methanol. Another example is electrochemical reduction of N2 to NH3 to partially replace Haber-Bosch ammonia; in this way, the agro-food chain could be made more sustainable. These opportunities require innovations in chemistry, catalysis and engineering. There are many other waste and residue streams that need to be considered as feedstock to realize the circular economy; other examples are blast furnace gas and hydrogen sulfide. These waste-to-product processes are usually energetically uphill and, therefore, would benefit from the use of renewable energy. The contribution of electricity from solar, wind, tide, etc. in the European energy mix will increase. It is thus required to develop novel processes that make use of sustainable electricity in the core of the process. b. Chemical energy conversion and storage Long-term policies are needed to decarbonize the energy system in a sustainable manner. It requires the development of affordable, cost-effective and resource-efficient technology solutions. An 54
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
important future area will be chemical energy conversion and storage, which refers to the harvesting of plentiful, yet intermittent renewable energy resources and finding ways to store this energy in an efficient manner. In addition, novel energy storage technologies can boost the use of waste energy in the process industry, which often also has an intermittent character due to the use of high T batch processing in industries like steel, non-ferro and minerals. Major themes in this area are the conversion of renewable energy in solar fuels devices (e.g., photoelectrochemical water splitting) and electrolyzers, and energy storage in the form of chemical compounds and reactions (hydrogen storage materials, CO2 or N2 reduction to liquid fuels or CH4 or NH3) and electrons (batteries). The development of affordable technologies calls for a concerted effort in catalysis, advanced materials, electrochemistry, modeling, process engineering and production processes at all length scales of importance. Related areas to which chemistry can contribute are: Photovoltaics, Renewable Heating and Cooling, Biofuels, Carbon Capture and Utilization. Expected results present - 2040 Scientific/technological goal:
•
Novel processes based on waste and side streams; understanding how to use renewable energy resources in the chemical industry; use of sustainable electrons in chemicals manufacture. Identify ways to involve CO2 in chemicals synthesis. Decision making tools that effectively compare various options. Technologies to capture and utilize CO2 from waste streams and from the atmosphere. Water splitting with > 15% STH efficiency; technology should be based on noncritical materials and should exhibit long-term stability; storage of renewable electrons; electrochemistry; identify best method to store solar light, e.g. power-to-gas; power-tochemicals, re-use of stored energy in fuels cells; value chains from CO2/N2.
Industrial end goal:
•
Decrease ecological footprint; increase use of sustainable energy in the core of the chemical industry; use of electricity as an energy source; decrease CO2 emissions. Increase flexibility in operations. New industrial technologies – new economic activities around solar harvesting similar to initial PV market (but let’s retain the industry now in Europe by creating competitive edge).
Societal goal:
•
Decrease CO2 emissions; increase energy efficiency. Cheap and abundant source of renewable energy; personalized solar fuel harvesting and conversion (at home) vs. large solar to hydrogen panel fields.
Suitable funding frameworks:
•
Larger program around “Integration of renewable energy in the chemical industry”. Stimulate fundamental research to overcome the basic challenges that are not yet solved; fund broad programs (TA model) to develop/reinvigorate white spots in scientific/engineering expertises in the Netherlands (e.g., electrochemistry, electrocatalysis, fuel cells); where possible involve industry with levels of cash contributions commensurate with the time horizon of these technologies.
Milestones:
•
Significant contribution of green electrical energy use in the chemical industry (20% by 2023; 50% by 2040); Scalable solar fuels device technology (2023); CO2 capture from waste streams (2023); CO2 capture from the atmosphere (2040); CO2 conversion technology increasing contribution in chemical industry; Netherlands clearly recognized as leader in developing sustainable chemical technologies at industrial and academic level.
3.1.3 Efficiency in chemical production Fossil hydrocarbon materials that are used by the process industry are generally becoming heavier and richer in inorganic contaminants. On the other hand, environmental demands become more and more stringent requiring the deep removal of e.g. sulphur from product streams and the deeper 55
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
clean-up of waste streams. Specific areas of attention include upgrading of heavy residue and heavy marine diesel to clean fuel specifications currently being implemented. Furthermore, the scarcity of the catalytic materials used leads to a desire for more efficient recovery of the metals as well as an interest in using less noble and more abundant metals in catalysis. A catalytic alternative to steam cracking could enable a more selective process at lower reaction temperatures, leading to more efficient use of raw materials while requiring less energy. Steam cracking is the process that delivers the base chemicals ethene, propene, butadiene and benzene. These chemicals form the basis of many chemical products, especially polymers. Steam cracking is the step in the production chain that requires most energy (about 15% of the feedstock is burned) and the only step that is done purely thermally. A catalytic process or add-on catalytic processes could also help to deal with the feedstock issue; the increasing use of ethane as cracker feed due to the availability of cheap shale gas may lead to increased attention for alternative processes to produce propylene and aromatics. As a lot of knowledge on catalyst performance has already been gained for the existing processes, it is expected that fundamental insight in catalysis will be instrumental in accomplishing the desired improvements. Efficient purification/separation of mixtures of hydrocarbons by other means than the existing technologies (e.g. by olefin/paraffin separation) is expected to lead to more energy efficient processes. Expected results present - 2040 Scientific/technological goal:
•
Improved catalysts for heavier and dirtier feedstock conversion. Better hydrodesulphurization and environmental catalysts. Catalysts using less noble metals. More efficient recovery of precious metals from processes. A catalytic reaction system that produces lower olefins from liquid hydrocarbons at higher yields than steam cracking. Increased fundamental insight into industrially relevant catalytic mechanisms. Efficient purification/separation of mixtures of hydrocarbons from each other by other means than the existing technologies (e.g. cryogenic distillation using cold box technology, membrane technology). Process intensification.
Industrial End Goal:
•
Reduced environmental footprint of the existing fossil based technologies.
Societal goal:
•
Reduced carbon intensity of the economy while the transition to a low carbon economy is ongoing.
Suitable funding frameworks:
•
Large-scale programs that combine close industry/academia interactions (CHIPP-type) with broad (TA-type) consortia to address fundamental chemistry/engineering aspects of novel conversion technology.
Milestones:
•
to be added
3.2 Making Molecules from Biomass The utilization of biomass in the chemical industry to replace fossil raw materials is more efficient, in terms of sustainability (CO2 reduction, land use) than utilization of biomass as bioenergy (without utilization of heat) or biofuels for transport. Furthermore, it is also important to note that other alternatives, apart from biomass, are not readily available for replacement of fossil raw materials in the chemical industry. Organic chemistry requires a carbon source, and for this reason alone, biomass is already the raw material for chemistry, certainly when fossil raw materials become scarce and/or more expensive (Commissie Corbey (Commissie Corbey)). By utilizing biomass in a ‘smart’ way in the chemical industry, fossil raw materials will be replaced, and much will be saved on the energy (and capital) required for processing (Commissie Corbey). However, there is currently no government policy in place to stimulate the utilization of biomass in the chemical industry. This hampers the utilization of biomass in the chemical industry. For the development of biochemicals, it is essential 56
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
that a level playing field is in place, in relation to other sectors. Most fractions of biomass (C5, C6 sugars and lignin) can be used in the chemical industry in the front chain, for the production of bulk chemicals, and in innovative routes, where processes are adapted and/or new products are developed. However, efficient and tailor-made pretreatment and separation processes need to be developed to supply the (bio-)conversion plants with the adequate intermediates. Other more wet and/or heterogeneous (recalcitrant) fractions of biomass can also be used as an energy source e.g. via biogas, burning or gasification. A very important aspect is the sustainable separation/process/reactor technology for among others the detoxification of fermentation feeds, desalting/dewatering of product streams, and the purification of products (e.g. to polymer quality). All routes will be necessary in the future for greening of the sector. The innovative routes hereby have the most potential for energy savings and CO2 reduction (Commissie Corbey). 3.2.1 Biorefining and Circular Economy Biomass is a very heterogeneous feedstock with regards to composition. Origin of biomass, growing conditions, storage and processing all has pronounced effects on yield and quality of the components. Therefore, biorefinery (agglomerate) production sites are needed which demonstrate the sustainable processing of biomass into a spectrum of marketable products and/or energy (IEA BioEnergy Task 42 definition). Special emphasis will be placed on the cascading of biomass to create maximal value as well as a circular economy approach to the chemicals or products made. 2nd generation feedstock (non-food crops and agricultural residues) as well as low-lignin feedstocks such as algae and seaweeds show a lot of potential. Progress in the direction of a circular economy can be achieved by making producers responsible for their product, even in the waste phase. This leads to producers designing materials in such a way that they are recyclable. The development of a biobased economy requires innovation, and these innovative plans require time to develop into commercial applications. Biorefinery is still in the infancy stage, compared to the current petrochemical industry (large-scale integration with oil refineries). New biobased processes and products can generally not (yet) compete with petrochemical alternatives. Support for innovation in the biobased economy is essential, especially for those routes that reduce CO2 in an optimal way. Development of (downstream processing) technologies other than distillation is essential to make products that meet the end-user’s specification since the mixtures behave thermodynamically far from ideal. Efficient (bio)catalytic processes are in most cases the core element in an biorefinery and therefore justify separate discussion. 3.2.2 (Thermo-)Chemical Biomass conversion To valorize dry biomass via (thermo-)catalytic conversions three main routes are envisioned, all of which contain catalytic steps i.e., the syngas route, the pyrolysis route, and the moderate temperature route. The first two routes break down the biomass either to syngas (CO and H2) or biooil (complex mixture of molecules). For the further conversion of these streams similar processes as developed for fossil feedstocks can be used. However, these processes have a special edge related to catalyst stability. The third route maintains as much as possible the functionalities (atom efficiency) present in the biomass. The latter route needs significant more research input compared to especially the first route, also from catalysis and downstream processing, to convert the complex biomass mixture to desired molecules. Yet, since the biomass is highly functionalized, this route is very promising for making (bulk and functional) chemicals. 3.2.3 Biomass conversion using Industrial Biotechnology Industrial (White) Biotechnology is an important tool to process dry and wet biomass in a wide array of chemicals and fuels. A clear distinction can be made between fractionation of biomass, enzyme development for predominantly hydrolysis of cellulose and hemicellulose, and fermentation and enzymatic processes for production of chemicals and fuels. The Netherlands has a forefront position in industrial biotechnology both on an academic level as well as in the industrial landscape (among 57
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
others DSM, Dupont Industrial Biosciences, Corbion, Paques, Dyadic Netherlands, Photanol). Production of bulk/platform chemicals from organic waste flows based on the available expertise processing such flows (Paques, Orgaworld, RoyalHaskoningDHV and others) has a good potential (STW). Expected results present - 2040 Scientific/technological goal:
•
Dutch (Bio-)Catalysis and process technology R&D of biomass conversions takes a worldwide prominent position. Efficient purification/separation (e.g. water and salt removal) of bio-origin molecule mixtures based on other separation principles than boiling point difference. Developments in process intensification. Real integration/optimization between the industrial biotechnology and chemical catalytic conversions, e.g. biomimetic catalyst, enzymes working under even more extreme conditions (e.g. non-aqueous solvents, high T, high p).
Industrial end goal:
•
Significant amounts of the chemicals produced in the Netherlands are of a biobased origin, a minimum requirement for CO2 reduction must therefore be ascertained (Commissie Corbey). Introduction of demo and commercial scale biorefineries will attract additional conversion and processing activities down the value chain and the resulting learnings will create a new innovative climate (bioports instead of silicon valley). The process and heat streams integration and development of process intensification will further lead into a growing overall efficiency and will boost the cost competiveness of the Dutch biobased economy. Closure of water and mineral cycles around bio-refineries/biochemical production.
Societal goal:
•
General acceptance that the use of biomass as feedstocks for fuels and chemicals is desirable. To achieve this goal all important socio-economic aspects and sustainability issues have been identified, adequate systems to monitor, such as an unequivocal sustainability regime, and model these parameters have been developed as well as the development of respected education, communication and valorization programs.
Suitable funding frameworks:
•
CatchBio and its successors (especially 3.2.2), BE-Basic and its successors (especially 3.2.3), National and Provincial governments, NWO, EU (Horizon 2020, PPP Biobased Industries Consortium (BIC) and successors).
Combined Milestones of 3.2.1; 3.2.2 and 3.2.3 deducted from the targets set in the “Onderzoeksagenda Biobased Economy” by the TKI-BBE (TKI BBE, 2014)
• •
•
Qualitative: 6 G€ added to BNP in 2023; CO2: 140GWh/year renewable energy production, corresponding with 104.000 ton CO2-reduction per year and 50% contribution to 10% biomobility, corresponding with 1.850.000 ton CO2/year in 2023; Fte: 3000 jobs in 2023.
Specific steps required present - 2040 Short term
•
Implement demo- and flagship-scale biorefineries in the Netherlands. Facilitate the production of fractionated 2nd generation sugars under world market price of sugar/dextrose to attract interest from producers of first generation products like lactic acid, succinic acid, enzymes & antibiotics, FDCA and furfural). Develop novel processes and products based on industrial biotechnology and chemical catalysis.
Medium term
•
By using process intensification type of R&D novel processes are developed up to 2020 in order to be implemented from 2020 to 2030. Selection of novel products will be based on carbon (molecular formula should not differ too much from the C-H-2O composition of C5/C6 sugars) as well as electron efficiency to optimize/maintain atom efficient conversions/products; 58
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
• •
Selection of novel process will be based on drivers of ecology and economy; Increased emphasis on nitrogen-containing molecules, such as those derived from amino acids.
Long term
•
3.3
Scaling up biorefinery clusters including energy integration, energy use of other sustainable clusters. Making Functional Molecules
3.3.1 High performance materials Commercial and technological progress in the manufacturing of functional materials depends on breakthroughs to be achieved in controlling the properties and functionality of the bulk material or its surface during the synthesis. Polyolefin (PO) catalysis, although hugely important for industrial applications, mostly makes use of a poorly understood heterogeneous Ziegler-Natta catalyst, hampering the fine-tuning and control of the polymer properties. Moreover, polycondensation catalysis for the production of polyesters, polyamides and polysiloxanes is still largely virgin ground for the catalysis community. Furthermore, HSE considerations are increasingly necessitating the development of alternatives for existing catalytic methodologies in, for example, (autoxidative) curing and vulcanization. 2040 Dream Goals • Material based on one or more polymers, including those from on demand polymerization technology, with desired and predicted macromolecular properties and produced by a sustainable manufacturing process based on designer catalysts and having a best in class environmental footprint; • Material based on one or more polymers produced via “circular economy” principles, meaning that thermoplastic polymers can be depolymerized to the monomers, and/or thermosets can be decrosslinked to the oligomers, all enabled by catalysis. Expected results present - 2040 Scientific/technological goal: • Technologies to create high performance materials/polymers that are predictive in nature, allow high level of control, and are based on rational design (which, in turn, is based on molecular and mechanistic understanding). Industrial end goal: • Widespread (circular) economic activity in the Netherlands related to design, scale-up and manufacturing of high performance materials, both by small and large companies. This includes the continuous generation of new high performance materials for potentially new applications. Societal goal • Products based on materials that meet consumer demands related to price, sustainability (biobased; HSE aspects), and quality (strength; look & feel; durability incl. self-healing…). Specific steps required present - 2040 Short term • Develop catalyst design tools based on empirical (trial & error) approach for PO or polycondensation, allowing control of the properties and functionality of bulk materials or their surfaces, including control of their identity (chemical nature), as well as temporal (order of events) and topological aspects (position, micro-meso-macro length scales).
59
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
Medium term • Develop catalytic technologies for controlled polymerization leading to PO/EP hybrid materials and for controlled polymerization with low-cost, universal applicability and broad functional group tolerance without toxicity, odor or color issues as industrially applicable alternatives for current radical polymerizations (RAFT, SET-LRP). Long term • Develop catalyst design tools based on rational (understanding) approach for PO or polycondensation, allowing control of the properties and functionality of bulk materials or their surfaces, including control of their identity (chemical nature), as well as temporal (order of events) and topological aspects (position, micro-meso-macro length scales). Milestones
• •
Polyolefins from simple and/or functional olefins as well as hybrids of polyolefins and engineering plastics, enabled by tuneable (block co-) polymerization catalysts; Controlled (including on demand) technologies for polymerization (e.g. polycondensation and curing) and post-modification that meet performance, SHE, and LCA/(carbon) footprint requirements.
Suitable funding frameworks: Horizon 2020; Regional subsidies (e.g through incorporation of InSciTe, etc. as partners) NWO; Topsector Chemistry
3.3.2 Speciality, pharma and fine chemicals Major challenges in the field of synthesis of often complex small molecules are sustainability, hazard, health and environmental issues. Many processes for making complex functional small molecules are still using superstoichiometric quantities of reagents with tedious protective group strategies to achieve selective functionalization. As a result, the synthetic procedures often generate a factor one hundred times more waste than desired product (the PMI - Process Mass Intensity - is much too high). To improve the existing synthetic processes and to accelerate the discovery of new transformations, significant breakthroughs in synthesis and catalysis are required. Although important advances in the field of catalysis have been achieved in academia in recent years, the major challenges still remain, preventing full implementation of these processes in industrial scale. To address these challenges, synthetic research should be directed towards a fundamental understanding of chemical reactivity and processes, the development of conceptually new synthetic methods, and the introduction of novel, smart, robust, promiscuous and, above all sustainable catalysts based on rational design. In the past decade significant progress has been made in the field of Process Intensification or flow chemistry. However, further developments will be needed to fully deploy the potential, ultimately leading to sustainable production of fine and specialty chemicals in scalable, remote controlled production facilities. In this context, the availability of advanced flow reactors, capable of converting raw materials into final products safely, reliably and with high throughput and against the lowest possible costs is of crucial importance. The advanced reactors provide ultimate control of phenomena and conditions controlling/ruling the reaction, which may for instance enable “forbidden” and “forgotten” chemistry in high-T/p process windows that would be impossible or impractical in conventional batch reactors. Most reactions do not reach 100% yield and selectivity, implying that down-stream separation and purification is necessary. The field of modular, efficient separation and purification is currently underdeveloped compared to modular reactors. For formulated, specialty products not only the purity but also the form like the particle size or shape is important. This translates into a need for modular formulation technologies such as spray drying with 3D printing technology. The transition towards remote controlled decentralized production also requires breakthroughs in monitoring and control of these processes. 60
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
Dream goals
•
• • •
Availability of a toolbox of synthetic methods and catalysts that can be used for (computer-) predicted/controlled, scalable, 100% efficient, “on demand” synthesis of any substance, of any complexity, with minimal number of steps and minimal waste generation; Integrated process/synthesis technologies that allows for the ‘one pot’ synthesis of complex molecules, e.g. of complex drugs; A general repertoire of non-noble metal catalysts for fine chemical synthesis that operate at mild (ambient?) conditions and can achieve TONs exceeding 100,000; A remote controlled, multi-purpose flexible production system with reaction, separation and if necessary formulation for fine and specialty chemicals in which on demand functionality can be produced at the best possible position in the value chain with a superb sustainability profile.
Expected results present - 2040 Scientific/technological goal
•
•
Toolbox of synthetic methods available for the synthesis of complex functional small molecules and catalyst design tools to allow specific ‘on demand‘ activity/selectivity; A toolbox of modular equipment, technologies and sensors enabling the implementation of multi-purpose flexible production systems with reaction, separation and if necessary formulation. The ability to produce functionality on demand (in time and place) by a comprehensive understanding of the relation between process/equipment, molecule and functionality.
Industrial end goal
• •
Sustainable and robust manufacturing of any required end product through catalytic processes using abundant and renewable raw materials; A leading position of the Netherlands and Europe in the production and supply of fine and specialty chemical molecules/products.
Societal goal
• •
•
Cost-effective end products (drugs, food additives, agrochemicals, flavour & fragrance ingredients, nutraceuticals and so on) with lower environmental impact of chemical manufacturing (as general result); Conservation and creation of knowledge-intensive jobs in the fields of the production of functionality and production systems; Intrinsically safe and resource and energy efficient production of fine and specialty chemical molecules/products.
Specific steps required present - 2040 Short term
•
•
Synthetic methodologies and catalysts must continuously evolve and improve thereby expanding the range of complex molecules available via sustainable (catalytic) synthesis. To reduce synthetic chemistry’s dependence on noble, scarce and toxic elements, catalysts based on abundant metals and cheap ligands as well as metal-free catalysts have to be developed. To evaluate the newly developed synthetic methodologies and catalytic systems relevant sustainability metrics (process mass intensity, energy intensity, toxicity, water consumption, pollution) must be applied; Reduction of the costs of modular reactors by the introduction of advanced production technologies (such as 3D printing, polymer welding, extrusion/injection molding). Development of modular separation technologies.
61
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
Medium term
•
A transition must be made from a posteriori explaining of the reactivity of complex molecules/catalysts to being able to predict a priori the molecular structure required for the desired catalytic selectivity, as well as emergent properties of complex catalytic systems. In order to provide synthetic shortcuts in multi-step processes, tools for late-stage functionalization, as well as multi-catalytic or promiscuous catalysts must be developed instead of single catalytic systems. Furthermore, one-pot multistep cascade reactions must be developed, leading to a significant reduction of unit operations.
Long term
•
In all synthetic procedures stoichiometric reactions should be replaced by catalytic reactions utilizing highly active and stable (high TOF and TON values), cost-efficient catalysts, which are selective, safe and recyclable. Ideally, desired final products will be made using protecting-groupfree synthesis, with 100% atom efficiency and selectivities, and if possible in one operational step without intermediate products and catalyst isolations.
Milestones
•
•
Mechanistic insight into the reactivity of complex small molecules and fundamental understanding of catalysis, leading to selective activation of chemical bonds and allowing rational design of new, sustainable synthetic methods, catalysts and concepts; Continuous production replaces batch production with lower costs, shorter time-to-market and superior resource & energy efficiency. Focus on short term is on reaction, separation/purification and formulation to follow
Suitable funding frameworks: Horizon 2020, NWO, Top Sector Chemistry Regional subsidies
4. Cases 4.1 Making molecules efficiently A. Diversification of feedstock in the chemical industry • Processes based on natural gas (develop innovative C1 chemistry, methane to aromatics, methane to methanol, methane to hydrogen, methane to ethylene); • Chemicals instead of fuels from synthesis gas; • Circular economy: electrons in the chemical industry/electrification. C1 chemistry and syngas chemistry requires short term action Use of electrons in the chemical industry is midterm action Scientific issues:
• • • • • • • • •
New catalytic processes for methane and ethane conversion; New catalytic processes for syngas conversion to chemicals; Catalyst selectivity, stability; Smart operation windows; Multiscale description catalytic reactors; Holistic view on process development; Small scale, distributed processes; New processing schemes; Separation and Process intensification technology.
Funding via direct interaction with industry, ACTS-like scheme; consider hybrid of direct one industrytwo academic group interactions with technology area type of constructions that drive fundamental scientific developments
62
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
B. Rational use of resources • Critical raw materials issue; replace noble metal catalysts by abundant materials for existing processes; which ones we can identify? • LCA, holistic view on energy and resource efficiency, e.g. by developing supporting models, methodologies and tools next to technological innovations to measure sustainability covering all elements of sustainability profit, planet and people; • Technology for re-use / recycle of chemicals. C. • • • • •
Reduction of CO2 emissions = secure, clean and efficient energy Chemical energy conversion and storage; Capture CO2, convert CO2, renewable H2 (water splitting); Storing solar light in chemical bonds; Storing green/renewable electrons: in industry or at consumer; Solar fuels, solar chemicals.
Strengthen necessary expertises in the Netherlands: electrochemistry, electrocatalysis, photoelectrochemistry, theoretical catalysis, advanced inorganic materials, device engineering, holistic process development, and separation / process intensification technology 4.2 Making Molecules from Biomass 4.2.1 Biorefining • The development of better and cheaper pretreatment/fractionation/hydrolysis of different 2nd and 3rd generation biomass feedstocks. Emphasis should be on feedstock indifferent (omnivoric) systems; • Biorefineries are also a prominent example of cross-sectorial symbiosis and novel value chains. This includes plants combining the production of traditional commodities such a food, feed and fibres with new outlets such as fuels, chemicals and materials. In such an environment (and other transitions) we see a need for innovation decision support tools and methodologies; • More clever use of biomass pretreatment and conversion routes (next to the sugar routes, many of them are already well developed), potential smarter ways, mild and highly selective separation and purification technologies (up- and downstream); • Development of dedicated enzymes for biomass pretreatment/hydrolysis into valuable feedstocks and building blocks; • Scale possibilities in the biorefinery – collaborate with major harbors (Rotterdam, Amsterdam, Delfzijl) to have it adapt to biomass based bulk operations; • Closure of water and mineral cycles in BBE/biorefineries / circular economy; • Nitrogen containing molecules from biomass (e.g. starting with proteins (amino acids), chitins (glucosamine)). 4.2.2 (Thermo-)Chemical Biomass conversion • Catalysis research in general (interconnected with biomass conversion; chemical conversions on bio-based molecules) to improve stability, time on stream, regeneration, selectivity, …; • Catalytic upgrading pyrolysis oil into chemicals including down-stream processing; • Catalytic valorization of side products from biorefineries e.g. lignin, humins; • Bioaromatics – Aromatics is an important cluster of building blocks from fossil. The shale gas revolution may lead to a shortage in aromatics and it would be a breakthrough (and challenge) to make aromatics from biomass (this is one of the initiatives in the COCI-GCC);
63
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
• • •
Catalysis research in general (interconnected with biomass conversion; chemical conversions biobased molecules) to improve stability, time on stream, regeneration, selectivity, …; Novel catalysis, novel options, hybrid processes, e.g. fermentation followed-up by catalysis step, biomimetic approaches; Green biobased chemistry chemicals e.g. economically competitive chemo-catalytic processes for the manufacturing of base chemicals (drop-ins as well as new functionalities) from renewable feedstocks (e.g., FDCA, p-Xylene, mono-ethylene glycol, acrylic acid, ….).
4.2.3 Biomass conversion using Industrial Biotechnology • on Green biobased chemicals e.g. economically competitive biochemical based processes for the manufacturing of base chemicals from renewable feedstocks (e.g., lactic acid, succinic acid); • Processes for specific and new molecules from biomass using new fermentative and/or enzymatic systems leading to sustainable production of drop-ins or novel molecules (e.g. phenol, styrene, itaconic acid, ethyleneglycol, isobutanol, butanediol, FDCA, propanediol, hydroxybutyrate, adipic acid, isoprenoids). Processes for specific and new molecules from biomass using biocatalysts (enzymes and whole cell biocatalysts); • Novel catalysis, novel options, hybrid processes, e.g. fermentation followed-up by catalysis step, biomimetic approaches; • Using side and/or waste streams for fermentative or biocatalytic conversions; • New biocatalyst / biomimetic systems for biomass conversion, improvement of biocatalytic systems (enzyme engineering and metabolic engineering) in relation to activity, robustness with regards to impurities, stability, turnover number, yield, titer. 4.3 Making Functional Molecules 4.3.1 High performance materials Development of catalyst design milestones, including for initial empiric approach; building mechanistic understanding towards rational catalyst design and post-modification technology to create functional surfaces (this will include fundamental, applied and engineering aspects). Funding options: H2020, NWO, regional subsidies.
4.3.2 Speciality, pharma and fine chemicals Advancing mechanistic understanding of catalytic processes and of the reactivity of complex small molecules with the aim of moving from trial & error approach to rational design. Integrating the knowledge and expertise in different fields, such as organic synthesis, homogeneous, heterogeneous and biocatalysis, as well as spectroscopy to allow development of sustainable novel synthetic methodologies and catalysts with reduced dependence on noble, scarce and toxic elements. For more detailed actions see the catalysis roadmap.
5. Connections Current Initiatives
Task 1: Making Molecules Efficiently
• • •
Gravity-project: Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC); ISPT projects; ..
Task 2: Making Molecules from Biomass
•
CatchBio SmartMix program; 64
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
• • • •
BE-Basic on sustainable biobased processes; Volatile fatty acid platform – STW-Pacques Partnership BPF, Green Chemistry Campus, BioBased Delta, Bio-Based Noord Nederland, InSciTe; ..
Task 3: Making Functional Molecules
• •
Gravity Project: Functional Molecular Systems; ..
Organisations/companies in the field Task 1: Making Molecules Efficiently
•
E.g. 3 TUs, UU, RU, UvA, TNO, ECN, ISPT, Shell, BASF, Dow, Sabic, Albemarle.
Task 2: Making Molecules from Biomass
•
E.g. Companies, universities and institutes involved in CatchBio and BE-Basic.
Task 3: Making Functional Molecules
• • • •
E.g. 3 TUs; RUG, UU, RU, UvA, WUR; E.g. Dow, DSM, Sabic, Avantium, Akzo Nobel, Lanxess, BASF, Albemarle, Cosun, Cargill, Paques, Bioclear, KNN, Unilever, Simadan, AVEBE, Latexfalt; E.g. Synthon, Sachem, Syncom, Chemtura, Eastman, Katwijk Chemie, MercaChem, Cambridge Major Laboratories, Arizona Chemicals, Givaudan, Aspen Pharmacare, MSD, ChemConnection, PPPs: DPI, Brightlands Materials Center CTMC, InSciTe, TO2, DLO; Companies with specialties like: paint, coatings, cosmetic, pharma.
Specific for Process Technology/Process Intensification
•
E.g. SpinId/FlowID, Chemtrix, FutureChemistry, SoliQz, Lionix, Pervatech, EFC BV, Technoforce, Aquastill, SolSep, Zeton, MTSA, Voltea, Emultech.
Other Topsectors, Programma Councils, Regional Initiatives, Horizon 2020 Task 1: Making Molecules Efficiently
• • • •
Topsectors: Energy; TKI Chemistry: Programme Council Advance Materials (Thin films and coatings, Materials for sustainability); TKI Chemistry: Programme Council Nanotechnology and devices (Energy); TKI BBE; Regional projects via smart specialization strategy (RIS3) (‘Zuid/Noord/West/Oost-Nederland’: e.g. low carbon economy, renewable energy); Horizon 2020: Energy, Resource and Raw Materials, Circular Economy.
Task 2: Making Molecules from Biomass
• • • • •
Topsectors: Energy, Water (water technology), LSH; TKI Chemistry: Programme Council Chemistry of Life (Molecular entities, technologies and approaches for understanding, monitoring and improving food (security)); TKI BBE; Circular Economy; Regional projects via smart specialization strategy (RIS3) (‘Zuid-Nederland’: e.g. biobased economy, biomedical materials, chemistry; ‘Noord/West/Oost-Nederland’: e.g. biobased economy); Horizon 2020: Energy, Resource and Raw Materials, Food, Transport. 65
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
Task 3: Making Functional Molecules
• • • •
Topsectors: LSH, Agri & Food, HTSM, Energy; TKI Chemistry: Programme Council Advance Materials (Materials with added functionality); Programme Council Chemistry of Life (Molecular entities, devices and approaches for understanding, monitoring and improving personalized health); Regional projects via smart specialization strategy (RIS3) (‘Zuid-Nederland’: e.g. performance materials, coating); Horizon 2020: Health, Energy, Resource and Raw Materials, Food, Transport.
The changing Dutch valorization landscape: need for structural alignment between national and regional initiatives Recently, the Dutch landscape on guiding and stimulating with a focus on among others industryacademia collaborations including valorization initiatives has changed to the extent that, next to national (and EU), regional initiatives are now also an important force. An emerging landscape of regionally driven initiatives and funding schemes is becoming a reality. A feature of this organization on regional level is that it enables an easier and close involvement of SMEs (which tend to be more regionally oriented). As a consequence of these changes, it is important in the realization of the roadmap to structurally connect to regional initiatives, with the added benefit of better involvement of SMEs. 5.1 Making Molecules Efficiently The EU has highlighted resource efficiency as one of the seven flagship initiatives under the Europe 2020 strategy which aims at building smart, sustainable and inclusive growth for Europe. Natural resources underpin the functioning of the European and global economy and our quality of life. These resources include raw materials such as fuels, minerals and metals but also food, soil, water, air, biomass and ecosystems. The pressures on resources are increasing. If current trends continue, by 2050, the global population is expected to have grown by 30% to around 9 billion and people in developing and emerging economies will legitimately aspire to the welfare and consumption levels of developed countries. Moving towards a more resource efficient society requires a systemic change in the way we use resources – doing more or better with less. In a world of finite resources with a rapidly growing population, efficient use of energy and natural resources is a crucial aspect of sustainable development. Important policies implemented under this initiative are to boost economic performance while reducing resource use and to fight against climate change. At the EU level, it is strongly recognized that industry is indispensable for finding solutions to the challenges of our society, today and in the future. 5.2 Making Molecules from Biomass Flexible and efficient catalytic systems or processes to allow rapid response to changing feedstock availability. This applies especially when European refiners apply mixes of biomass derived feedstocks and conventional petroleum fractions. 5.3 Making Functional Molecules • The two major challenges in the field of speciality and pharma molecules are on the one hand the design/structure-functionality relationship and on the other hand the (ecologically and economically) effective synthesis of the molecules. While the latter is the task of the current PC the former will be an integral part of the PC Chemistry of Life and Advanced Materials. • In the PC Chemistry of Life the focus is on identifying molecules to modulate biological targets, and optimizing their properties through iterative cycles of design, synthesis and biological 66
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
•
evaluation, however, the synthesis does not necessarily fulfil the sustainability criteria due to the rather low volumes (milligrams to tens of grams). Once larger amounts are required (hundreds of grams to kilograms), sustainability will be important and synthetic strategies have to be followed as formulated under this program. While previously the majority of small molecule drug discovery in the Netherlands was concentrated in two pharmaceutical companies (Organon and Solvay Pharmaceutical), this type of activity is increasingly carried out in SMEs (MercaChem, Syncom, LeadPharma, companies in Pivot Park, etc.), often in public private collaborations with Universities (RUG, UU, TUD, UvA, RU, UL) and big pharma companies. These consortia are often co-financed by regional funding opportunities such as EFRO. An international example is the European Lead Factory, a large public private consortium within the IMI EU funding scheme, in which various Dutch academic groups and SMEs are participating to on the one hand build a small molecule compound library, and on the other hand develop high throughput screening assays for new drug targets. Similar public private collaborations exist on fine chemicals, either with relevance for the pharma, agro and health & food sectors.
67
TKI Chemistry – Chemical Conversion, Process Technology and Synthesis
6. References [1] Energieakkoord voor Duurzame Groei, Den Haag, 2013. [2] IChemE, RSC EPSRC, Chemical Science and Engineering Grand Challenges, 2009. [3] Royal Society of Chemistry, Solar Fuels and Artifical Photosynthesis - Science and innovation to change our future energy options, 2012. [4] GECATS, Catalysis, A Key Technology For sustainable economic growth, 2010. [5] DECHEMA, ICCA IEA, Technology Roadmap Energy and GHG reductions in the Chemical Industry via Catalytic Processes, 2013. [6] Commissie Dijkgraaf, Chemistry and Physics, Fundamental to our future, Vision Paper 2025, 2013. [7] VIRAN NIOK, Catalysis - Key to a Sustainable Future. Science and Technology Roadmap for Catalysis in the Netherlands, 2015. [8] Werkgroep Innovatiecontract Chemie, Topsector Chemie Innovatiecontract 2012‐2016, 2011. [9] VNCI, Deloitte, The Chemical Industry in the Netherlands: World leading today and in 2030– 2050, 2012. [10] Spire, SPIRE Roadmap, 2013 [11] VNCI, Agentschap NL, De sleutelrol waarmaken, Routekaart Chemie 2012-2030, 2012. [12] Topsector HTSM, Roadmap Nanotechnology - Update October 2014, 2014. [13] Biobased PPP, Biobased for Growth. [14] Europees Fonds voor Regionale Ontwikkeling, Operationeel Programma EFRO 2014-2020 NoordNederland, 2014. [15] Europees Fonds voor Regionale Ontwikkeling, Operationeel Programma EFRO 2014-2020 Regio Oost-Nederland, 2014. [16] Europees Fonds voor Regionale Ontwikkeling, Operationeel Programma Zuid-Nederland 20142020, 2014. [17] Europees Fonds voor Regionale Ontwikkeling, Operationeel Programma Kansen voor West 2014-2020, 2014. [18] TKI BBE, Onderzoeksagenda Biobased Economy 2014 – 2026, 2014. [19] Suschem, Strategic Innovation and Research Agenda, 2015. [20] G Prieto and F. Schüth, Angew. Chem. Int. Ed., 2015, 54, 2-21. [21] G.M. Whitesides, Angew. Chem. Int. Ed. 2015, 54, 2–16. [22] International Energy Agency (IEA), Capturing the multple benefits of energy efficiency, 2014. [23] L. Ryan and N. Campbell, Spreading the Net: The Multiple Benefits of Energy Efficiency Improvements, International Energy Agency, 2012. [24] Commissie Corbey, Sustainable Biomass in the Chemical Industry, 2015 [25] STW, Perspectief Programma (VFA platform), http://www.stw.nl/nl/programmas/partnershipstw-paques-volatile-fatty-acid-platform.
68
TKI Chemistry – Chemical Nanotechnology and Devices
ROADMAP Chemical Nanotechnology and Devices
Mimicking, Measuring & Sensing, key in creating an ultimate insight into Bio & (inter & intra) Synthetic molecular processes Executive Summary The roadmap “Chemical Nanotechnologies & Devices” refers to technologies and devices able to mimic, measure and sense (bio) chemical processes and is as such of crucial importance for the majority of the top sectors (Water, Life Sciences and Health, Agriculture & Food, Energy), and the top sector Chemistry in particular. From a technological point of view and envisioning a society in 2040, having free access to “personalized diagnostic sensors”, the “factory of the future” and “sunlight as primary energy source”, extensive technological breakthroughs in chemical, spatial (sub nm length scales) and temporal resolution are regarded vital. In this roadmap, a focused and prioritized program comprising (bio)sensors, micro/nanofluidics, flow-(micro)reactors, analytical technologies with ultimate (chemical, spatial & temporal) resolution and the third generation solar cells is described. These technologies are an integral part of the three main tasks, Well-being, Cradle to Cradle 2.0 and Energy, which are highly related to “People, Planet & Profit”. 1.
Introduction
Chemical Sciences are in the heart of the EU Horizon 2020 program [1], and highly connected with its major priorities; Excellent Research (valorization of academic knowledge), Industrial Leadership (novel (bio)chemical processes and products like fine chemicals, biomaterials) and Societal challenges (Energy, Climate and Raw Materials, Safety and Security). Together with national vision documents [2,3] the identified challenges for Dutch academia and industry are to a large extent translated into the roadmaps of the Topsector Chemistry program councils “Chemistry of Materials”, “Chemical Conversion, Process technology & Synthesis”, covering the efficient making of bioactive or advanced (bio)materials with added functionality and unique biological or physical properties. In doing so, major breakthroughs in energy efficient and mostly (bio)catalyzed chemical processes on basis of renewable sources are needed, together with e.g. reduced waste stream (CO2) and carbon footprint. Profound knowledge of these processes on a molecular level is a requisite, and also holds for a better understanding of life, development of new personalized medicines or even functional foods. Envisioned advances in these areas are an integral part of the program prepared by the “Chemistry of Life” council. Lastly, well-engineered innovative and state-of-the-art chemical (nano)technologies & devices performing at ultimate length- or timescales, are likely to generate advanced knowhow of chemical and biochemical (biological) reaction pathways on a (supra) molecular scale or knowledge of mesomacroscopic properties of novel (bio)materials or serve as (nano) tools in mimicking or diagnostic sensing of (bio)chemical processes at different timescales [2-7]. Here, technological innovations in the design of flow- & micro- reactors, lab-on-a-chip or (bio)sensors have generated fundamental insight in e.g. cell processes, while classical analytical technologies like NMR spectroscopy (Ernst, Nobel price 1996), mass spectrometry (Fenn, Tanaka & Wüthrich, Nobel price 2002) and very recently super-resolution fluorescence microscopy (Betzig, Hell & Moerner, Nobel price 2014) have shown and will show their pivotal importance in the molecular profiling and imaging (structure, heterogeneity) of ever more complex (polymeric, fine- & bio-) chemicals, materials and (bio)processes [2]. Hence, the discoveries of Fenn, & Tanaka (electrospray mass spectrometry) and Wüthrich (3D-NMR on proteins) led to a true revolution in many of the life sciences. Multi-modal
69
TKI Chemistry – Chemical Nanotechnology and Devices
technologies, integrating spectroscopy (e.g. fluorescence) and microscopy, will definitely lead to advances in spatial resolution. It is this councils’ ambition to address all these technological challenges and create on the short(2020) and long-term (2040) a path forward in the design, development and implementation of “The technologies of the Future”. Its roadmap encompasses the scientific and industrial communities engaging on (flow) “micro reactors” with sensors to monitor (bio)chemical and biological cell systems, (bio)sensors measuring at different time scales and classical state-of-the-art analytical technologies with ultimate chemical or spatial resolution, e.g. nm length scales. It anticipates on societal and industrial trends like “bringing the lab to the sample”, value-added process control (reliability) by multiplexed sensing, personalized and “targeted” diagnostics or even drug delivery. Meanwhile, it seeks for a clear link with the other “Topsector Chemistry” roadmaps further improving cross-sciences synergy, regarded as a key differentiator for the position of Dutch economic and the sustainability of ‘fundamental” and industrial research. Hence, an intensive interaction between academic research in nano-chemical and analytical technologies, industrial R&D organizations and the large number of SMEs marketing novel instruments truly valorizes the “excellences in Dutch research communities” into innovative and novel products. This approach will to a large extend solve identified “TLR” problem, well-known as the “death valley”, being one of the top priorities in the FP8 “Horizon 2020” program. Additionally, in this way options for valorizations are created in “non-chemistry” domains such as security and law enforcement, e.g. handheld devices to screen for drugs at crime sites. In relation to nanotechnologies, nanosafety will be a generic topic throughout the research foreseen in the different tasks and related to the RIVM research and relevant programs addressed in the Nanonext.nl. 2.
Overview of tasks
In this roadmap, technologies and devices are defined as those (nano- or micro) “reactors” which are able to mimic bio- or design chemical processes and more small (sensors) and classical analytical devices to allow diagnosis of a large variety on biological and chemical processes. This scientific area incorporates an extreme broad domain. In defining priorities, the focus and defined required technological innovations are directly linked to the envisioned global trends, and even more important anticipating on (re)newed scientific & strategic focus on European and national level. This roadmap embodies three main topics having a clear outlook to the mid (2020) and long-term (2040). It is recognized that improved understanding of biology, chemistry and especially physics will allow the creations of “Technologies of the Future”. These cases or tasks, are related to the themes people, planet and profit and are introduced in the following paragraphs (see table). Chemical Nanotechnologies and Devices will be essential in the following key areas: a.
Well-being
Quality of life (QoL) refers to the general well-being of individuals and societies. Important aims are to keep people healthy as long as possible, and to enable people in need of care to live a high-quality life in their own environment. Personalized (nano)technologies play an important role in achieving these aims, by monitoring personal biochemical health status and by enabling targeted and personalized drugs and food. This task discusses the required innovations in chemical nanotechnology and devices in order to: • Diagnose, monitor and stratify people; e.g. by measuring samples from people, or by measuring directly on people. • Treat patients; e.g. by drug delivery, regenerative engineering, neurostimulation. 70
TKI Chemistry – Chemical Nanotechnology and Devices
• •
Increase efficiency in drug development and nutrition development; e.g. reduce/replace/refine use of animal models (3R), faster into human; human disease and organ models on a chip (“Organ on Chip”). Synthesize and characterize novel “biological” drugs and specialty nutrition; as sole active ingredients and/or novel targeted or sustained release formulations.
Well-being (Quality of Life). There is a continuous desire to prolong and improve people’s health. Nanotechnologies and devices will play an important role, by monitoring personal biochemical health status, and by enabling personalized drugs and food with enhanced functionality. This will require substantial efforts in amongst others bioactive sensing and actuation devices, human disease and organ model systems on a chip, and microfluidic devices for synthesis and formulation of medicine and food. Cradle to Cradle 2.0. Societies have been seeking for many approaches to limit the environmental impact caused by industrial & urban “waste”. Recycling (glass bottles) has impacted human behavior, yet the impact in reducing e.g. CO2 exposure has been minimal. The translation of still academic “flow chemistry” devices (gas, liquid, solid) to the widespread application in industry handling a variety of (biomass) feedstock, improved time to market and ultimate process reliability – product quality is regarded pivotal in reaching the goals. Energy Efficiency and Storage. The use of solar radiation as green energy source has already led to significant reduction of fossil generated power. Yet, in order to become THE most important energy source, new technological revolutions in storage and efficient energy conversion is required.
Technological innovations are needed in the fields of: • Novel materials & devices; e.g. for biochemical sensing technologies (in-vitro, in-vivo, minimally invasive), microtechnological synthesis devices. • Novel fabrication & inspection technologies; e.g. for the development of functional materials, coatings and devices, with control on the nanometer length-scale. • Novel tools and methodologies for R&D, (i) to characterize complex molecular systems and interactions, novel drug and food delivery systems and biofunctional surfaces and interfaces; (ii) to model and understand the body response to compounds, materials and devices, e.g. by realizing Organs on Chip. • Novel methodologies to upscale microfluidic devices for production of medication and food ingredients, e.g. emulsions for targeted delivery purposes. b. Cradle to Cradle 2.0 In an attempt to reduce waste and handle the criticality in raw materials, the circular economy “Cradle to Cradle” is seen as a valuable alternative in manufacturing. Despite the fact that in some areas (agriculture, constructing, materials industry) good results were obtained e.g. for polyester materials, the development in chemical industry (with a clear link to food, pharma and materials) have been lacking behind. Thus, a “cradle to grave” approached is more advised for chemical products themselves which provides environmental health & safety (EH&S) compliance and tracking inventory across the whole supply chain from manufacture to disposal. Companies like BASF see such approach as holistic when involving the entire value chain and point here at “traceability” of all 71
TKI Chemistry – Chemical Nanotechnology and Devices
impacts (BASF’s Sustainability, Eco-Efficiency and Traceability (SET) Initiative in Schoener et al., Int. J. Food System Dynamics, 2012, 119-131). Green Chemistry is often said to be a 'cradle to grave' approach Dr. Ed Marshall, Imperial College, www.ch.ic.ac.uk/marshall/4I10). In-line with the search for alternatives, the EU is committed to development an state-of-the-art industrial infrastructure focused on innovative and specialty (consumer and industrial) products, together with an leverage the so-called TLR 4-6 gap, referred to as the “Death Valley”. Translated to “the chemical environment”, the EU Horizon 2020 program embraces a number of “Key Enabling Technologies”, KETs, like nanotechnologies (Research in this area will lead to new products and services developed by the industry, capable of enhancing human health while conserving resources and protecting the environment), and advanced manufacturing and processing (The aim is to increase the competitiveness and energy efficiency of the construction sector, to increase sustainability of production processes and make the process industry more resource- and energy efficient). An application area, asking for major technology breakthrough, is the so-called Bio-based chemistry. An considerable part of the Horizon 2020 is directed to this theme, being also embedded in the TopSector roadmap “making the molecules of the future”. A promising technological trend that has been developing, and which is of added value for the biobased industry, is (micro) flow (bio) chemistry. Over the last decade significant academic research has been performed, some small-scale systems are commercially available, and the potential to further improve resource (raw materials) efficiency, process reliability have been demonstrated. Moreover, increased attention in microreactor (gas, liquid or solid phase chemistry) sciences are carried out on lab scale, either with the hope of generating enough material that scale up will not be needed, or with the hope that the information gathered from the lab experiments can be better translated to continuous large-scale processes. For the translation of small to large scale flow chemistry, process monitoring and control technologies (sensing) and general analytical technologies to characterize the feed-stock, the product and the catalyst in operando at ultimate length and time scales, is crucial. Overall, it is anticipated that this trend will continue, and we see several immediate and long-term ambitions. We have a chemical industry that is able to develop clean processes with minimal waste under a competitive time pressure, on a small lab scale, such that these clean processes are easily scaled up to reliable robust plants. The reliability is especially relevant for varying feed stocks, which is destined to become more prominent as biomass and other sustainable sources of chemicals come to the forefront. This task discusses the required innovations in order to - Improve resource (raw materials) efficiency, e.g. high selective processing and recycling of non-reacted material or development of devices allowing novel chemistry (photochemistry). - promptly design and development of “one time right” (having fundamental understanding of processes on molecular level) innovative (larger scale) chemical production processes at larger scale, e.g. feasibility studies on feedstock variability for novel (bio) chemical processes like catalysed depolymerisation at micro-scale leading to “process mapping”. - Realize highly reliable (bio) industrial processes leading to ultimate quality and reduced “out of specification”, e.g. tailored process monitoring of diary(colloidal systems) production. Technological innovations are needed in the fields of: • Novel micro- and large scale “flow” (gas, liquid and solid) reactors; e.g. for the production of nano-particle drug delivery systems, dairy products, mimicking biochemical processes and (catalyzed) cracking (e.g. pyrolysis) of emerging bio- feed stocks. • State-of-the-art analytical technologies with ultimate chemical, spatial and temporal resolution for the (macro) molecular characterization (structure) of (bio)catalysts, emulsions or novel drug delivery technologies for complex (bio)pharmaceuticals. 72
TKI Chemistry – Chemical Nanotechnology and Devices
• • • •
Novel tools and methodologies to create fundamental insight the body response to compounds, materials and devices; e.g. by characterizing the biofunctionality of surfaces and interfaces, and by realizing human disease and organ model systems on a chip. Novel on-, in- and at-line detection technology’s (sensoring systems) for real time detection of catalyst and other chemicals, at ultimate length scale. Advanced chemometric, statistical and process modelling technologies for the ultimate control of industrial processes Novel analytical technologies for detailed feed stock characterization, addressing envisioned need in handling larger varieties. (sensors and other on-, at- or in-line detection); base chemicals, raw milk, biomass, water, catalysts.
c. Energy Efficiency and Storage Energy Efficiency and Storage (EES) refers to the ability of people to meet their ever-fluctuating energy demands in a sustainable manner. Important aspects are the multitude of sustainable energy sources (wind, solar, biomass, etc.), the need to convert energy from these sources into a form that people can use in their lives (electricity, liquid, gas, etc.), storage of energy when supply is bigger than demand, and release in case of the reverse scenario. Given the cost of sustainable energy, efficiency is vital for its introduction. Nanotechnology plays a vital role in achieving EES. In this roadmap, we discuss the creation of materials, devices and systems in order to: • Store ‘sustainable electrons’ in cheap, stationary batteries with a high conversion efficiency. This implies revolutionary developments not only in electrode materials, electrolytes and separation membranes, but also in battery design and fabrication technology and storage in supercapacitors because the boundary between batteries and capacitors becomes more vague. • Convert ‘sustainable electrons’ into chemical bonds to obtain a gaseous or liquid fuel that can be more easily stored. • Improve the conversion efficiency of solar PV. • Develop smart window coating technology. • Develop efficient thermoelectric conversion devices. • Develop heat storage materials (phase change/hydration) in which the nanostructure (essential for fast kinetics) remains intact. Technological innovations are needed in the fields of: • Novel materials & devices; e.g. for the electrochemical conversion of CO2 and H2O in hydrocarbons, for third generation solar cells, and the electrochemical conversion of N2 to NH3. • Novel fabrication technologies, for nanostructured dimensions; e.g. for the controlled fabrication of large scale (>>m2) nanostructured surfaces with highperformance photovoltaic or catalytic functionalities (and combinations thereof), e.g. for the development of hybrid organic/inorganic membranes. • Novel characterization technologies; e.g. for studying (electro-)catalytic processes in operando. • Novel tools and methodologies for R&D, for example to understand charge transfer processes in complex, multicomponent systems. • Investigate nanoscale electrochemistry and nanofluidics.
73
TKI Chemistry – Chemical Nanotechnology and Devices
Challenge
Horizon 2020
People
Planet
Profit
NL
Leading institutes, companies, TO2
Well- being
Health;
Early diagnosis and
Reduction of
Reduction of
Strong high-tech
UT, TU/e, TUD, VU-
(Quality of
ICT
monitoring,
major health
overall health
and bio-tech
UvA, RUG, UL, TNO,
Aging at home,
threats,
costs through
manufacturing
TI-COAST, ISPT, TIFN,
Personalized
Healthy food for
early detection &
technology chains,
NFI, WUR,
medicine,
all, Reduction of
disease
Excellent
Philips, Friesland
Drug delivery,
animal testing,
management,
knowledge and
Campina, DSM,
Functional foods,
Raw material
Added value of
innovation base
Unilever, Synthon,
Balanced food profile,
efficiency
medication and
(nanotechnology &
Crucell, Octoplus,
Prevention of side-
food,
chemical biology).
Surfix, Mimetas,
effects
Lower time to
Strong Organ on
SMEs: BBBs, Avantes,
market for drugs
Chip expertise.
Lionix, Micronit
Life)
Cradle to
Renewable
To personalize drug
Resource
Resource
Strong position in
TU/e, TUD, UT, VU-
Cradle 2.0
Materials;
delivery systems and
economy, waste
efficiency,
sensor and lab-on-
UvA, WUR, TNO,
Biobased;
functional foods
and pollution
Time to market &
a-chip
Helmholtz, Mercachem,
reduction, water
process reliability
technologies,
Syncom, Avantium,
Characterization of
Albemarle, BASF,
(Bio)polymers,
DSM, Sabic, Akzo-
Resource efficiency
Nobel, Corbion, Shell,
for highly populated
Unilever.
areas (both
PPPs: ISPT, TI-
national and
COAST, DPI, Materials
international)
Center CTMC, InSciTe,
Climate action;
BeBasic, SMEs: Avantes, Lionix, Technobis, Chemtrix, Micronit Energy
Secure,
Climate control
Reduced need
High added value
Strong position in
UT, TU/e, DSM, Shell,
clean and
(reduction of CO2),
for fossil
industry.
nanotechnology
ECN,TNO
efficient
sustainable energy
resources,
Reduced cost of
energy;
and storage
Reduction of
goods
Climate
CO2. Climate
action
control
74
TKI Chemistry – Chemical Nanotechnology and Devices
3. a. i.
Principal Activities of task Well-being (Quality of Life) Case “Bio-active sensing and actuation devices”
Task In the coming 10 years groundbreaking developments are expected to occur at the interface where nano-micro devices and complex molecular systems interact with biological systems. This will lead to highly sophisticated devices that are able to function with and within live biological systems. Novel bio-sensory and bio-actuation functionalities are expected, resulting from developments in bionanotechnology, biophysics, supramolecular chemistry, nanophotonic sensors, and regenerative medicine. Potential embodiments include smart patches, smart fibers, smart probes, smart catheters, smart implants, etc. The most advanced systems Example of a small sensor that will combine and integrate molecular-based sensing and actuation continuously monitors the biochemical principles of physical and (bio)chemical nature. Examples are: realstatus of a person time sensing on the body or in the body; accurate drug administration using real-time data as an input; neuronal stimulation based on objective signals from the body and/or the environment; point of care diagnostics and monitoring; critical care monitoring; etc. Challenge We propose to bring two research communities together, namely ‘device technology’ & ‘chemical biology’. ‘Device technology’ deals with the realization of novel device functionalities and related miniaturization and integration; partners can for example be found within NanoNextNL (www.nanonextnl.nl). ‘Chemical biology’ deals with following a chemical approach within biological research. In the NL we have excellent chemical biology groups (see e.g. Zwaartekracht Functional Molecular Systems www.fmsresearch.nl, and the NL Research School of Chemical Biology www.nrscb.nl). There is a big opportunity to bring these communities together in one program, focusing on the interface between biochemical/biophysical devices and biological systems. Furthermore, there is an opportunity to collaborate with groups in the Netherlands Institute of Regenerative Medicine (www.nirmresearch.nl) on the topic of how human cells and tissue interact with materials and devices, and methodologies to understand such processes on different time- and length scales. We foresee a great interest in this program by NL companies (large & SMEs), including materials companies, biotech companies, and medtech companies. Possible research topics • Bio-interfaces, passive and active anti-fouling interfaces, biomimetic interfaces, biodegradable polymers and interfaces, degradation-resistant interfaces (e.g. for GI tract), interfaces and nanoparticles for release of bio-actives, interfaces for control of body reaction. • Synthetic-biological concepts for sensing and actuation, bio-inspired devices, nanosensors. • Minimally-invasive bio-functional healthcare devices. • Novel scientific analysis tools, for studies with high spatial and temporal resolution (e.g. studies with single-molecule resolution) and for high-throughput screening studies (e.g. to screen novel materials with many degrees of freedom). 75
TKI Chemistry – Chemical Nanotechnology and Devices
• • • • •
Fabrication methods, on the one hand top-down (cf. device technology community), on the other hand bottom-up (cf. chemical biology community). Characterization of thermodynamics, kinetics, and transport processes in complex interaction systems. Body sampling, e.g. blood testing, skin sensing, mucosal fluid testing, interstitial-fluid testing, tear sensing. Integrated devices featuring combinations of bio-inspired techniques with non bio-inspired techniques, e.g. combining synthetic biological sensing with sample transport via capillary flow. Sampling devices; chemical & biochemical lab-on-chip technologies; increase information quality and quantity from small complex samples.
Scientific/technological goal: Develop devices and materials in order to sense and control living systems in real time. For example, small biochemical sensors integrated into medical devices and disposables, which are in contact with the human body and continuously monitor the biochemical status of patients. Materials and devices for drug delivery and for bio-mimetic stimulation. Systems for comprehensive biochemical profiling. Systems for closed-loop monitoring and treatment. Industrial end goal: Novel products in the field of biochemical patient monitoring, drug delivery, neurostimulation, critical care monitoring. Improve added value of medication, improve therapy effectiveness and compliance. Reduce overall healthcare costs through disease management and early detection of exacerbation. Enable novel care models based on patient monitoring and decentralization. Societal goal: Aging at home, Personalized medicine, Early diagnosis and monitoring, Improve therapy adherence, Prevention of side-effects, Reduction of major health threats
Timeline Roadmap 2020 – 2030 – 2040 • In the lab / near the person / on the body / in the body. • Avoid adverse reactions / bio-mimetic devices / bio-controlling devices. • Single analyte / panel of analytes / comprehensive biochemical profile. • Diagnostics / early diagnostics / monitoring / precision medicine / closed-loop monitoring and treatment. Related roadmaps HTSM, Photonics, LSH, TI-Coast.
ii.
Case “Human disease and organ model systems on a chip”
Task The development of novel pharmaceutical and nutritional compounds is complicated due to the inherent complexity of the human body and the variability between people. Furthermore, for ethical reasons the testing of new pharmaceutical compounds on animals and humans should be minimized as much as possible, while cosmetic compound testing on animals recently has been completely forbidden. This calls for the development of sub-cellular, multi-cellular and multi-organ human model systems on a chip. Such human model systems can support scientific research on how the human body works, and can help to improve and accelerate the testing and development of novel pharmaceutical and nutritional compounds. In the future, even personal model systems may become available, e.g. built from induced pluripotent stem cells (iPS technology), which allows creating functional organs tissues on chip possessing the genetic (disease) profile of the patient and thus allows the realization of precision medicine.
76
TKI Chemistry – Chemical Nanotechnology and Devices
Challenge We need to bring together device engineers, biologists, pharmaceutical scientists, nutritionists, and medical scientists. Chemical chip technologies (e.g. surface modification, biomembrane on chip technology, sensing on chip) and cell biological technologies and will play an imminent role. Novel methodologies and tools should be developed, for example to understand how compounds interact with membranes, cells, and organs. Preferably the tools should be compatible with high-throughput screening methodologies. The topic would partly fit within the TKI LSH, HTSM and Agrofood fields. Within the TKI Agrofood (e.g. TIFN, Top Institute Food and Nutrition) the focus would be on the large scale production of foods, not on the analysis of effects in the human GI tract through micro/nanotechnology, and the production of structured food components with a specific target. The topic links to the recently initiated Human Disease Model Technology (HDMT) institute.
Artist’s impression of microengineered iPSC-derived blood vessel structure with integrated microelectrodes for studying drug transport across endothelial blood vessel wall.
Possible research topics • Transport processes in living systems, e.g. across membranes (artificial, biomimetic, biological), between cells, between cells and extracellular matrix, between cells and solid surfaces. • Minimal-system studies, i.e. what minimal system is needed to achieve a desired multi-cellular functionality. • Kidney on a chip, focusing on functional membranes. Studies can be done with chemically made membranes, e.g. to quantify transport properties. • Vascularity on chip, blood-brain barrier (BBB) on chip. • Neural cells on chip, brain on a chip, interaction with neural devices. • Liver on a chip, e.g. to study non-alcoholic steato hepatitis (NASH). • Lung on a chip, e.g. for toxicological studies or asthma. • Gut on a chip. Obesity is an ever-growing problem in Western society. On the one hand, more and more complex functionalized foods are put in the market to control human weight of which the effect is not that clear while on the other hand various natural satiety mechanisms are known, but these are not used in food design. An example is the so-called ideal break mechanism that takes place as soon as fat/oil reaches the distal parts of the ileum, and that induces satiety, and reduces hunger. The aim is to develop a technology that allows investigation of digestion of food components and its effect in the GI tract. Based on this knowledge, nano-structured food will be developed that specifically targets digestive triggers, but also microsystems can be used to make specific delivery systems leading to healthy living.
77
TKI Chemistry – Chemical Nanotechnology and Devices
•
GI tract on a chip. High through-put screening of the effect of e.g. emulsified food in a simulated GI tract on chip. Design of structured interfaces that allow controlled release of components at specific parts of the GI tract. Systems may include microbial colonies.
Scientific/technological goal: Develop multicellular human disease and organ model systems on a chip, Study interactions between organ models, Study drug and food functionality, Develop tools for high-throughput studies on organ models Industrial end goal: Reduce the time to market of novel drugs, Improve effectiveness of patient treatment by precision medicine Societal goal: Personalized medicine, Reduction of animal testing, Prevention of side-effects, Healthy food for all
Time line Roadmap 2020 – 2030 – 2040 • Biomembrane on chip / organelle on chip / cell on chip / multicellular system on chip. • Organ functionality on a chip / combination of organs / interacting organs mimic complex body function. • Single organ functionality / high throughput screening technology. Related roadmaps: HTSM, LSH, AgroFood. iii.
Case “Microfluidic devices for synthesis and formulations in medicine and food”
Task Chemical and biochemical research increasingly exploit the use of fluidic microdevices for the synthesis of new compounds and for tailoring formulations to maximize the effectivity of the compounds. Microtechnologies i.e. microfluidics allow the synthesis of small amounts of high-value specialty products and allow controlled structure formation. Such technologies will enable the seamless upscaling from research to production (‘scalable flow chemistry’), which will be very helpful for the emerging paradigm of Precision Medicine and for innovations in nutrition. Application examples are miniaturized (multiphase) flow systems for enzymatic cascade reactions, and the development of encapsulates for targeted compound delivery with sustained activity (‘formulation’). This approach is valid for medication as well as for other sectors such as food, personal care, etc. Challenge The development of microfluidic synthesis and formulation devices requires collaboration between partners in micro/nanotechnology, chemical and biochemical synthesis, and biomedical sciences, with a key role for innovative high-tech SMEs. In the Netherlands many micro/nano and biotech SMEs have emerged, backed by world-renowned research groups at universities/institutes. The topic also relates to the Netherlands Center for Multiscale Catalytic Energy Conversion (cf. Zwaartekracht MCEC). Furthermore, the topic links to the MinacNed association, for micro/nanotech organizations (with a dedicated microfluidics/lab-on-a-chip cluster) as well as HollandBio for med/biotech organizations, including many drug development SMEs. Possible topics • Synthesis and formulation of pharmaceutical drugs, small molecules and biopharmaceuticals (active pharmaceutial ingredients APIs), and food. • Lab-on-a-chip/microfluidics based flow chemistry systems including (integrated) analysis/monitoring and process control. • Specifically encapsulate components on chip, encapsulation of food ingredients. 78
TKI Chemistry – Chemical Nanotechnology and Devices
• • •
High throughput screening of functionality of components used in formulation in combination with the active compounds. Development of production technologies for nanotech based targeted drugs and formulations. Surface modification, multiscale modelling and rational design of formulations, interfacial design, functional nanoparticles, nanosomes, microdroplet chemistry. A strong link can be seen with the case of model organs on a chip.
Scientific/technological goal: Develop microfluidic technologies for the synthesis of new active pharmaceutical ingredients (e.g. biologics by cascade reactions) and new formulation concepts (e.g. encapsulates). Integrated and flexible production of formulated drugs (custom-made nanomedicines). Industrial end goal: Improve added value of medication and food, Reduce time-to-market for drugs, Seamless upscaling from research to production ('scalable flow chemistry') Societal goal: Personalized medicine, Drug delivery, Functional foods, Raw material efficiency
Timeline Roadmap 2020 – 2030 – 2040 2020: synthesis and formulation of existing APIs and targeting formulations / encapsulates. 2030: synthesis and formulation of complete new APIs (e.g. biologics by cascade reactions) and formulation concepts. 2040: integrated and flexible production of formulated drugs (custom-made nanomedicines). Related roadmaps: HTSM, LSH, and Horizon2020. b. 3.2.1
Cradle to Cradle 2.0 Resource Efficiency and closed value added chains (gate-to-gate) material and energy flows
Task An emerging approach to reduce the “inefficient use” of raw materials, limit the waste stream or even use waste (CO2 in gas phase chemistry after pyrolysis) as energy source or material resource, “flow chemistry” and more generally process intensification have already proven as alternative of today’s conventional processing. Challenges Yet, the design and use of such chemical flow reactors with an ultimate efficiency in resource efficiency, without any waste at an industrial scale is the main challenge. Possible Topics • High selective processing and recycling of non-reacted material. • New and increasingly diverse resource streams: biomass economy, CO2 as building block, alternative N-fixation, H2 from photovoltaic water splitting, and artificial photosynthesis. • New reaction pathways: direct (‘dream’) reactions using largely available, cheap starting materials and making former intermediate steps superfluous. • Shrunk reaction pathways: all-continuous multi-step and telescoped syntheses (cascades), eliminating intermediate separation. • Integrated process pathways: further improving the value added chains within a chempark and designing new processes with that vision. 79
TKI Chemistry – Chemical Nanotechnology and Devices
• • •
More efficient use of catalyst and recycling hereof and assorted components (e.g. ligands). Reduction of organic solvent load (carbon footprint), finally down to zero (solvent-less). Reliable (quality) nano-micro flow processes for the production of “nano-devices” serving as drug delivery systems. This constitutes a crucial new area to promote personalized medicine.
In the last decade, the academic breakthrough were accompanied with and increasing interest from industry. Testimony for this are reported pilot/production undertakings of Lonza, NiOX/Corning, DSM, Novartis-MIT, Eli-Lilly, Pfizer, Sigma-Aldrich, Johnson-Johnson, Omnichem, etc. The ACS Pharmaceutical Roundtable, set “continuous processing” as no. 1 priority. Scientific goal: Develop new and intensified chemical routes and catalysts to be open for the coming diversity of resources and propose end-toend process designs with fully closed cycles. Enable to make new products and introduce new platform chemicals. Explore new processing, small-scale continuous (micro/milli-flow with nano-functionalities and -sensing), tailored solvents and alternative activation (photo-VIS, electrochem, plasma, MW, US) Industrial goal: Use existing resources more efficiently and prepare step by step to integrate new resources (biomass, CO2) in the existing Verbund production; close material and energy cycles within the integrated chemical production; switch partly from batch to continuous Societal goal: Change image of chemistry from one-way resource use/waste generation to sustainable, green enabler with well-balanced resource mix comprising renewables and most efficiently used fossil sources. Change from problem generator to problem solver. Keep and strengthen jobs within Europe. Prepare education for technology convergence.
Timeline Roadmap 2020-2030-2040 2020: High efficient and sustainable (bio) catalyst embedded in flow-reactors. 2030: proof of concept for low energy, resource efficient and waste less chemical flow process, including up-stream and downstream processing, towards final product. 2040: Operational “Factory of the Future” on basis efficient use of energy and resources, without waste-streams lacking economic value. Related Roadmaps HTSM, Photonics, LSH, Water, TIFN, Horizon 2020. 3.2.2
Time To market, speed-up of the process development.
Task In order to further enlarge the industrial economic profit, the timelines available for the design of new, cheaper, low carbon food-print chemical (polymerization, biotech or chiral selective) processes and the up-scaling to production level are under continuous pressure. In addition, the trends towards the production of ever more complex (molecular) materials (tailored food applications), together with the need for more fundamental understanding of (bio) chemical pathways (fast radical processes), thermodynamics or even reduction of the energy food print are in this effort counterproductive. A, for some cases already proven, and important added value of flow chemistry is the ability to translate processes at “nano” or micro scale to those at e.g. pilot plant scale (Factory of the Future). Such an approach would open a new window in the effective and fast design (screening) and implementation of new (optimal) bio-chemical processes at industrial scale in short time periods, finally also creating new ways of business (windows of opportunity). Challenge Flow chemistry of today does not really use “process equaling-up” as envisioned by the pioneers, yet “process matching-up” (using similar, smart-scaled out reactor and fluidic concepts) is state-of-the80
TKI Chemistry – Chemical Nanotechnology and Devices
art, for example in the labs of Lonza Company. The latter invented a classified, modular reactor concept, to which European Union and its companies involved (Bayer, Evonik, BASF, etc.) have set the modular production platform equivalent: compact continuous multi-purpose plants with preassembled subunits. Yet, key in achieving the original visons are smart analytical (nano)technologies which can create a more detailed understanding of the chemical pathways and which are anticipated to be also applicable for larger scale flow chemistry.
Microreactor for synthesis-on-chip
In addition, analytical technologies, either at in-, at- or on-line would be able to characterize the reaction and its catalyst at the spot, without time delay, without sampling demand or any other interference to the spot of information. Crucial is that “sample tacking, sample integrity” will be more straightforward (sample tacking in large batch reactor is a science in itself). Yet, here is considerable development demanded. Miniaturization of analytical technologies, with exception of the traditional spectroscopic (IR) approach, is needed. As an example, application of Raman in a flow cytometry approach is already tested and shows interesting result. As a direct result, process reliability can be set to a new level. As a second and net result, this can lead into new means and momentum for PAT-quality control and process control in general. Above mentioned sensorics can be integrated into bigger modern process control systems such as Evonik’s EcoTrainer which is a standardized process control platform for use not only in pilot and production, but also for the very first chemical laboratory measurements. Thus, the sensors and derived new process control concepts can lead to a unification of the formerly different and separate stages and massive shortening of process development (“50% idea”). This is to go hand in hand with bringing in advanced modelling approaches (in-silico). Also the increased interest in gas- and solid-phase flow chemistry is of importance and opens a new window in micro-reactor engineering, process modelling, phase separation (down-stream processing) technologies, analytical technologies with ultimate chemical, spatial and temporal resolution, chemometrics and statistics. Possible topics • Design and engineering of novel, gas-, liquid and solid phase flow micro-reactor technologies. • Fundamental understanding of different, e.g. photo induced, chemical or emulsification pathways at different volume/ size scales, creating basic insight and competences in the translation of micro- towards macro processes. • Screening of (bio) chemical process validity (feed stock feasibility studies), e.g. screening of highly active and selective biocatalysts supporting the reduction of the carbon/ energy food print. 81
TKI Chemistry – Chemical Nanotechnology and Devices
•
• • •
Innovative (Nano-scale) Molecular Imaging, encompassing both micro- and spectroscopy technologies on the nanoscale (high spatial and chemical resolution), e.g. the combination of Atomic force microscopy and raman spectroscopy in combination with “Big data fusion and visualization”. Miniaturized on-in-at line separation or detection technologies for in-situ measurement of reactant, product and catalysts at different time (reaction intermediates) and length (degree of polymerization or crystallization) scales. Innovative or even miniaturized (lab to the sample) analytical technologies with ultimate chemical resolution for the profiling of complex molecular profiles of feed stocks, functional foods, bio-polymer based (bio)materials or biopharmaceuticals. Molecular modelling, advanced statistics to support in-silico experimentation. Process modelling, to support chemical production flow optimization.
Scientific goal: Developing new kinds of process control and analysis through advancing molecular imaging, characterizing feedstock morphology on the nanoscale, and developing on-in-at line technologies for in-situ measurement not limited to the reactants or products; close the intensified full process scheme through widening / deepening miniaturized separation and formulation technologies Industrial goal: Introduce new chemical production platforms (Future Factories) such as modular, pre-assembled containers to be docked at proprietary sites and fully autarkic, mobile, process-control-equipped containers. Employ same type of processing and monitoring throughout the whole process development cycle (from lab to production). Switch from batch to continuous. Be in 50% of the time at the market. Develop new business models (windows of opportunities) Societal goal: Provide new kinds of chemistry-enabled services in distributed fashion where this makes sense, e.g. in personalized medicine, quality drug delivery, farm factories, or precision agriculture. Prepare for new markets and knowledge-based economy. Keep and strengthen innovation within Europe.
Timeline roadmap 2020-2030-2040 2020: Novel multi-model analytical technologies with ultimate chemical resolution, at lowest possible length and different time scales. 2030: Availability of innovative micro- flow reactor technologies for gas-, liquid- and solid-phase chemistry. Advances in molecular, process modelling and statistics. 2040: Implementation of the “factory of the Future” on basis of “flow chemistry” in variety of chemical production processes. Related Roadmaps HTSM, LSH, Agro & Food, Horizon 2020. 3.2.3
Process Reliability & Unification.
Task In line with (inter) national roadmaps (Chemistry and Physics, fundamental to our future) the shift towards the “high-tech manufacturing industry”, encompassing the “production of complex forms of matter” is seen as a crucial aspect to warrant the strong economic position (profit) of the chemical industry. Such a competitive industry will be operating under challenging production conditions. That is, manufacturing, of innovative complex (smart) materials (chemical modified biopharmaceuticals in polymer drug delivery systems) with high added values require by nature complex (new) chemical processes, logically in combination with innovative up- and down-stream processing. On the other hand, the production of “green base-chemicals” with ultimate purity and high yields and originating from renewable resources or the recycling of polymer based materials (PETs) face the same challenges. 82
TKI Chemistry – Chemical Nanotechnology and Devices
Challenges Apart from the search and implementation of new complex chemical processes, the increasing expectations from customers on “product quality” and the need of ultimate “reliability” of the complete production processes are regarded as decisive challenges. As an example, manufacturing of “polymer based” biomaterials and chemical modified bio- pharmaceuticals will face ever increasing quality demands from regulatory bodies, also putting great emphasis on process reliability (PAT initiatives). On the other hand, despite the fact that 3D printing is already a well-known breakthrough, its routine and reliable application in the production on smart materials, e.g. nonfouling coatings, micro- and nano-devices, is still rather troublesome. In conclusion, the new chemical processes as described in the “roadmap chemistry” and the desired development of new chemical nanotechnologies and devices, should not only reduce waste, increase profit but also support improved process reliability compared to the existing approaches. Possible topics - Development of innovative tools for the characterization of (bio) catalyst, addressing deactivation or even more fundamental understanding on surface chemistry. - Utilization of novel process modelling (solid handling), in conjunction with advanced chemometric and statistical tools in efficient mining of “analytical” data. - Well-designed robust, simple technologies for process control measuring relevant chemical markers, as defined from the process development phase. - Miniaturized on-in-at line separation or detection technologies for in-situ measurement of reactant, product and catalysts at different time (reaction intermediates) and length (degree of polymerization or crystallization) scales. - Innovative or even miniaturized (lab to the sample) analytical technologies with ultimate chemical resolution for the profiling of complex molecular profiles of feed stocks, functional foods, bio-polymer based (bio)materials or biopharmaceuticals. Timeline roadmap 2020-2030-2040 2020 Novel multi-model analytical technologies (integration of micro- and spectroscopic tools) for product characterization. 2030 implementation of advanced computational methodologies for process modelling and advanced chemometrics supporting. 2040 Reliable industrial production ( implementation of PAT approach) of a large variety of smart and complex chemicals, materials, on basis of flow chemistry (3D printing), e.g. chemical modified (personalized) biopharmaceuticals, food application. Related Roadmaps HTSM, LSH, AgroFood, Horizon 2020
83
TKI Chemistry – Chemical Nanotechnology and Devices
c. i.
Energy Efficiency and Storage Electrochemical reduction of CO2 with minimum over-potential.
Task In the coming decades we will see a transition from CO2 as a pollutant to CO2 as a resource. CO2 capture will become common practice and its conversion to fuel a necessity. Fuels have the advantage that they can be stored indefinitily. Hydrocarbons are easily integrated in the present fuel infrastructure and can be directly used as a resource in the chemical industry. In order to deal with the enormous seasonal mismatch in energy use and production, it is vital that we connect the fuel infrastructure to the electricity grid. Thus, electrochemical conversion processes will become key in a sustainable society. These processes however suffer from low conversion efficiencies, poor selectivity, a high demand for precious metals and a poor resilience against fluctuating process conditions. To solve this a revolutionary breakthrough in the field of electrochemistry is required. Challenge For this program the electrocatalysis community has to join forces with the nano-science, the classical catalysis and the operando surface characterization communities. The Electrocatalysis community has so far focused its research on elemental electrodes and phenomenological studies on the processes involved in electrocatalysis. Computational studies have shown that elemental electrodes will not be able to catalyse oxidation/reduction reactions at sufficiently low overpotential. Stepped, non-elemental surfaces are needed to provide intermediate states at low enough energy. This opens a new area of application for the nano-community to develop tools to design and develop manufacturing methods to produce large area nano-structured surfaces for electrocatalytic applications. Besides nanostructuring for tuning of electrode selectivity and stability, this can also aid in optimization of transport phenomena and manipulation of gas bubble dynamics on electrode surfaces. The nature of such surfaces cannot be established from computational methods alone. Therefore, in electrocatalysis there is a great need to develop methods to investigate the charge transfer processes on an atomic scale in operando conditions. Possible research topics • Computational methods to reliably determine the nature of the intermediate state during the reduction of CO2 on complex nanostructured surfaces, taking the electrolyte into account. • New operando methods covering all aspects of electrochemistry. • Efficient (bio)chemical sequestration of CO2 . • Devices combining electrochemical storage and electrolysis at local scale. • Nanostructured alternatives for lithium-based storage systems. • Solar fuels, including water splitting. • Energy production and storage at point of use. Timeline Roadmap (2020-2030-2040) New technology for efficient electrochemical Catalysis/Solar Catalysis (Water splitting)/Energy production and storage at point of use.
84
TKI Chemistry – Chemical Nanotechnology and Devices
ii.
Towards a third generation solar cell
Task Solar energy is the largest renewable energy source on the earth. The sun delivers around 2000 times more energy than the current global primary energy consumption (550 EJ). Direct conversion of solar radiation into electrical energy using solar cells has proved to be a viable option for electricity generation. The challenges for an accelerated large-scale implementation of solar cells are both cost reduction and efficiency enhancement of solar cell technologies. Reduction of costs can be realized by replacing expensive bulk semiconductors (e.g. silicon) by photovoltaic materials that can be deposited by cheap (wet-chemical) techniques. The efficiency of a conventional solar cell is limited mainly by the fact that 1) infra-red photons with energy below the band gap of the photovoltaic material are not absorbed, and 2) the energy of absorbed photons in excess of the band gap is lost as heat. The third generation solar cells to be developed should be based on cheap materials and the abovementioned limitations to the efficiency must be overcome (e.g. tandem solar cells) Approach Cheap photovoltaic materials need to be further developed. Examples of materials include organic (molecular) materials, colloidal semiconductor nanocrystals (quantum dots, nanorods and nanosheets), and perovskites. For large-scale application, it is essential that these materials do not rely on critical elements. Moreover, a rational design approach will be needed to develop processes that combine large-scale production with the nanoscale precision and long liftetime required. The optical and electronic properties of these materials can be tuned by variation of both chemical composition and nanostructure. It is important to develop materials in which infra-red photons can be upconverted to shorter wavelength photons; e.g. by fusion of low energy triplet excitons into higher energy singlet excitons that emit light at shorter wavelength. Spectral down conversion of photons with energy exceeding twice the material band gap is another option to enhance the solar cell efficiency. To this end materials for quantum-cutting need to be developed. A very promising novel approach to boost the current delivered by a solar cell involves excitation of two or more electrons by the absorption of a single energetic photon. To realize the above, architectures of (composite) nanostructured materials need to be developed and their performance in real devices optimized.
Solar cell roll to roll production
85
TKI Chemistry – Chemical Nanotechnology and Devices
Possible topics • Development of new nanostructured materials on a macroscopic scale. • Characterization of nature and dynamics of electronic excited states and charge carriers. • Development of solar cell device architectures in which third generation concepts are utilized. Timeline Roadmap 2020 – 2030 – 2040 • Development of new nanomaterials for solar cells/solar cell device development and optimization/development of new technology for scaling up of nanostructured material production, integrated in the material development process (that includes learning how to scale up if that is possible, but also includes avoiding synthesis routes that are inherently not scalable). Related roadmaps: HTSM, Advanced Materials. Note: a combination of case 1 and 2, i.e. the development of devices, which combine light absorption by semiconductor containing electrodes (photo-electrodes) with electrocatalytic activity, also contains various challenges that require micro- and nanotechnology to develop solutions. 4.
Connections in Technologies & other roadmaps
The three tasks described in this roadmap are highly interconnected, hence technologies in the broadest sense can be regarded as “generic”, as they can be applied in nearly all other sciences, and classically the impact of certain technologies can be illustrated in matrix tables (see table). Sensing is seen as an ultimate tool in the diagnoses and monitoring of health, yet at the same time these devices are crucial in chemical process control. This also accounts for “flow chemistry – (micro/nano) fluidics”, an emerging technology expected to create revolutions in chemical processing and understanding of biochemical pathway in a large variety of organism. Thirdly state-of-the-art analytical technologies working on ultimate length scale (1 molecule) with “infinite” chemical and spatial resolution will be required for all sciences focusing on the fate and behavior of molecules. The largest challenges are in the characterization of (bio)macromolecular assemblies, and of importance for food (colloidal systems), health (High Density Lipoproteins or Low Density Lipoproteins complexes) and advanced polymer (macromolecular characterization) or inorganic (crystal structures) of materials such as solar cells. The above described synergy in this roadmap also holds for the other three other themes. Processing of biomass, or synthesis of “the molecules of the future”, the deeper understanding of molecular properties of (macro)molecules or assemblies’ thereof or inevitable to produce the materials with added functionality and understand the biochemistry of live. With this the link to the Top sector “Life Sciences & Health”, “Food” and especially “High-Tech Systems (HTSM)” is made.
5.
References 1. EU-Horizon 2020 2. Commissie Dijkgraaf. Chemistry and Physics, fundamental to our future, vision paper 2025, 2013 3. Commissie Breimer. Implementatie Sectorplan Natuurkunde- en Scheikunde 4. TICOAST (draft) Analytical chemistry Roadmap. 2015 86
TKI Chemistry – Chemical Nanotechnology and Devices
5. 6. 7. 8.
HTSM Roadmap Nanotechnology. 2014 Actie Agenda Topsector Chemie. New Earth, New Chemsitry. 2011 Transitieplan voor de Topsector Chemie: Chemie maakt het verschil. 2014 Werkgroep Innovatiecontract Chemie. Topsector hemie Innovatie contract 2012 – 2016. 2011 9. DECHEMA Deutsche Plattform NanoBioMedizin. Postionspapier des ProcessNet temporaren Arbeitkreises Nanobiomedizin“. 2015 10. DECHEMA Energy and GHG reductions in the chemical industry via catalytic processes. 2013 11. HTSM Roadmap Photonics. 2013
Overview of cases in time Timeline/Roadmap
Now - 2020
2021 - 2030
2031 - 2040
Well-being
- In the lab - Avoid adverse reactions - Single analytediagnostics
- On the body / near the person - Bio-mimetic devices - Panel of analytes - Early diagnostics / monitoring
- In the body - Bio-controlling devices - Comprehensive biochemical profile - Precision medicine - Closed-loop monitoring and treatment
- Biomembrane on chip - Organ(elle) on chip (liver, heart, lung, etc.) - Cell on chip - Multicellular system on chip Existing active ingredients and targeting formulations and encapsulates
- Organ functionality on a chip - Combination of organs - Interacting organs -mimic complex
- Body function - High throughput screening technology
- New active ingredients and formulations concepts - Biologics by cascade reactions Proof of concept for low energy, resource efficient and waste less chemical flow process, including up-stream and downstream processing, towards final product Availability of innovative micro- flow reactor technologies for gas-, liquid- and solidphase chemistry. Advances in molecular, process modelling and statistics
- Integrated and flexible production of formulated drugs -custom-made rationaldesigned nanomedicines
3.1.1 Bio-active sensing and actuation devices
3.1.2 Human model systems on a chip
3.1.3 Microfluidic devices for synthesis and formulations in medicine and food Cradle to Cradle 3.2.1 Resource Efficiency and closed value added chains (gate-to-gate) material and energy flows 3.2.2 Time To market, speed-up of the process development
High efficient and sustainable (bio) catalyst embedded in flowreactors.
Novel multi-model analytical technologies with ultimate chemical resolution, at lowest possible length and different time scales
87
Operational “Factory of the Future” on basis efficient use of energy and resources, without waste-streams lacking economic value
Implementation of the “factory of the Future” on basis of “flow chemistry” in variety of chemical production processes
TKI Chemistry – Chemical Nanotechnology and Devices
3.2.2 Process Reliability & Unification
Novel multi-model analytical technologies (integration of microand spectroscopic tools) for product characterization
Implementation of advanced computational methodologies for process modelling and advanced chemometrics supporting.
Energy
- New technology for efficient electrochemical catalysis
- Solar catalysis (water splitting)
- Development of new nanomaterials for solar cells
- Scalable synthesis routes - Scaling up of material production - Integrated in the material development process
3.3.1 Electro-chemical reduction of CO2 with minimum over-potential 3.3.2 Towards a third generation solar cell
88
Reliable industrial production (implementation of PAT approach) of a large variety of smart and complex chemicals, materials, on basis of flow chemistry (3D printing), e.g. chemical modified (personalized) biopharmaceuticals, food application - Energy production and storage at point of use
- Solar cell device development and optimization
Organisatiestructuur
APPENDIX 1: Organisatie Topsector Chemie Het TKI Chemie is het Topconsortium voor Kennis & Innovatie van de Topsector Chemie.
89
TKI Chemie – Samenstelling Programmaraden
APPENDIX 2: Samenstelling Programmaraden TKI Chemie Chemistry of Advanced Materials Prof. dr. Rolf van Benthem (DSM/TU/e), vz Prof. dr. Andries Meijerink (UU), vice vz Dr. Irene Hamelers/Dr. Ivo Ridder (TKI Chemistry, Program Manager) Dr. Keimpe van den Berg (Akzo Nobel) Dr. Pascal Buskens (TNO) Prof. dr. Jeroen Cornelissen (UT) Prof. dr. Theo Dingemans (TUD) Dr. Harold Gankema (AFP Holland) Dr. ir. Han Goossens (TU/e) Dr. Jacco van Haveren (FBR) Prof. dr. René Janssen (TU/e) Prof. dr. Katja Loos (RUG) Dr. Jan Noordegraaf (Synbra Technology) Dr. Matthijs Ruitenbeek (DOW) Dr. Jaco Saurwalt (ECN) Dr. Rolf Scherrenberg (SABIC) Chemistry of Life Dr. Oliver May (DSM), vz Prof. dr. Arnold Driessen (RUG), vice vz Dr. Marjolein Lauwen (TKI Chemistry, Program Manager) Dr. Peter van Dijken (TNO) Prof. dr. Stan van Boeckel (Pivot Park) Dr. Marco Giuseppin (AVEBE) Prof. dr. Harry Gruppen (WUR) Prof. dr. Albert Heck (UU) Prof. dr. Jan Knol (Danone) Prof. dr. Huib Ovaa (NKI) Prof. dr. Hermen Overkleeft (UL) Prof. dr. Martine Smit (VU) Leendert Wesdorp (Unilever) Dr. Martin Wijsman (FrieslandCampina) Prof. Claire Wyman (EUR) Dr. Daniel Zollinger (Okklo Life Sciences) Chemical Conversion, Process Technology & Synthesis Prof. dr. Eelco Vogt (Albemarle), vz Prof. dr. ir. Hans Kuipers (TU/e), vice vz Dr. Arlette Werner (TKI Chemistry, Program Manager) Dr. Sigrid Bollwerk (ECN) Dr. Rinus Broxterman (DSM) Prof. dr. Gerrit Eggink (WUR) Prof. dr. Syuzanna Harutyunyan (RUG) Prof. dr. Emiel Hensen (TU/e)
90
TKI Chemie – Samenstelling Programmaraden
Dr. Piet Huizenga (Shell) Ir. Peter Jansen (Corbion) Dr. Ed de Jong (Avantium) Prof. dr. Bert Klein Gebbink (UU) Prof. dr. Mark van Loosdrecht (TUD) Prof. dr. Floris Rutjes (RUN) Dr. Robert Terörde (BASF) Dr. Dirk Verdoes (TNO) Dr. Ton Vries (Syncom) Chemical Nanotechnology & Devices Ir. Benno Oderkerk (Avantes), vz Prof. dr. Albert van den Berg (UT), vice vz Dr. Jan de Vlieger (TKI Chemistry, Program Manager) Prof. dr. Arian van Asten (NFI, UvA) Dr. Marco Blom (Micronit) Prof. dr. Volker Hessel (TU/e) Prof. dr. Maarten Honing (DSM) Prof. dr. Michiel Kreutzer (TUD) Ir. Henk Leeuwis (LioniX) Michiel Oderwald (TNO) Prof. dr. Menno Prins (TU/e) Dr. Bennie Reesink (BASF) Prof. dr. Alan Rowan (RU) Prof. dr. Karin Schroën (WUR)
91
Bedrijven betrokken bij PPS in de Topsector Chemie
APPENDIX 3: Bedrijven betrokken bij PPS in de Topsector Chemie
Dionex Benelux Dow Benelux DSM Coating Resins DSM Food Specialties DSM Gist Services BV DSM Innovative Synthesis DSM R&D Solutions DSM Resolve DSM Resolve, Lifetec Dupont DutchSpace Dyadic Nederland Eastman EFC Elopak Elson Technologies Emultech Enzypep ETD&C EuroProxima Evorik Excytex Fokker FrieslandCampina Fuji Film FutureChemistry Galapagos Generation of Change Genmab Geochem Research Givaudan HAL Allergy Heineken Supply Chain Heinz Huntsman ICL INTEGREX Research Ionicon Analytik Johnson Matthey Catalysts Katwijk Chemie KNN Krehalon Lanxess Latexfalt Lionix Lucite International UK Maastricht Instruments
20Med Therapeutics 3DPPM Abundnz Airborne Akzo Nobel Chemicals Akzo Nobel Industrial Chemicals Albemarle Catalysts Company Amsterdam Scientific Instruments Apollo Vredestein Aquastill Arizona Chemicals Arkema ASMI ASML Netherlands Aspen Pharmacare Avantium Technologies Avantor Performance Materials AVEBE Avery Dennison BaseClear BASF Nederland Bayer Beckman Coulter Nederland Beckman Coulter, Corporate Headquarters Bender Analytical Holding Bioclear BioNovion BioTools Braskem C4C Holding Cambridge Major Laboratories Cargill ten Cate ChemConnection Chemtrix Chemtura Chiralix Corbion Purac Cosun Cristal Therapeutics Croda Crossbeta Biosciences Crucell CytoBuoy Danone Da Vinci Europe Laboratory Solutions DELMIC
92
Bedrijven betrokken bij PPS in de Topsector Chemie
Tata Steel Technex (with associated partner BioNavis) Technobis Technoforce Teijin Aramid TropIQ Health Sciences UbiQ Bio Unilever R&D Vlaardingen U-Protein Express VDL VibSpec-Training Voltea van Wijhe Waters Chromatography Zeton ZoBio
Magneto Chemie Materiomics MercaChem Micronit Microfluidics Mimetas Momentive MSD MTSA Naturalis Biodiversity Center Nestlé Netherlands Translational Research Center Norit NovioSmart NovioTech Nuplex NXP Océ Octoplus Oerlemans Plastics Okklo Life Sciences Omics2Image Pansynt Paques Pepscope Pervatech Philips Medical Systems PPG SABIC Sachem Sasol Scientific Computing & Modelling Shell Global Solutions International Shell Research and Technology Centre Simadan SKF SoliQz Solliance SolSep Solvay Spinld/FlowID Spinnovation Analytical Stichting Waterproef Surface Preparation Laboratory Surfix SyMo-Chem Synbra Syncom Syngenta Synthon 93
APPENDIX 4
94
Onderzoeksagenda Biobased Economy 2015 – 2027 ‘B4B: biobased voor bedrijven, burgers en beleid’
BBE. Omdat we de aarde in bruikleen van onze kleinkinderen hebben.
Versie: Datum:
3.0, final Gecondenseerde tbv Innovatiecontracten A&F, Chemie, Energie 12 Mei 2015
1 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Inhoudsopgave 1
De Samenvatting ...................................................... 3
2
Nederland in de EU ................................................... 9
3
De Randvoorwaarden .............................................. 13
4
De Doelen ............................................................... 15
5
Het Programma....................................................... 23 5.1
Raffinage en thermische conversie van biomassa. ........ 25
5.2 Raffinage en chemisch katalytische conversietechnologie. .......................................................... 28 5.3
Raffinage en biotechnologische conversietechnologie. . 31
5.4
Solar Capturing & biomass production. ........................ 35
5.5
Actielijnen BBE: samenwerking als ambitie .................. 39
6
De Middelen, De Mensen en de Regels ..................... 41 6.1
Investering Onderzoek en Innovatie ............................ 41
6.2
Rol van de Onderzoeksinstituten: ................................. 43
6.3
Kansen creëren voor WO, HBO en MBO ......................... 44
6.4
Open Educational Resources ........................................ 45
6.5
Governance .................................................................. 45
6.6
Wet- en Regelgeving .................................................... 47
2 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
1 De Samenvatting Nederland gaat stappen maken in de biobased economy. Met een zeer sterke Agri & De biobased economy is een economie waarin Food- en Tuinbouwector, Chemie van wefossiele koolstofverbinreldklasse, en een sterk bewegende Energiedingen zoals aardgas, sector zijn er grote groeikansen. olie en steenkool zijn Drie jaar na het vorige integrale innovatievervangen door hercontract biobased economy ‘van biomassa bruikbare. naar business’ uit 2012 en voortschrijdende plannen in de topsectoren heeft het TKI-BBE de coördinatie gekregen voor een nieuw innovatiecontract BBE voor de komende 8 tot 12 jaar. Het plan is tot stand gekomen na een verzoek van het Ministerie van EZ en de drie boegbeelden van Energie, BBE is noodzakelijk. Het huidig gebruik van fossiele grondstoffen leidt wereldwijd tot Chemie en Agri&Food. Tegeeen klimaatprobleem. Daarnaast zijn de lijkertijd hebben de drie voorraden eindig. Elektriciteit is op te wekkennisinstellingen DLO, ECN ken met diverse alternatieve bronnen, en TNO een strategie genaast biomassa ook wind, zonne-energie, maakt aansluitend op deze waterkracht en geothermie. Hetzelfde geldt voor warmte, ook hier is er naast bioonderzoeksagenda. Verder energie de beschikking over zonne-energie, bevat het plan bouwstenen opnieuw geothermie en omgevingswarmte voor de NWO wetenschapsvia warmtepompen. Voor de productie van agenda die eind 2015 gebiobrandstoffen, chemicaliën en kunststofreed zal zijn. Het plan is tot fen is biomassa echter de enige alternatieve bron, en onderdeel van de toekomstige stand gekomen na brede circulaire economie. consultatie van bedrijven en kennisinstellingen in de afgelopen maanden en een open consultatie via internet onder 3000 stakeholders. Het was een uitdaging voor het TKI-BBE om keuzes te maken in de huidige lopende programmering en voorgestelde plannen. Daarbij zijn randvoorwaarden geformuleerd waaraan het onderzoek moet voldoen. Een kern daarbij is om als uitgangspunt te nemen dat kennisontwikkeling moet gebeuren op thema’s waar het Nederlandse bedrijfsleven kansen ziet om het tot economische waarde te brengen in Nederland hetzij in productie of in pilotinstallaties. Het TKI-BBE gaat hierover graag het gesprek aan. De balans na 3 jaar ‘van biomassa naar business’ Het thema Biobased Economy is meer dan ooit een belangrijk innovatiethema. De Europese Commissie heeft in februari 2012 de “Strategy for a Sustainable Bioeconomy in Europe” uitgebracht in relatie tot de Innovation Union en Resource Efficient Europe. Hiermee is de Biobased economy aangewezen als kansrijk thema om groene groei te realiseren. De Europese Commissie (EC) geeft aan dat de Europese bioeconomie een omzet vertegenwoordigt van 2000 miljard euro en 3 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
goed is voor 22 miljoen banen of 9% van de werkgelegenheid in de Unie. Het Joint Technology Initiative Biobased for Industries (JTI BBI), een initiatief van het Europese bedrijfsleven, heeft een budget van 3,8 miljard euro waarvan 1 miljard van de Europese commissie. De 2e call voor 2015 zal deze zomer worden uitgezet. De regio’s in Nederland investeren net zoveel in biobased onderzoek en innovatie, 50 miljoen per jaar als de nationale overheid. De regionale inzet wordt versterkt door de openstelling van EFRO en INTERREG dit jaar. Door de huidige nationale financiering van onderzoek ligt er een nadruk op energiedoelen met name op de projecten gericht op bioenergie. Uit de evaluatie van Technopolis blijkt dat de ambitie van drie jaar geleden gedeeltelijk gerealiseerd is. De biobased economy is dichterbij gekomen, maar minder snel dan verwacht. Met name is de sterke private belangstelling voor onderzoek op biomaterialen en biobased chemicaliën maar in beperktere omvang omgezet in publiek-private samenwerking in onderzoek. Positief is dat er vanuit de Topsector Agri & Food een impuls kan worden gegeven aan bioraffinage projecten met agrarisch restmateriaal en onderzoek van omzetting van reststromen uit suikerbieten. Daarnaast zijn er vanuit de Topsector Energie voor een omvang van 3,6 miljoen projecten toegekend aan het benutten van biomassa uit rioolslib. Het ontbreken van een centrale financiering van onderzoek, kortere looptijden, evidente versnippering van projecten over regio’s met verschillende stimuleringsmaatregelen, EU (inclusief regionale middelen), drie verschillende topsectoren, drie tot vier gebiedsdelen binnen NWO en drie instituten voor toegepast onderzoek, heeft geleid tot een weinig overzichtelijk kennisveld, met name voor de groep waar het allemaal voor bedoeld is: de bedrijven. Bovendien zijn de proceskosten nodeloos hoog. Vanuit het TKI-BBE is een HCA actieplan opgesteld in samenspraak met de topsectoren. Precompetitief samenwerken in de uitwisseling van digitale informatie is daarvan de kern. Visie TKI-BBE op cascadering Energie uit biomassa is voor de korte termijn wellicht de enige praktisch haalbare methode om de emissie van broeikasgassen terug te dringen. Maar met de verbranding ervan vernietigen we tegelijkertijd waardevolle groene grondstoffen voor de chemische industrie. Het TKI-BBE zet zich in om op korte termijn te komen tot een efficientere inzet van biomassa voor energie en materialen en op de langere termijn voor fundamentele doorbraken in de energie- en chemiesector. De door of via het TKI-BBE gefinancierde onderzoek naar duurzaamheid en maatschappelijke en macro economische aspecten van biomassa steunt deze genuanceerde visie. Wetenschappers en economen laten zien dat de inzet van biomassa efficiënter kan. Naast energie bevatten biomassastromen ook ver4 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
bindingen die als Wat zijn de drijfveren voor de BBE? 1) economische grondstof voor matenoodzaak, 2) politieke visie, 3) consumentenvraag. rialen kunnen worden Ad 1: De industriële revolutie ontstond omdat de ingezet. Door biowinbare steenkoollagen op waren en de bossen gekapt (energiecrisis). De stoommachine om kolenmassa in fracties te mijnen leeg te pompen zodat ook diepere gelegen scheiden en zo het steenkoollagen gewonnen konden worden. Ad 2: de ‘moleculair kapitaal’ straalmotor is het gevolg van de behoefte aan te verwaarden, wordt steeds snellere gevechtsvliegtuigen aan de voorde financiële opavond van de tweede wereldoorlog. Dit soort ontwikkelingen wordt vooral door de overheid gefinanbrengst vergroot en cierd. Als Kennedy in 1960 had gezegd: we gaan wordt tegelijkertijd naar de maan en het bedrijfsleven moet betalen, het gebruik van foshadden we daar nooit gestaan. Ad 3: de smartsiele grondstoffen in phone, maakt het leven gemakkelijker en de comde chemiesector temunicatie een stuk sneller. Voor BBE geldt: er lijkt weinig sprake te zijn van ruggedrongen. TKIeen economische noodzaak. Fossiel is goedkoop. De BBE stimuleert de uitstootrechten voor CO2 zijn vooralsnog goedkoop. ontwikkeling van deEchter: in toenemende mate is de industrie naar ze biocascadering. reputatiemechanismen aan het kijken. BBE als LiIn de natuur wordt cence to produce komt eraan. Bovendien: het klimaat hoort voor iedereen de via fotosynthese noodzaak van een BBE te onderbouwen. zonne-energie omgeDe politieke visie is er wel, maar hier ligt een budget zet in biomassa. Deissue. Exploitatiesubsidie (SDE+) is duur en tijdelijk. ze omzetting heeft Wat mogelijk wel kan veranderen is wetgeving: bioeen lage efficiëntie based materialen verplicht gaan stellen. Inspelen op de consumentvraag is wel een drijfveer. (ongeveer 1%). TKIBiologisch voedsel is duurder dan regulier voedsel, BBE ziet interessante toch is er een markt voor omdat een bepaalde groep mogelijkheden om consumenten bewuster met voeding wil omgaan of deze efficiëntie te het gewoon lekkerder vindt. Voor biobased materiaverhogen. Met behulp len geldt iets soortgelijks. Duurzame verpakkingen of grondstoffen kunnen een product onderscheidend van Nederlandse exmaken. Voor energie geldt dat niet: we zijn gewend pertise op het gebied dat groene stroom even duur is als grijze. van katalyse, biomaterialen, ‘biomolecular design’ en analysetechnieken is het mogelijk om efficiënter zonne-energie om te zetten in materialen. Ook komt, op langere termijn, de productie van ‘solar fuels’ met foto-electrochemische technologieën in zicht. Met deze technische mogelijkheden is op lange termijn de tussenstap via biomassa overbodig en kan CO2 rechtstreeks worden omgezet in chemische bouwstenen. Programmalijnen voor energie, chemie en agro De onderzoeksagenda wordt via bestaande programmalijnen van het TKI-BBE opgezet. Deze programmalijnen hebben draagvlak bij de drie topsectoren. Het gaat, na een raffinagestap (waarbij mogelijk al direct een product beschikbaar is), om i) thermische conversie van biomassa, ii) chemisch katalytische conversietechnologie, iii) biotechnologische conversietechnologie en iv) solar capturing 5 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
(&biomassa productie). Daarnaast zijn er de ‘actielijnen’, namelijk de oude programmalijn ‘Economie, beleid en duurzaamheid’ uit het IC 2012-2016, en ‘Innoveren van kennisoverdracht’. Voor deze programmalijnen en actielijnen is t.b.v. de onderzoeksagenda een verdere onderverdeling gemaakt in hoofdonderwerpen en (sub)onderwerpen. Dit gaat zowel om technologieën, diverse biomassa grondstoffen als toepassingen. Deze onderwerpen zijn ingedeeld in TRL fasen 1-9 (zie hoffdstuk 4.5 en 9). Per onderwerp zijn onderzoeksvragen opgesteld die uitgewerkt kunnen worden, verdeeld over drie TRL-categorieën: fundamenteel (1-3), toegepast (46), en valorisatie (8 en 9). Hierbinnen wordt een verdere prioritering aangebracht. Bezien per programmalijn, bevindt solar capturing zich relatief meer in de fase van fundamenteel onderzoek, terwijl voor andere lijnen het zwaartepunt zich meer in de fasen ‘toegepast’ en ‘valorisatie’ bevindt. Voor vooruitgang op de lange termijn, is in deze onderzoeksagenda een combinatie nodig van zowel fundamenteel en toegepast onderzoek als valorisatie. Op alle fronten is technologie verbetering nodig. De onderwerpen die zich in de laatste TRL-fasen bevinden, zijn vlakbij marktintroductie of al in de markt. Dit zijn voorbeelden waar Nederland ver in is, en vormen het laaghangend fruit voor de biobased economy. Voor Nederland liggen er in het algemeen veel kansen in de keten. Ook is een focus op hoogwaardige productie passend (bijv. solar capturing) en hoogwaardige toepassing via bioraffinage. Een meerjarige financiering In het vorige innovatiecontract werd gesignaleerd dat de oude programma’s vanaf 2014 zullen aflopen en de private belangstelling voor biobased een versterking van het thema rechtvaardigt. Een min of meer stabiele basis vormt de financiering van de TO2 instellingen met bijna 12 miljoen per jaar en het NWO met 4 miljoen per jaar. Het budget vanuit de Topsector energie van 10 tot 12 miljoen per jaar is een stabiele, zij het komende jaren dalende, factor voor bioenergieprojecten. Tabel 1 Budgetdynamiek voor BBE. Bedragen in M€.
Programma Oud BE-basic BioSolar Cells Biobased Performance Materials Catchbio Carbohydrate Competence Cen-
Fase
Totaal Budget Publiek
Eindjaar
2012 Uitgaven
2014 Uitgaven
2016 Verwachte uitgaven
IO FO IO
€ € €
2019 2016 2014
7,6 4,1 1,7
6,6 4,4 1,1
7 0,7 0
TO
€ 16,5 €
2016
4,1
4,4
0,7
2014
3,0
2,3
0
TO
60 25 8
15
6 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
tre TOTAAL OUD Nieuw topsectoren Algemeen NWO FO TKI toeslag TO TS Energie EZ innovatie SDE+ ECN TS Chemie TNO BPM-2 TS Agrifood DLO Grand design TOTAAL NIEUW
/
TO TO TO TO
20,5
18.3
8,4
Per jaar Per jaar
3,3
3,3 0,2
3,3 0,2
Per jaar
11,1
11,1
11,1
Per jaar 1
4,8
4,8
4,8
€ 3
Per jaar 2019
1,9
1,9 0,2
1,9 0,7
4,1
4,1
4,1
€ 2
Per jaar1 2016
25,2
25,6
1 27,1
€ 4,3 (201314) € 54,5 (201214)
TO TO
De financiering van onderzoek voor de komende jaren is in het rapport op verschillende manieren benaderd. - Allereerst is er de sterke teruggang in nationaal gefinancierd onderzoek van 2014 naar 2016 met 8,4 miljoen per jaar door aflopen van bestaande PPS-en. In 2019 gaat het om een teruggang van ongeveer 18 miljoen per jaar door het eindigen van de FES programma’s (Tabel 1). Het privaat commitment dat bedrijven op basis van de concept onderzoeksagenda hebben afgegeven bedraagt (na reality check) voor nieuwe initiatieven 25 miljoen per jaar. - Er zijn verschillende nieuwe grotere consortia gericht op biomaterialen, biobrandstoffen, biosolar inclusief algen waarvoor huidig budget niet passend of toereikend is. - Bij een gewenste opschaling van biobased productie is een totale investering nodig in R&I van 485 M€ over de periode 2016-2023, waarvan 263 publiek en 221 privaat (hoofdstuk 10.1). Daarnaast is een budget van 1 miljoen per jaar wenselijk Aan publieke voor de actielijnen. Het publieke deel komt middelen is 7 daarmee op 33,9 miljoen per jaar. De som is na deze analyse eenvoudig: Tabel 1 laat zien dat er in 2016 27 miljoen per jaar is, en er is 34 miljoen per jaar nodig om de doelstellingen te realiseren. De private belangstelling voor bioraffinage, biomaterialen, biochemicaliën en 1
oplopend naar 15 miljoen per jaar extra nodig. Private cofinanciering is geen probleem (LOI’s).
Bedrag inclusief beleiddstudies is 5,3 per jaar voor ECN en 4,7 per jaar voor DLO
7 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
bioenergie zou op korte termijn dus een versterking van het publieke budget nodig maken van 7 miljoen per jaar met nieuwe additionele middelen. Dit bedrag loopt op tot 15 miljoen euro per jaar vanaf 2019 door aflopende budgitten voor Innovatiemiddelen en TO2. Met de open consultatie tot 4 april 2015 is tevens een oproep gedaan voor Letters of Intent. Inmiddels is vanuit de ondernemers een committment afgegeven van 407 miljoen euro. Na een reality check is dat nog altijd 278 miljoen euro. Elke publieke euro kan dus worden gecofinancierd door private partijen. Aanbevelingen en actiepunten - Versterking van het thema solar capturing door het extra investeren in fundamenteel onderzoek. Een schrijfgroep is geïnstalleerd om het thema uit te werken. Het gaat hier om de directe omzetting van zonlicht in chemische bouwstenen of waterstof. Op dit moment is er 3 M€ vanuit NWO als start beschikbaar voor een eerste call. - Het versterken van toegepast onderzoek en valorisatie van biomaterialen en de chemische bouwstenen is nodig in samenwerking met gehele keten. Marktverkenning geeft aan dat hier commerciële kansen voor Nederland liggen en met name de vraag naar duurzame consumentenproducten en verpakkingen. Belangrijke merken zoals IKEA, CocaCola en Danone zetten hier op in en nemen de verpakkingsindustrie hier in mee. Hier liggen kansen in de samenwerking tussen de topsectoren Agri&Food en Chemie op het thema biomaterialen en dat vraagt om duidelijk gezamenlijk commitment. - Uit een regio-analyse blijkt dat er door Nederland verspreid een keur aan kenniscentra is voor biobased chemicaliën en materialen. Hierin wordt ondersteuning geboden met toegepaste kennis en informatie aan bedrijven en overheid op het gebied van certificering, duurzaamheid, recycling en gebruiksmogelijkheden. Tevens zal BBE een integraal onderdeel moeten zijn van het Steunpunt MKB binnen de topsectoren Chemie en Energie. - Er moeten gewerkt worden aan heldere waardeproposities naar de consument, via een project dat inzicht verschaft in consumentenwensen en –waardering. - Vanuit de visie Brandstoffenmix van het ministerie van I&M blijkt dat naar verwachting wordt ingezet op biobrandstoffen voor lucht- en scheepvaart. Dit zal nader worden uitgewerkt. Vanuit het Ministerie van I&M wordt tevens innovatie voor de beleidslijnen van afval naar grondstof (VANG) over het benutten van biomassa afvalstromen en het ontwikkelen van biobased alternatieven voor REACH stoffen belangrijk gevonden. - Onderwijs en scholing zijn momenteel nog niet toegesneden op de specifieke situatie in de biobased economy. De mogelijkheden 8 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
-
-
-
-
-
voor innovatief onderwijs via ICT en samenwerking tussen instellingen moeten versterkt worden. In Europees verband ontstaan de komende jaren sterkere mogelijkheden voor financiering van PPS-programma’s vooral ook voor de BBE. Een belangrijke voorwaarde zal voldoende nationale matching zijn. Een aanzienlijk deel van de partners in dit innovatiecontract bestaat uit MKB. Er is behoefte bij het MKB in de BBE aan een programma voor businessontwikkeling en bedrijfsgericht toegepast onderzoek. De regionale overheden zijn hier ook in geïnteresseerd. De samenwerking met de regio’s en tussen de regio’s onderling kan worden versterkt, waarmee wordt beoogd om samen met kennisaanbieders en de regio’s een gezamenlijke MKB valorisatiestrategie te ontwikkelen. Er is veel winst te halen door een sterkere coördinatie, agendering en informatieuitwisseling tussen topsectoren, regio’s, TO2 en Europese fondsen. Voorkomen moet worden dat innovatieve bedrijven door de bomen het bos niet zien of dat het wiel ergens opnieuw wordt uitgevonden. Hier ligt een taak voor het onafhankelijke TKI-BBE met een programmatisch samenwerkend TO2 en NWO. Een sterkere samenwerking van ECN,DLO en TNO door de publieke financiering in een gezamenlijk programma onder te brengen kan een stevige basis vormen. De governance is te complex. Voorstel is de drie boegbeelden uit te nodigen voor de Raad van Toezicht (zoals nu reeds functioneert met de topsector Chemie), en de Themacommisie 1 van Agri & Food te integreren met de programmaraad van TKI-BBE tot één nieuwe programmaraad. Versterk het publieke budget m.i.v. 2016 met 7 miljoen per jaar met nieuwe additionele middelen. Dit bedrag loopt op tot 15 miljoen euro per jaar vanaf 2019. Al met al is de inzet voor de 8-12 jaars termijn: groene verpakkingsmaterialen, kunststoffen en producten zoals lakken en coatings. Producten in de schappen die consumenten kunnen verleiden om een hogere prijs te betalen in ruil voor duurzaamheid. De markt pakt dit langzaam maar zeker op. Blijkt ook uit de huidige portfolio. En dit is tevens Energie: 20% van ons energieverbruik wordt opgeslagen in materialen. Daarnaast is er de noodzaak voor biobrandstoffen. Tevens uitrol van bio-energie. Voor auto’s is elektriciteit een alternatief, voor vliegverkeer en scheepvaart niet. Grote fabrieken mogelijk niet in NL, maar de technologie kan wel hier ontwikkeld en vermarkt worden.
2 Nederland in de EU Ook Europa ziet de kansen van de ‘bio-economy’ als een belangrijke maatschappelijke uitdaging. Naast dat de EU Horizon 2020 strategie streeft naar innovatie en het efficiënter omgaan met natuurlijke hulpbronnen, is er een integrale biobased strategie geschreven en 9 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
maakt de markt voor biobased producten deel uit van het lead market initiative. De Europa 2020 strategie geeft richting aan de economische ontwikkeling van Europa in het komende decennium. In deze strategie wordt gesproken over ‘slimme, duurzame en inclusieve groei voor Europa’. Kort gezegd bestaat deze strategie uit drie speerpunten 2: - Slimme groei: het ontwikkelen van een economie gebaseerd op kennis en innovatie, - Duurzame groei: efficiënter omgaan met hulpbronnen, vergroening van de economie en zorgen voor een meer competitieve economie, - Inclusieve groei: creeren van een economie waarin zoveel mogelijk mensen werk hebben, waarbij sociale en territoriale cohesie gewaarborgd blijft. De Europese Commissie heeft in februari 2012 de COM (2012)60 “Strategy for a Sustainable Bioeconomy in Europe” 3 uitgebracht. Daarmee beziet de EC de bioeconomy in haar geheel, dus inclusief Agro en Food en niet uitsluitend de biobased economy (Figuur 3). Deze strategie berust op drie pijlers: Figuur 1 De Biobased Economy als onderdeel - Investeer: in onderzoek, van de Bioeconomy ontwikkeling en de Human Capital agenda, EU ambitie voor Energie: Being the - Versterk samenwerking: tussen landen, reworld leader in degio’s en andere stakeholders via ERAnetten, veloping the next Bioeconomy panel, Observatory etc., generation of re- Versterk markten: voor biomassa productie, newable energy conversie in bioraffinage en consumptie. technologies, includDe europese landen implementeren deze strategie ieder op hun eigen wijze en hebben ook verschillende drijfveren. Daar waar in Nederland en Duitsland de behoefte aan de materialen binnen de biobased economy vooral voort2 3
ing environmentfriendly production and use of biomass and biofuels, together with energy storage.
http://ec.europa.eu/europe2020/index_en.htm http://ec.europa.eu/research/bioeconomy/policy/strategy_en.htm
10 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
komt uit de chemische sector, is in Frankrijk de drijfveer meer extra afzet voor de landbouwsector. Vanuit de Bioeconomy observatory4 is een overzicht gegeven van de stand van zaken en wordt geconcludeerd dat anno 2014 zes 5 landen een bio (based) economy strategy hebben opgesteld. Recent is door de EU de Energy Union Package uitgekomen met een nadrukkelijke bio-energie ambitie 6. Financiele ondersteuning uit Europa FP7: Vanuit Europa hebben diverse programma’s ondersteuning gegeven aan de ontwikkeling van de biobased economy in Europa. Vanuit FP7 is tot en met 2013 ondersteuning gegeven en is veel budget beschikbaar gekomen voor de Biobased Economy. De omvang en aandeel van Nederland is vastgesteld en gerapporteerd7 en blijkt 927 M€ in de periode 2006 – 2012 voor biobased research gecomitteerd te zijn. Hiervan is ongeveer 7% in Nederland besteed. Indien naar de aanvragers gekeken wordt blijkt dat 25 % van de EU middelen naar Universiteiten gaat, waarvan de WU bijna de helft voor haar rekening neemt. Van het budget gaat 35% naar Research instituten (DLO, ECN, NWO, NEN). 40% van het budget gaat naar een 18-tal bedrijven. Van het genoemde FP7 budget is 1/3 besteed aan onderzoek naar chemicals, en de rest aan biobrandstoffen, materialen etc. 15% van het budget wordt aan biomassa productie en bijna de helft aan biorefineries besteed. Daarbovenop hebben bioeconomy ERAnetten bijgedragen aan de afstemming van nationale programma’s en het gezamenlijk financieren van onderzoek via Joint Calls. De 30 Bioeconomy ERANET’s 8 hebben gemiddeld 10 M€ per call beschikbaar gesteld, gebruik makend van nationale middelen. Al met al kan gesteld worden dat FP7 ruim heeft bijgedragen aan onderzoek naar de biobased economy en dat vanuit deze onderzoeksresultaten het nu zaak is om deze in producten en business te verwaarden. Horizon 2020 is het programma van de Europese Commissie om Europees onderzoek en innovatie te stimuleren. Horizon 2020 loopt sinds 1 januari 2014 en is de opvolger van het Zevende Kaderprogramma (KP7). Met Horizon 2020 wil de Europese Unie (EU) het concurrentievermogen van Europa vergroten door wetenschap en innovatie te stimuleren. Daarnaast wil de EU het bedrijfsleven en de 4
https://biobs.jrc.ec.europa.eu IEA Bioenergy Task 42: http://www.iea-bioenergy.task42biorefineries.com/en/ieabiorefinery.htm , Nederland, Denemarken, Finland, Duitsland, Vlaanderen, Zweden 6 http://ec.europa.eu/priorities/energy-union/docs/energyunion_en.pdf 7 http://www.sahyog-europa-india.eu/inventories 8 www.era-platform.eu 5
11 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
academische wereld uitdagen om samen oplossingen te bedenken voor maatschappelijke vraagstukken die in heel Europa spelen. Binnen het Horizon 2020 programma krijgt in de 2014/15 call de biobased economy op een aantal plaatsen aandacht maar met een nadruk op bioenergie in LCE12 – 14, maar ook de omzetting van CO2 naar chemicaliën, eco innovation en MKB ondersteuning. Uit de Horizon 2020 call in 2014 heeft Nederland 6,8 M€ ondersteuning gekregen met respectievelijk 4, 9 M€ voor Innovative, Sustainable and Inclusive Bioeconomy en 1,9 voor Low Carbon Energy technologies. Binnen Horizon 2020 heeft Europese Comissie besloten om het instrument Joint Technology Initiative in te zetten. De JTI BioBased Industries (JTI BBI) 9 is een publiek-private samenwerking tussen de EU en het Bio-based Industries Consortium (BIC) 10. De industrie is georganiseerd in het BIC consortium en bestaat uit meer dan 60 grote en kleine Europese bedrijven, clusters en organisaties op het gebied van technologie, industrie, landbouw en bosbouw. Het doel van de samenwerking is om bij te dragen aan de ontwikkeling van een efficiënter gebruik van hulpbronnen en een duurzame koolstofarme economie. JTI BBI heeft een omvang van € 3,7 miljard voor de periode 20142020. De Europese Commissie financiert 25% en de bijdrage van het bedrijfsleven bedraagt ongeveer 75%. Er zijn twee type projecten, namelijk Research & Innovation actions (R&I) en Innovation actions (Demonstraties en Flagships). In een consortium zitten minimaal 3 partners uit 3 verschillende landen. De R&I projecten duren tot ongeveer 4 jaar en Innovation actions zullen 4 tot 5 jaar duren. De onderwerpen van de calls vallen binnen een van de 5 waarde ketens (VC: value chain): - Van lignocellulosische grondstof tot geavanceerde biobrandstoffen, biobased chemicaliën en biomaterialen - De volgende generatie houtverwerkende waarde ketens - De volgende generatie agro-gebaseerde waarde ketens - Ontstaan van nieuwe waarde ketens van (organisch) afval - De geïntegreerde energie-, pulp-en chemische bio-raffinaderijen In 2014 is vanuit JTI-BBE de eerste call gehouden met een budget van 50 M€ en sluitingsdatum 15 oktober 2014. Het resultaat van deze call is nog niet bekend. Samenwerking tussen lidstaten wordt geïnitieerd via Joint Programming Initiatives en ERAnetten die in H2020 CoFund worden genoemd. Voor het TKI-BBE is het van belang daar waar relevant aan te sluiten bij gezamenlijke calls op het gebied van de biobased economy en bioenergie (wat reeds gebeurt in ERA-IB en ERABESTF2 en ERA-Bioenergy). 9
http://bbi-europe.eu http://biconsortium.eu
10
12 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Internationale samenwerking buiten de EU wordt met name vormgegeven via www.ieabioenergy.com en bilateraal met enkele landen. Binnen IEA Bioenergy 11 zijn voor het TKI-BBE de tasks met verschillende conversietechnologieën (pyrolyse, vergisting, vergassing, verbranding en bioraffinage) van belang, maar ook de tasks die te maken hebben met biomassa productie (solar capture), handel etc.
3 De Randvoorwaarden Nederland is een klein land – zeker vanuit het perspectief van vierkante meters. Moet in het kader van de BBE op alles worden ingezet, of zijn er randvoorwaarden waar aan moet worden voldaan? Dit is zeker opportuun na het debat in de Tweede Kamer 12 naar aanleiding van de opening van de DSM-Poet ethanol fabriek in de VS (juni 2014), namelijk waarom de fabriek in de VS staat, terwijl de R&D steun in Nederland werd gegeven. Figuur 6 geeft een aanzet tot deze randvoorwaarden.
Figuur 2 Randvoorwaarden en opzet Rankingselementen BBE. 11 12
Zie ook European Biofuel Technology Platform EBTP http://www.biofuelstp.eu Verslag debat Groene Groei 04-09-2014,kamerstuk 32637-153.
13 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Uiteraard moeten deze strategische rankingscriteria (inpassen in TRL niveau, bijvoorbeeld) nader worden geoperationaliseerd. Deze onderzoeksagenda richt zich op de tech“Terugkijkend na 30 nologische vraagstukken die opgelost moeten jaar Biobased is in worden om het innovatieproces op gang te 80% van de faalgehouden, oftewel kennisontwikkeling. vallen het niet gesloten hebben van de Het innovatieproces valt of staat niet alleen keten de reden.” met het beschikbaar stellen van financiële Emmo Meijer, vz middelen om tot de oplossing van technolobestuur TKI gische vraagstukken te komen. De omgeving, Agri&Food. ook wel het innovatiesysteem genoemd, moet zo optimaal mogelijk ingericht worden waardoor de verschillende betrokkenen goed op elkaar afgestemd zijn (Figuur 7).
Figuur 3 Het innovatiesysteem behorende bij een bepaalde technologie. Als dit systeem zo optimaal mogelijk functioneert, wordt de kans op innovaties en deze succesvol naar de markt te brengen vergroot. Aan de hand van zeven functies kan getoetst worden hoe dit systeem er voor staat.(Hekkert en Ossenbaard, 2010 13)
In het geval van de Biobased Economy betreft dit innovatiesysteem niet slechts een sector, maar minimaal drie verschillende Nederlandse topsectoren. Op het gebied van landbouw, chemie en energie blinkt Nederland wereldwijd uit. Juist door kruisbestuiving van 13
Hekkert M. en Ossebaard M. (2010) De Innovatiemotor, het versnellen van baanbrekende innovaties Uitgeverij Van Gorcum ISBN: 9789023246121
14 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
deze topsectoren kan het niet anders dan dat Nederland grote stappen kan maken naar een groene economie. Exacte innovaties zijn niet te voorspellen, maar door in te grijpen in het innovatiesysteem wordt het proces versneld en wordt de kans op de baanbrekende innovaties vergroot. Er zijn zeven functies waarvan kan worden afgelezen hoe het innovatiesysteem er voor staat: ondernemersactiviteiten, kennisontwikkeling, kennisdeling, richting geven, marktontwikkeling, middelen (zowel financieel als HCA) en weerstand. Als de bottleneck te vinden is de beperkte kennis die gedeeld wordt, is het niet zo efficiënt om dan extra geld te steken in de ontwikkeling van kennis. Het creëren van contactmomenten binnen het innovatiesysteem heeft dan meer effect. Deze zeven functies zijn signalen en de oplossing licht in het ingrijpen in het innovatiesysteem zelf. Baanbrekende innovaties ontstaan door keuzes te maken, door goede samenwerking en dit langdurig vol te houden. Waar is Nederland echt goed in? Wat zijn onze speerpunten binnen de Biobased Economy? Hiervoor dient niet alleen gekeken te worden naar onze kennis, maar ook naar onze ondernemers en hun netwerken. Om op betrouwbare wijze deze afweging te maken is er zowel behoefte aan data op het gebied van deze zeven functies als ook aan expert opinions om deze data te duiden door de tijd heen. Deze data ontbreekt nog voor sommige sectoren.
4 De Doelen Het huidig gebruik van fossiele grondstoffen leidt wereldwijd tot een klimaatprobleem. Daarnaast zijn de voorraden eindig en loopt de aanvoer deels vanuit politiek instabiele landen. Elektriciteit is op te wekken met diverse alternatieve bronnen, naast biomassa ook wind, zonne-energie, waterkracht en geothermie, waarbij biomassa een extra opslagvoordeel biedt. Hetzelfde geldt voor warmte, ook hier bestaat er naast bio-energie de mogelijkheid van zonneenergie, opnieuw geothermie en omgevingswarmte via warmtepompen. Voor de productie van biobrandstoffen, chemicaliën en kunststoffen is biomassa echter de enige realiseerbare alternatieve bron voor de korte-, middellange- en deels lange termijn. Bovendien reduceert biomassa de afhankelijkheid van geopolitiek iets riskantere landen. En, last but most certainly not least, biobased genereert nieuwe banen. Politiek/bestuurlijk zijn de uitgangspunten voor de innovatieactiviteiten in Nederland en Europa: - 14% duurzame energie in 2020, en 16 % in 2023 - 20% reductie van CO2 uitstoot in 2020 t.o.v. 1990, - 80% reductie van CO2 uitstoot in 2050, - 10% duurzaam energiegebruik binnen de transportsector in 2020.
15 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Kortom, de drijvende krachten achter de beoogde transitie zijn de vermindering van CO2 uitstoot en de nieuwe manieren van energie opwekking. Voor de langere termijn moet ook gekeken worden naar twee andere lonkende perspectieven: directe opslag van zonlicht naar moleculen, en gesloten kringlopen. Biomassa blijft de komende decennia van cruciaal belang voor food en feed, farma, brandstof en nieuwe materialen. De strategie is daarbij zo maximaal gebruik te maken van de in biomassa aanwezige moleculaire structuren. Dit in contrast met de aanpak naar ‘kraken’ tot kleine (C1-C3) moleculen om ze vervolgens weer via klassiek chemische processen op te bouwen (C4 en groter). Biomaterialen met een koolstofskelet groter dan C4 zijn synthetisch inherent lastig te produceren en vanuit biomassa eenvoudiger te realiseren. Kennis van in biomassa aanwezige structuren, van processen in levende organismen, van scheidingsmethoden voor biomassa die de van nature aanwezige moleculaire structuren intact laten, analysemethoden voor bio-systemen en methoden voor het omgaan met grote hoeveelheden data vormen de kennisbasis voor moderne biotechnologie en bioraffinage. Met behulp daarvan kan biomassa worden gescheiden in verschillende fracties die elk op zich kunnen worden verwaard. Het hanteren van dit zogeheten cascaderingsprincipe kan veel meer economische waarde uit biomassa worden gehaald dan door het alleen maar te verbranden. De gedachte is/was dat door de biomassa te scheiden in verschillende afzonderlijk te verwaarden fracties en de reststromen die voor energieopwekking te gebruiken de prijs van biomassa voor energieopwekking kan concurreren met die van fossiele grondstoffen.
Figuur 4 Het cascaderingsprincipe irt de topsectoren: waarde onttrekken aan biomassa. 16 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Van de huidige duurzame energieconversie in Nederland is 75% toe te schrijven aan de inzet van biomassa. De doelstellingen van het energieakkoord zijn voor de helft gebaseerd op de extra inzet van biomassa. Agri & Food, of Het totale energieverbruik in Nederland beChemie, of Energie? droeg in 2013 3255 PJ. Daarvan is 1175 PJ, Het is En En En, niet ofwel ruim eenderde, toe te schrijven aan de Of Of Of. Alledrie de industrie. Van deze 1175PJ is 648PJ (55%) in topsectoren! gebruik als grondstof (bijvoorbeeld aardolie voor de vervaardiging van kunststoffen). 14 In totaal is dus 20% van het totale Nederlandse energieverbruik inclusief fossiel materiaal in gebruik als grondstof. Dit energieverbruik is vrijwel volledig fossiel en toe te schrijven aan aardolie en aardgas, energiedragers die uitsluitend door biomassa te vervangen zijn. De vergroening van deze grondstoffen kan daarom een aanzienlijke bijdrage leveren aan de verduurzaming van de Nederlandse Energiehuishouding. De industrie toont hiervoor op dit moment grote belangstelling en wijst in dat verband ook naar de afspraken die zijn gemaakt over cascadering van biomassa in het energieakkoord zoals het ondersteunen van innovatie.
Figuur 5 Energieverbruik naar sectoren in Nederland.
Daarbij moet benadrukt worden dat de productie van biobased grondstoffen in de meeste gevallen samengaat met de productie 14
Bron: compendium voor de leefomgeving: http://www.compendiumvoordeleefomgeving.nl/indicatoren/nl0052-Energieverbruik-persector.html?i=6-40 17 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
van energiedragers zoals stoom, en vergistbare dan wel verbrandbare reststromen. Zo produceert de geprognotiseerde 50 kton FDCA fabriek van Avantium ook circa 40 MWh aan warmte. Dit geldt ook voor biomassa-naar energietoepassingen. De BTG-pyrolyse fabriek wordt nu opgestart levert warmte aan AkzoNobel in Hengelo, en olie aan FrieslandCampina in Borculo. Een samenhang tussen de verschillende bronnen / bewerkingen / markten staat hieronder (Figuur 10).
Figuur 6 Samenhang markten, sectoren en producten.
Voor de chemie is de volgende ambitie geformuleerd 15: In 2050 staat Nederland wereldwijd bekend als hét land van de groene chemie. ‘Groen’ is de algemene aanduiding voor grondstoffen, producten en productieprocessen die zijn gebaseerd op biomassa, en/of milieuvriendelijk en schoon zijn geproduceerd en/of duurzaam zijn in de bredere zin van people en planet (zoals recyclebaarheid, biodiversiteit en de sociale aspecten van productie). Voor de productie van voeding, energie en kunststoffen worden in 2050 voornamelijk groene grondstoffen ingezet. Productieprocessen zijn schoon en efficiënt. Nederland heeft de kennisinfrastructuur, organisatiegraad en logistieke voorzieningen om volledig duurzaam te zijn en een total solution provider te zijn. Direct en indirect heeft de 15
Innovatiecontract Chemie 2012-2016
18 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
chemie bijgedragen aan de Europese doelen voor energiebesparing en emissiereductie. De markt Ambities en doelen is één, maar zijn er ook marktvooruitzichten? Een recente analyse 16 via stakeholderanalyse laat een schatting zien van verschillende markten in de toekomst met een base/worst/best case benadering (Figuur 11). Ruimte lijkt er voldoende te zijn – met forse verschillen tussen de lidstaten.
Biochemical Building Blocks
Bioplastics
Biofuels
Bio Jetfuels
Biobased surfactants Figuur 7 Verwachte markt voor BB products.
Biofuels In de afgelopen jaren is aangetoond dat er veilig en duurzaam gevlogen kan worden op biokerosine. Nederlandse bedrijven zoals KLM, Schiphol en SkyNRG spelen hierbij een hoofdrol, mede door biokerosinegebruik te demonstreren op reguliere trajecten.
16
Bio-Tic market roadmap, Europabio, 2014 (concept), http://www.industrialbiotecheurope.eu/downloads/ 19 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Een belangrijke doelstelling van “Deelrapport Brandstofvisie Duurzame Luchtvaart” is vertaling van deze wereldwijde ontwikkeling naar de Nederlandse situatie. Het beschouwt drie scenario’s (Vandaag, Morgen, Overmorgen) met een verschillende tijdshorizons waarin biobrandstoffen kunnen bijdragen aan een significante vermindering van de uitstoot van broeikasgassen door de luchtvaartindustrie. Het Nederlandse beleidskader hieromtrent is vastgelegd in o.a. de Luchtvaartnota. Voor de scheepvaart is door de SER samen met het ministerie van I&M de Brandsftofvisie17 ontwikkeld. Voor martitiem transport worden de Liquefied Natural Gas (LNG) en biobrandstoffen als de voornaamste duurzame oplossingen genoemd, beiden voornamelijk vanwege de compatibiliteit die ze vertonen met de huidige infrastructuur en technieken. De biobrandstof aandelen voor 2030 en 2050 worden ingeschat op respectievelijk 5% en 9%. De aandelen biodiesel en bio-LNG worden voor 2030 ongeveer even groot ingeschat. Voor 2050 wordt verwacht dat de hoeveelheid biodiesel toeneemt en dat de hoeveelheid bio-LNG stabiel blijft. Voor de binnenvaart wordt het aandeel van LNG voor 2030 en 2050 ingeschat op respectievelijk 10% en 15%. Ook wordt een forse groei verwacht van de inzet van bio-LNG en biodiesel. Het aandeel voor beide biobrandstoffen zullen ongeveer gelijk zijn in 2030 (2% biodiesel en 3% bio-LNG) en respectievelijk 14 en11% in 2050. Het introduceren van alternatieve brandstoffen wordt nog beter gestimuleerd als er ook gebruik gemaakt wordt van opportunity’s in andere markten, de zogeheten koppelkansen tussen biobrandstoffen voor wegtransport, aviation en maritiem met ieder hun specifieke eisen. R&D is nodig om deze koppelingen te optimaliseren. De langere termijn Voor de langere termijn krijgt de directe conversie en opslag van zonne-energie in chemische bindingen op de wetenschappelijke agenda meer en meer aandacht. Het ziet er naar uit dat de eerste toepassingen van deze nieuwe technologie met een vijf maal zo hoge efficiëntie als de huidige biomassapraktijk op de lange termijn (>12 jaar, TRL 1) tegemoet gezien kunnen worden. Hierop moet een aantal jaren continuïteit van het fundamenteel onderzoek geboden worden (Figuur 12).
17
http://www.energieakkoordser.nl/nieuws/brandstofvisie.aspx
20 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Figuur 8 Verdeling tussen Biologie, Chemie plus Chemical Engineering en Fysica rondom solar capturing (NWO).
De doelen versus de programmalijnen De transitie naar een biobased economy wordt begeleid door de grenzen van duurzaamheid, zoals blijkt uit menig rapport. Volgens de SER moet de overheid inzetten op verdere ontwikkeling van de biobased economy, binnen een gemeenschappelijk gedragen proces van verduurzaming 18. Ook de Commissie Duurzaamheidsvraagstukken Biomassa benadrukt de grenzen van duurzaamheid (door onafhankelijke partijen te verifiëren op basis van een set heldere eisen) en signaleert tegelijkertijd de kansen voor de Nederlandse economie. Het Rathenau Instituut en de Wetenschappelijke en Technologische Commissie voor de BBE zijn dezelfde mening toegedaan. Rathenau 19 stelt dat innovatie de sleutel is, en concludeert dat de optimale waardebenutting van de biomassa (cascadering) leidraad moet zijn in de bio-economie: dat voorkomt conflicten met de wereldvoedselvoorziening. En Rathenau stelt dat nationale lef (het grijpen van kansen) en internationale voorzorg (het verdedigen en toepassen van duurzaamheidscriteria) hand in hand moeten gaan, in lijn met de commissie Corbey 20. Het TKI-BBE formuleert de volgende doelen in relatie tot de programmalijnen voor 2023 en verder: 18
SER rapport Meer chemie tussen groen en groei: de kansen en dilemma’s van een biobased economy 19 Rathenau rapport Naar de kern van de bio-economie: de duurzame beloftes van biomassa in perspectief 20
Uitwerking Visie Bio-economie 2030 voor de Commissie Corbey
21 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Tabel 2 Doelstellingen vs programmalijnen TKI-BBE 2023. Doel of programmalijn kwantitatief: percentages; kwalitatief: + of -.
Uiteraard blijft de vraag of er voldoende biomassa beschikbaar is – en hoe duurzaam deze is. De commissie Corbey heeft hiervan een analyse gemaakt:
22 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Hebben die biomassaproducerende landen dat niet zelf nodig dan? Hans Alders, voorzitter RvT TKI-BBE
Tabel 3 Biomassabeschikbaarheid (commissie Corbey)
Duidelijk is dat er voldoende biomassa in de EU beschikbaar is, en dat er globaal weinig problemen lijken te zijn.
5 Het Programma Het onderzoeksveld van het TKI-BBE is veelomvattend en bevat de gehele keten van biomassa productie, inzameling, opwerking, conversie in verschillende stappen naar een veelheid van eindproducten. De bioraffinage benadering staat hierbij centraal. Bioraffinage van biomassa betekent dat een veelheid aan componenten en energie uit de grondstof wordt verkregen en het systeem zowel ecologisch als economisch geoptimaliseerd. Veel voorbeelden van bioraffinagesystemen zijn beschikbaar (IEA Bioenergy Task 42 21) of worden ontwikkeld. Valorisatie door bioraffinage van biomassa is daarom het leidende principe binnen de onderzoekslijnen. Het TKI-BBE heeft ervoor gekozen om het totale onderzoeksveld (zie figuur 12) langs een aantal programmalijnen in te delen. Vanaf 2014 heeft in overleg met het Topteam Energie een herdefinitie van de programmalijnen plaatsgevonden 22, leidend tot de volgende vier nieuwe programmalijnen binnen TKI-BBE: 1. Thermische conversie van biomassa 2. Chemisch katalytische conversietechnologie 21
22
http://www.iea-bioenergy.task42-biorefineries.com/en/ieabiorefinery.htm TKI BBE, 2014. TKI Biobased Economy - Aangescherpte programmalijnen. Werkdocument, 12 pp.
23 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
3. Biotechnologische conversietechnologie 4. Solar capturing Leidend principe bij de formulering van de programmalijnen is de waardeketen geweest, van grondstof via conversie tot eindproduct, omdat daarmee deze programmalijnen vergelijkbaar zijn met andere duurzame energie opties binnen de topsector energie. Deze benadering is ook zeer goed toepasbaar indien de waardeketen van grondstof tot materialen wordt beschouwd. Bioraffinage speelt dan een rol binnen deze waardeketens en programmalijnen, maar ook tussen deze programmalijnen en zal integraal in het onderzoek binnen de programmalijn worden meegenomen. Daarnaast is er gekozen om de focus te leggen op Geen keuze voor technologieën en niet op biomassastromen of biomassa eindproducten. Het is ten slotte onduidelijk welke /waardeketen of biomassastromen er beschikbaar zijn in de toeeindproduct: komst en tegen welke prijs. Datzelfde geldt voor Te volatiel. de vraag vanuit de markt voor specifieke producten. Door de technologie, en daardoor de kennis, in handen te hebben en deze te ontwikkelen is het mogelijk deze flexibel in te zetten en zullen er ook in de toekomst innovatieve producten de markt op gebracht kunnen worden. Het zijn technologieen die verkocht en geïmplementeerd worden, zodat de beoorgde doelen zoals CO2-reductie behaald worden. Voor de ontwikkeling van de BBE is het van belang om binnen de BBE te komen tot een goede systeembenadering over de gehele waardeketen, waarbij een juiste afweging tussen waardeketens wordt gemaakt (zie ook rapportage ondersteuning formulering onderzoeksagenda van de TO2). Om deze afweging te realiseren zijn naast deze programmalijnen actielijnen geformuleerd, waarbinnen socio-economische analyses, landgebruik, cascadering, Levens Cyclus Analyses etc. zullen worden uitgevoerd. Hiermee wordt de ontwikkeling en marktintroductie van het totale Biobased Economy systeem gefaciliteerd. Deze actielijnen zullen in nauwe samenhang met, of, voor Energie in, het programma STEM worden uitgevoerd.
24 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Figuur 9 Schematische weergave van het onderzoeksveld BBE, programmalijnen TKI-BBE vergeleken met aanbevelingen TO2 en Groene Groei.
Ten opzichte van de oorspronkelijk programma lijn Solar Capturing, heeft er nu een uitbreiding plaatsgevonden met alle conversies van CO2 en zonlicht naar grondstof, naast molecuul niveau, nu ook op plant of gewas niveau en aquatisch. Daarom zal de nieuwe naam van programmalijn 4 Solar Capturing & biomass production worden.
5.1 Raffinage en thermische conversie van biomassa. De programmalijn 'Thermische conversie van biomassa’ richt zich op technologieën waarmee biomassa bij verhoogde temperatuur, al dan niet in aanwezigheid van zuurstof, wordt omgezet naar: - Elektriciteit en, of warmte. - Hoogwaardige energiedragers die geschikt zijn voor de productie van elektriciteit en, of warmte. Bestaande praktijk die de programmalijn wil veranderen: Ten opzichte van klassieke fossiele brandstoffen zoals steenkool en aardolie heeft biomassa een aantal nadelen: de energiedichtheid is laag, de houdbaarheid is beperkt en biomassa houdt vocht vast (hygroscopische eigenschappen) waardoor de verbrandingswaarde daalt. Daarnaast zijn veel laagwaardige biomassareststromen op dit moment niet geschikt voor energieproductie, onder andere omdat zij door hoge gehaltes aan alkalimetalen en chloriden leiden tot snelle vervuiling en corrosie van ketels en warmtewisselaars. Voor kolencentrales wordt nu vooral gebruik gemaakt van schone houtpellets die voor het overgrote deel worden geïmporteerd. Deze kunnen tot 20% met kolen worden bijgestookt. Bij hogere percen25 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
tages ontstaan problemen met vervuiling en corrosie. De duurzaamheid van deze biomassa staat maatschappelijk ter discussie. Daarnaast kent Nederland een aantal grote en veel kleine centrales die uitsluitend op biomassa worden gestookt. Hiervoor wordt meestal gebruik gemaakt van houtchips. Dit is –in vergelijking met steenkool- een dure brandstof. De economie van biomassacentrales zou kunnen verbeteren indien laagwaardige reststromen verstookt konden worden, zoals landbouwresiduen en reststromen uit bioraffinage. Dit stuit echter tot nu toe op problemen die vergelijkbaar zijn met die van kolencentrales: vervuiling en corrosie. Wijze waarop: Inzet op restromen uit bioraffinage en/of afval ter vervanging van relatief hoogwaardige biomassastromen door: - Verdichten biomassa door pyrolyse en torrefactie, met als eindproducten pyrolyse-olie en biocoal, - Laagwaardige biomassa geschikt maken voor energietoepassingen door ontzouting, verdichting en hydrofoob maken, - Onderzoek beperking corrosie en fouling in verbrandingsinstallaties, - Onderzoek brandstofadditieven, - Onderzoek inzetbaarheid (mengsels van) laagwaardige biomassastromen in verbrandingsinstallaties, - Ontwikkeling van duurzaamheidscriteria, - Ontwikkeling nieuwe supply chains en downscaled toepassingen, onderzoek naar voorbewerkingstechnieken. Resultaat 2023: - Kwalitatief: 6 G€ bij BNP, 4 nieuwe biomassastromen waaronder materialen uit bioraffinage, certificeringssyteem voor biomassa met breed maatschappelijk draagvlak, - Kostprijsverlaging elektriciteit en warmte uit biomassa tot onder €4/GJ, - CO2: 850 GWh/jaar, overeenkomend met een CO2-reductie van 625.000 ton/jaar, - Fte: 1000 banen. Tijdpad: - Certificeringssysteem in 2015, - Demonstratie bijstook 50% houtpellets in 2016, - In 2018 demonstratie torrefactie en pyrolyse van schoon hout op grote schaal, - in 2018 eerste kleinschalige demonstratie van torrefactie en pyrolyse laagwaardige reststromen, - Demonstratie bijstook 2 nieuwe biomassastromen in 2023.
26 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Bedrijven die in Nederland actief zijn: Topell, Torr-coal, Biolake, Biotortech, Essent, NUON, EON, BTG, HoSt, diverse andere MKB-bedrijven. Universiteiten en onderzoeksinstituten: ECN, UT, RUG, DHV Kema. Samenhang met andere programmalijnen: - pyrolyseolie kan via chemisch-katalytische weg gedeeltelijk omgezet worden in biobrandstoffen (programmalijn 2), - getorrificeerd materiaal kan worden vergast, waarna het geproduceerde synthesegas chemisch-katalytisch kan worden omgezet in biobrandstoffen (programmalijn 2), - Vergassing is ook een thermische conversietechnologie die als aparte programmalijn is opgenomen in TKI Gas. Programma’s: 1. Voorbehandeling Dit programma omvat torrefactie, pyrolyse en andere voorbehandelingstechnieken om laagwaardige biomassa geschikt te maken voor de opwekking van energie en warmte. Zwaartepunt Innovatiestap: TRL start: 7, TRL eind: 8. Risico’s/kritische succesfactoren: verhogen rendement, inzet laagwaardige biomassastromen (kostprijsreductie), goede eigenschappen t.a.v. maalbaarheid, houdbaarheid, verbrandingseigenschappen, handling, opslag en logistiek, ontzouting, ontwatering met laag energieverbruik, definitie SMART duurzaamheidscriteria, ontwikkeling nieuwe supply chains en downscaled toepassingen, bewijzen technologie op demoschaal. 2. Bij- en meestoken Dit programma omvat het geschikt maken van installaties voor hogere percentages bij- en meestook biomassa. Zwaartepunt Innovatiestap: TRL start: 7, TRL eind: 8. Risico’s/kritische succesfactoren: beperking corrosie en fouling in de verbrandingsinstallatie. Onderzoeksvragen In onderstaande Tabel 7 staan onderzoeksvragen die per onderwerp binnen deze programmalijn uitgewerkt kunnen worden. Dezelfde indeling is gebruikt zoals in hoofdstuk 4.5 is geïntroduceerd. Tabel 4 Onderzoeksvragen programmalijn 1. Onderwerp
Fundamenteel TRL 1-3
Toegepast TRL 4-6
Bio-energie
27 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Valorisatie TRL 7-9
Vergisting
Kan de genomica aanpak uit de darmgezondheid leiden tot een efficiëntiestap in vergisting?
Hoe kunnen bestanddelen uit het digestaat nuttig ingezet worden? (bijv. vezels voor plaatmaterialen) Hoe kan het vergistingsproces van laagwaardigere en goedkopere feedstock geoptimaliseerd worden? Hoe kan de kwaliteit van groen gas verbeterd worden zodat het makkelijker bijgemengd kan worden?
Hoe kunnen nutriënten verwaard worden om de business case voor vergisting rendabel te maken?
Is het productspectrum te beïnvloeden dmv katalysatoren of grondstofaanpassing?
Hoe kunnen verontreinigingen en ongewenste stoffen uit pyrolyse olie verwijderd worden?
Hoe kan uit laagwaardiger biomassa dan schoon hout, bruikbare pyrolyse-olie geproduceerd worden?
Verbetering homogeniteit, waterafstotende eigenschappen en fysische stabiliteit.
Ontwikkeling torrefactie voor niet houtige biomassa o.a. snoeiresten, oogstresten,riet, gras, etc., moeten eerst voorbehandeld worden. Toepassing in vergassing en kleine ketels Het opschalen van vergassing om zo inzicht te krijgen in de business case.
1a Voorbehandeling: (zie onderstaande vier onderwerpen) Pyrolyse
Torrefactie
Vergassing
-
Wat zijn de risico’s/kritische succesfactoren voor groen gas en synthesegas: voorkomen vorming/condensatie teren, gasreiniging, degradatie katalysatoren. [prog. lijnen TKI gas]
Andere voorbehandelings- technieken (o.a. wassen, drogen, pelleteren) 1b Bij- en meestook
Uitontwikkeld en toegepast op commercieel schaal. -
-
Verhogen bijstookpercentages met zo beperkt mogelijk effect op rendement, vervuiling en corrosie, alternatieve feedstocks voor houtpellets, toevoegen toeslagstoffen voor beperken vervuiling en corrosie
5.2 Raffinage en chemisch katalytische conversietechnologie. 'Chemisch katalytische conversietechnologie' betreft de ontwikkeling van nieuwe geavanceerde technologieën voor de omzetting van -al dan niet voorbewerkte- biomassa naar groene materialen, chemicaliën en brandstoffen via chemokatalytische routes. Conversieprocessen worden bij voorkeur vooraf gegaan door bioraffinage. Bij bioraffinage worden plantaardige en dierlijke grondstoffen op efficiënte, ecologisch verantwoorde en economische wijze ontrafeld, zodat de 28 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
volledige potentie van haar inhoudsstoffen benut kan worden. Het streven is daarbij om bestaande functionaliteiten en koolstofskeletstructuren in de moleculen zo veel mogelijk te behouden, eventueel is na de bioraffinage al een product voorhanden. Conversieprocessen worden gevolgd door energie-efficiënte scheidingstechnieken, alsook de ontwikkeling van processen voor eindproducten (bijvoorbeeld polymerisatie en materiaalontwikkeling). Bestaande praktijk die de programmalijn wil veranderen: Brandstoffen voor verkeer en vervoer zijn op dit moment nog grotendeels gebaseerd op aardolie. Door Europese en nationale wetgeving (bijmengverplichting) komt de productie van biobrandstoffen voor het wegverkeer langzamerhand op gang. Deze brandstoffen zijn nog grotendeels gebaseerd op eerste generatie grondstoffen zoals suikers en plantaardige oliën en vetten. Voor de luchtvaart is nog geen economisch rendabel duurzaam alternatief voor kerosine voorhanden. De ligninefractie van biomassa kent op dit moment nog geen hoogwaardige toepassing. Er zijn geen commerciële technieken voorhanden om houtachtige biomassa om te zetten naar biobrandstoffen en chemicaliën. Wijze waarop: Binnen deze programmalijn wordt onderzoek gedaan naar de omzetting van biomassa en biomassafracties naar verkoopbare eindproducten zoals (transport)brandstoffen, grondstoffen, chemicaliën, elektriciteit en warmte. Processen worden gekarakteriseerd door de fractionering en cascadering van biomassa, gevolgd door de conversie van de verschillende fracties naar brandstoffen en chemicaliën die met minder energie en kleinere CO2-footprint zijn te produceren dan de fossiele alternatieven. De conversie vind plaats met behulp van katalysatoren. Bedrijven en kenninstellingen werken op dit terrein samen in de PPS CatchBio. Tijdpad: - 2016: model voor grondige analyse bepalen aantrekkelijke componenten, - 2018: pilot voor fractionering 2e generatie feedstocks naar suikerstropen, - 2020: marktintroductie furanic fuels en furanic polymers, - 2020: pilot voor conversie pyrolyse-olie naar transportbrandstof, - 2022: pilot kleinschalige productie biobrandstoffen via vergassing, - 2024: routes naar aromaten uit lignine op pilotschaal aangetoond, - 2030: commerciële chemicaliën (aromaten) uit pyrolyse-olie en lignine die met minder energie en kleinere CO2-footprint zijn te produceren. 29 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Resultaat: - Kwalitatief: 6 G€ bij BNP, - CO2: 70GWh/jaar duurzame energieproductie, staat gelijk aan 52.000 ton CO2-reductie per jaar en 25% bijdrage aan 10% biomobiliteit, overeenkomend met 925.000 ton CO2/jaar, - Fte: 1500 banen. Programma’s: 3. Verwerking lignocellulose Onderwerpen: - fractionering lignocellulose naar cellulose, hemicellulose en lignine, - valorisatie lignine: kraken lignine, conversie naar aromaten en andere waardevolle componenten, - conversie van cellulose en hemicellulose naar furanen als bouwstenen voor hoogwaardige transportbrandstoffen en materialen. - Ontsluiting van waardevolle bouwstenen voor materialen uit reststromen. Hierbij valt bijvoorbeeld te denken aan de winning van cellulose en vetzuren uit afvalwater en de winning van vezels uit grassen, om deze in te zetten in bijvoorbeeld de productie van kunststoffen en de vervaardiging van verpakkingsmaterialen. Zwaartepunt Innovatiestap: TRL start: 3, TRL eind: 7. Risico’s/kritische succesfactoren: Opschaling naar continuproces, voldoende hoge opbrengsten en kwaliteit van de biomassa fracties, adequate solvent recycling, conversiesnelheid en rendement, samenstelling eindproduct, scheiding met laag energieverbruik, katalysator en procesontwikkeling. 4. Conversie van pyrolyse-olie naar biobrandstoffen en chemicaliën Zwaartepunt Innovatiestap: TRL start: 4, TRL eind: 6. Risico’s/kritische succesfactoren: energie/waterstofgebruik voor stabilisering en opwerking pyrolyse-olie, productkwaliteit, conversierendement, kostprijs ten opzichte van fossiele routes. 5. Productie biobrandstoffen en chemicaliën uit vaste biomassa via vergassing Zwaartepunt Innovatiestap: TRL start: 4, TRL eind: 6. Risico’s/kritische succesfactoren: voorkomen vorming / condensatie teren, gasreiniging, degradatie katalysatoren. Onderzoeksvragen: In onderstaande Tabel 8 staan onderzoeksvragen die per onderwerp binnen deze programmalijn uitgewerkt kunnen worden. Tabel 5 Onderzoeksvragen programmalijn 2. Onderwerp
Fundamenteel TRL 1-3
Toegepast TRL 4-6
30 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Valorisatie TRL 7-9
Biobased chemie Drop-in
Zuren, alcoholen
Aminozuren
Ontwikkelen van katalysatoren en reactieprocessen voor productie van drop-in bouwstenen. Welke alternatieve producten zijn voorstelbaar uit platformzuren? Zijn eigenschappen te voorspellen mbv structuuranalyse? Ontwikkelen van chemische reacties voor omzetting naar chemicaliën.
Aromaten
Opschalen en optimaliseren van productie proces.
Testen van biobased vervangers voor commerciële productie.
Welke biomassa (reststromen) is geschikt voor een bepaald product? Welke (bio)katalytische route is het beste?
Welke toepassingen in producten en materialen zijn mogelijk? Welke zijn economisch rendabel om opgeschaald te worden?
Isolatie, fractionering en functionalisering aminozuren uit biomassa en restromen. Voor welke toepassingen kunnen de aminozuren gebruikt worden? Verkennen en optimaliseren van routes voor productie uit lignine. Optimaliseren van productie processen uit eerste generatie grondstoffen.
Pilot en demo voor raffinage.
Wat zijn de moleculaire eigenschappen en structuren? Welke routes geschikt voor productie aromaten: thermisch, chemisch katalytische? Welke grondstoffen: e.g. koolhydraten, lignocellulose of lignine? Downstream processing met laag energieverbruik. Andere ringvormiWelke routes geschikt Welke productie routes ge moleculen (e.g. voor productie aroma- zijn interessant met ligniFuranen, isosorbiten: thermisch, chene en koolhydraten als de, caprolactam) misch katalytische, grondstof? Welke voorbewelke grondstoffen: handeling? Welke katalylignocellulose, lignine satoren? en koolhydraten? Biobrandstoffen (uit thermische en/of chemische voorbehandeling) Conversie van pyrolyse-olie naar biobrandstoffen en chemicaliën
Is het productspectrum te beïnvloeden dmv katalysatoren of grondstofaanpassing?
Productie biobrandstoffen en chemicaliën uit vaste biomassa via vergassing Productie biobrandstoffen uit lignocellulose materiaal
Zijn er additieven die prestaties verbeteren cq emissies sterk verminderen?
Hoe kan pyrolyse-olie optimaal verwerkt worden tot biobrandstof of materialen? Fractionering en upgrading pyrolyse-olie met laag energieverbruik Optimalisatie vergassingsproces, m.n. de scheiding van chemicaliën in de gasvormige fase, diepe teerreiniging, voorkomen dat katalysator snel deactiveert (iom TKI chemie) Aantonen dat bioraffinagereststromen geschikt zijn voor scheepvaartbrandstof.
Pilot en demo voor productie.
Zuivering, opschaling, polymerisatie. Pilot en demo voor productie.
Doorontwikkelen naar verschillende type biobrandstoffen.
Doorontwikkelen naar verschillende type biobrandstoffen.
Doorontwikkelen naar verschillende type biobrandstoffen.
5.3 Raffinage en biotechnologische conversietechnologie. 'Biotechnologische conversietechnologie' betreft ontwikkeling van nieuwe geavanceerde technologieën voor de omzetting van -al dan niet voorbewerkte- tweede generatie biomassa naar groene materialen, chemicaliën en brandstoffen via biotechnologische routes (met 31 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
aandacht voor biotechnologie/genomics). Conversieprocessen worden bij voorkeur vooraf gegaan door bioraffinage. Bij bioraffinage worden plantaardige en dierlijke grondstoffen op efficiënte, ecologisch verantwoorde en economische wijze ontrafeld, zodat de volledige potentie van haar inhoudsstoffen benut kan worden. Het streven is daarbij om bestaande functionaliteiten en koolstofskeletstructuren in de moleculen zo veel mogelijk te behouden, eventueel is na de bioraffinage al een product voorhanden. Conversieprocessen worden gevolgd door energie-efficiënte scheidingstechnieken, alsook de ontwikkeling van processen voor eindproducten (bijvoorbeeld polymerisatie en materiaalontwikkeling). Bestaande praktijk die de programmalijn wil veranderen: Brandstoffen voor verkeer en vervoer zijn op dit moment nog grotendeels gebaseerd op aardolie. Door Europese en nationale wetgeving (bijmengverplichting) komt de productie van biobrandstoffen voor het wegverkeer langzamerhand op gang. Deze brandstoffen zijn nog grotendeels gebaseerd op eerste generatie grondstoffen zoals suikers en plantaardige oliën en vetten. Voor de luchtvaart is nog geen economisch rendabel duurzaam alternatief voor kerosine voorhanden. Huidige routes naar brandstoffen, chemicaliën en polymeren verlopen vaak bij hoge temperatuur en druk en zijn daarom energie-intensief. Productieprocessen voor twee generatie biobrandstoffen uit lignocellulose zijn in ontwikkeling maar halen vooralsnog een laag conversierendement. Wijze waarop: Binnen deze programmalijn wordt onderzoek gedaan naar de omzetting van biomassa en biomassafracties naar verkoopbare eindproducten zoals (transport)brandstoffen, elektriciteit, warmte, grondstoffen en chemicaliën. Biotechnologische processen verlopen bij lage (doorgaans atmosferische) druk en lage temperaturen, waardoor een belangrijke energiebesparing ten opzichte van fossiele routes kan worden bereikt. De uitdagingen zijn gelegen in het ontsluiten van de suikers via voorbehandeling en hydrolyse en de biologische omzetting van C5 en C6-suikers met hoog rendement naar alcoholen en aanverwante eindproducten. Bedrijven en kenninstellingen werken op dit terrein samen in de PPS BE-Basic. Resultaat: - Kwalitatief: 6 G€ bij BNP, - CO2: 70GWh/jaar duurzame energieproductie, staat gelijk aan 52.000 ton CO2-reductie per jaar en 25% bijdrage aan 10% biomobiliteit, overeenkomend met 925.000 ton CO2/jaar, - Fte: 1500 banen. Tijdpad:
32 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
-
2018: voor NL aantrekkelijke route naar tweede generatie alcoholen aangetoond, 2022 voor NL aantrekkelijke route naar brandstoffen voor de luchtvaart aangetoond.
Samenhang met andere programmalijnen: - Solar capturing (programmalijn 4) kan ook plaatsvinden met gebruik van micro-organismen. Programma’s: 6. Biotechnologische conversietechnologie Zwaartepunt Innovatiestap: TRL start: 4, TRL eind: 6. Risico’s/kritische succesfactoren: voorbehandeling en ontsluiting, conversierendement, zuivering met laag energieverbruik, concurrentiepositie ten opzichte van fossiele routes naar deze producten. Onderzoeksvragen In onderstaande Tabel 9 staan onderzoeksvragen die per onderwerp binnen deze programmalijn uitgewerkt kunnen worden. Tabel 6 Onderzoeksvragen programmalijn 3. Onderwerp
Fundamenteel TRL 1-3
Toegepast TRL 4-6
Valorisatie TRL 7-9
Gras- en andere groene biomassa raffinage
Optimaliseren raffinage van heterogene grondstofstromen. Functionalisering van verkregen fracties.
Pilot / demo voor raffinage. Markttoepassingen voor fracties.
Bioraffinage algemeen
Welke biomassa (reststromen) is geschikt voor een bepaald product? Als nodig, welke (bio) katalytische route is het beste? Optimalisering scheiding uit diverse bronnen. Hydrolyse en scheiding tot aminozuren.
Aansluitingen bij bestaande productieketens en ontwikkelen van nieuwe ketens. Toepassingen voor voeding en veevoer.
Welke voorbehandeling is het meest geschikt bij een bepaalde product? Optimaliseren van voorbewerkingsprocessen. Scheidingstechnologie voor lignocellulose grondstoffen en reststromen. Welke voorbehandlingsmethode is het meest geschikt voor bepaalde value chain? Welke value chains met lignocellulose als feedstock kunnen gerealiseerd worden? Optimaliseren van scheiding in fracties. Optimaliseren proces voor productie van nanocellulose. Voor welke producten en toepassingen kan het gebruikt worden? Wat zijn de verkre-
Hoogwaardige toepassingen ontwikkelen voor lignine.
Bioraffinage
Eiwitscheiding en raffinage
Zijn er nieuwe laagenergetische scheidingen denkbaar?
Lignine uit houtraffinage
Verwerking lignocellulose
Zijn er nieuwe laagenergetische scheidingen denkbaar (e.g. deep eutectic solvents)? Welke routes zijn denkbaar voor de productie van diolen?
Nanocellulose
Is de relatie proces / functie / structuur voldoende bekend?
33 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Welke aansluitingen zijn er met chemie en energie? Welke geïntegreerde bioraffinage business cases zijn mogelijk na fractionering? Opschalen productie. Opschalen van toepassingen in producten voor commerciële doel-
Verwaarding reststromen uit rioolslib (o.a. PHA, alginaat)
Selectie en ontwikkeling van bacterie stammen voor afvalwaterzuivering.
Vetzuren uit reststromen
Optimaliseren van scheidingsproces.
Planteninhoudsstoffen farma
Vorm te geven met topsector T&U
Planteninhoudsstoffen ‘chemie’’
Biobased materialen Drop in
Produkten uit fermentatieve monomeren (hydroxyzuren e.g. PLA of PHA)
Biobitumen uit lignine, hout, of koolhydraten Verf en coatings
Zijn de produkteigenschappen van het polymeer voorspelbaar adhv procesparameters, stabiliteitsverhogingen haalbaar?
Zijn eigenschappen, structuren irt de toepassing voorspelbaar en controleerbaar?
Smeermiddelen
Zijn eigenschappen, structuren irt de toepassing voorspelbaar en controleerbaar?
Vezelversterkte materialen (o.a. composieten, beton)
Zijn eigenschappen, structuren irt de toepassing voorspelbaar en controleerbaar?
gen eigenschappen en structuren?
einden.
Welke applicaties zijn er voor de diverse PHA's? Bewerking tot product/materiaal. Procesoptimalisatie voor extractie van PHA uit bacterie. Aansluiting met vetzuur productie uit biomassa. Welke reststromen bevatten welke vetzuren en in welke samenstelling? Welke materialen en platformchemicaliën zijn mogelijk? Welke medisch interessante stoffen en nutriënten kunnen gehaald worden uit planten en gewassen? Functionaliseren van fractie na raffinage voor farmaceutische toepassingen. Welke interessante stoffen en nutriënten kunnen gehaald worden uit planten en gewassen? Optimaliseren van de raffinage proces en functionaliseren van stoffen.
Pilots en demo raffinage faciliteiten.
Bewijs naar pilot schaal dat business cases ontwikkeld kunnen worden.
Testen van biobased vervangers voor commerciële productie. Fabricage van nieuwe producten / materialen
Verhogen stabiliteit bij hoge temperatuur. Optimalisatie en kosten efficiënt productie uit andere bronnen zoals lignocellulose. Bewerking in producten en materialen. Wat zijn de structuren en eigenschappen? Welke toepassingen zijn mogelijk? Wat zijn de eigenschappen, structuren en waarvoor kan het toegepast worden? Uit Welke bronnen kan het verkregen worden? Optimaliseren van productie. Wat zijn de eigenschappen, structuren en waarvoor kan het toegepast worden? Uit welke bronnen kan het verkregen worden? Optimaliseren van productie. Wat zijn de eigenschappen, structuren van natuurlijke vezels en waarvoor kan het toegepast worden? Uit Welke bronnen kunnen vezels verkregen worden? Optimaliseren van productie. Lange termijn eigenschappen, zoals vochtbestendigheid.
Biobrandstoffen (biotechnologisch)
34 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Toepassen van verkregen vetzuren in bestaande ketens. Demo en pilots voor scheiding. Optimaliseren van raffinage proces.
Uittesten en ontwikkelen van biobased varianten.
Uittesten en ontwikkelen van biobased varianten.
Uittesten en ontwikkelen van biobased varianten. Toepassingen sectoren als bouw, autoindustrie, design, textiel.
2e generatie bioethanol
Robuustere micro-organismen m.n. alcoholtolerantie, betere conversie C5-suikers. Optimaliseren en fractioneren van cellulose uit biomassa. Opwaardering DDGS stroom naar feed toepassing.
1e generatie bioethanol
-
Rijden op groen gas
-
Zuivering, ontstoffing en ontzwaveling.
Scheepsvaart brandstof
Onderzoek naar diverse grondstoffen, routes en platformmoleculen
Procesontwerp, Testen van diverse biobrandstoffen in scheepsmotoren.
Onderzoek naar diverse grondstoffen, routes en platformmoleculen
Procesontwerp, voornamelijk via fermentatie.
1e generatie biodiesel Biokerosine
-
Productie uitontwikkeld en commercieel beschikbaar.
Uitontwikkeld en commerciële productie draait Testen in vliegtuigmotoren.
5.4 Solar Capturing & biomass production. Solar Capturing & biomass production omvat teelt, veredeling en de directe omzetting van CO2 en zonlicht in een scala aan eindproducten, in micro-organismen of via chemokatalytische processen. Bij Solar Capturing gaat het in essentie om het direct (met zonneenergie of warmte als input) of indirect (met op duurzame wijze opgewekte electiciteit als input) opslaan van zonne-energie in chemische bindingen van een, afhankelijk van de gekozen benadering, breed spectrum aan verbindingen met een koolstofskelet die interessant zijn vanuit economisch perspectief. Veelal starten de omzettingen met koolstofdioxide en water als input en dit draagt bij aan het sluiten van de koolstofcyclus. Een uitgebreide rationale staat in bijlage 3. Bestaande praktijk die de programmalijn wil veranderen: In de huidige situatie wordt vooral biomassa afkomstig uit planten gebruikt voor de productie van energie en energiedragers. Planten zetten zonlicht met CO2 via de fotosynthese om in enkelvoudige suikers, (hemi)cellulose, lignine en andere verbindingen. Om plantendelen geschikt te maken voor energietoepassingen moeten deze lange koolstofketens weer worden afgebroken tot ‘kleine’ moleculen zoals ethanol en methaan. Hiermee gaat een deel van de ingevangen koolstof verloren als CO2 en gaat ook een deel van de ingevangen zonne-energie verloren. Algen, wieren en andere microorganismen zijn in staat om CO2 en zonlicht rechtstreeks, in één stap, om te zetten in een scala aan eindproducten. Deze producten worden soms opgeslagen in de cel, soms uitgescheiden. De teelt van algen vind tot nu toe op kleine schaal plaats door enkele partijen en richt zich met name op nichetoepassingen (voedingssupplementen). In de regel worden de algen in zijn geheel geoogst en ge35 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
conserveerd. De teelt en gebruik van zeewier staat in Nederland nog in de kinderschoenen. In het buitenland vindt teelt al op grotere schaal plaats, met name in Korea en Japan, als voedingsmiddel. Daarnaast dient de mobilisatie van inlandse biomassa verder te worden geëxploreerd. Wijze waarop: Zonne-energie direct opslaan in chemische bindingen voor energiegebruik voor mobiliteit, productie van platformchemicaliën en backup voor fluctuaties in beschikbaarheid van elektriciteit. Zonlicht wordt via chemokatalytische en bio-katalytische processen rechtstreeks omgezet naar eindproducten, zoals ‘solar fuels’. Raffinage van de algen, met focus op winning van de oliefractie en eiwitfractie. Verkenning van de mogelijkheden om in Nederland zeewieren te raffineren en de aanwezige suikers te gebruiken als grondstof voor onder andere transportbrandstoffen. Onderzoek naar de rechtstreekse productie van fuels en chemicaliën is ondergebracht in de PPS ‘biosolar cells’. In Nederland is er één kleine pilot: Photanol, een spin off van de Universiteit Amsterdam, heeft in een kas een proefopstelling staan voor de productie van o.a. melkzuur uit zonlicht met behulp van gemodificeerde cyanobacteriën. Bedrijven en kenninstellingen werken op dit terrein samen in de PPS Biosolar Cells. Bedrijven en kenninstellingen werken op het terrein van micro-algen samen in de PPS Algae Parc. Rondom ECN is een cluster met bedrijven en kennisinstituten gevormd op het gebied van macro-algen (Wieren). Resultaat: - Kwalitatief: Lange termijn onderzoek om inzicht te krijgen in de mogelijkheden van de realisatie van de visie om rechtstreeks CO2 om te zetten in platformmoleculen, demonstratie raffinage van algen op pilotschaal, - Kwalitatief: CO2: 10GWh/jaar duurzame energieproductie, staat gelijk aan 7.000 ton CO2-reductie per jaar, - Fte: 550, de sector kan zich ontwikkelen tot een omvang die vergelijkbaar is met de huidige tuinbouwsector. Tijdpad: - 2018: demonstratie algenraffinage op pilotschaal, - 2020: eerste pilot wierenraffinage, - Biosolar cells: lange termijn onderzoek om inzicht te krijgen in de mogelijkheden van de realisatie van de visie om rechtstreeks CO2 om te zetten in platformmoleculen. Programma’s: 7. Biosolar cells Dit omvat de rechtstreekse omzetting van CO2 (of H2O) en zonlicht via te produceren katalysatoren naar verbindingen die geschikt zijn 36 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
als brandstof en/of grondstof voor de productie van chemicaliën en materialen. Zwaartepunt Innovatiestap: TRL start: 1-4, TRL eind: 6. Risico’s/kritische succesfactoren: Conversierendement, winnen van eindproducten met laag energieverbruik, opschaling, investeringskosten versus opbrengsten. Het programma wordt samen met universitaire groepen en NWO (en DIFFER) in 2014 en 2015 gebouwd. 8. Aquatische plantaardige bronnen Dit betreft de raffinage van algen en wieren om waardevolle componenten te isoleren die geschikt zijn voor hoogwaardige toepassingen. Zwaartepunt Innovatiestap: TRL start: 1, TRL eind: 3. Risico’s/kritische succesfactoren: Energieverbruik, opbrengst, haalbare suikerconcentraties, conversierendement, investeringskosten versus opbrengsten. 9. Genen en gewassen voor groene grondstoffen Deze programmalijn is gericht op gewassen die hoogwaardige chemie- en energiegrondstoffen leveren. Dit programma valt strikt genomen niet onder solar capturing dat zich immers op de korte route van zon zonder opslag in de plant richt, en valt volledig onder thema 1 van de Topsector Agrifood. De sector Tuinbouw richt zich hierop met het Kenniscentrum Planteninhoudstoffen. Via de route via planten kunnen we nieuwe markten voor de agrosector ontsluiten en een groene grondstofvoorziening voor o.a. chemie realiseren. Projecten binnen deze lijn zijn fundamenteel of toegepast van aard en gericht op de volgende doelen: - Domesticeren van nog niet eerder gecultiveerde gewassen (bijvoorbeeld voor unieke oliën, natuurrubber, vezels voor papier en textiel, eiwit en energie); - Aanpassen van bestaande raffinagegewassen voor de nieuwe ‘biobased’ toepassingen (b.v. suikerbiet, aardappel of houtachtigen en vezelgewassen); - Ontwikkelen en inbouwen van nieuwe eigenschappen, zoals genen die coderen voor specifieke hoogwaardige inhoudsstoffen; - Verhogen van de opbrengst van planten door een verhoogde fotosynthese-capaciteit; - Ontwikkelen van fundamentele (genoom)kennis over eigenschappen van planten, wieren en algen, die essentieel zijn voor het welslagen van de eerste vierdoelen. Onderzoeksvragen In onderstaande Tabel 10 staan onderzoeksvragen die per onderwerp binnen deze programmalijn uitgewerkt kunnen worden. Tabel 7 Onderzoeksvragen programmalijn 4. Onderwerp
Fundamenteel TRL 1-3
Toegepast TRL 4-6
37 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Valorisatie TRL 7-9
4a Biosolar cells Kunstmatige fotosynthese / solar waterstof Algen (heterotroof en fototroof, raffinage)
Heterogene katalyse
Energie-opslag in energierijke moleculen
Photanoltechnologie
Fotosynthese proces ontrafelen. Ontwikkelen van processen met hoge fotoefficiëntie. Ontwikkelen en identificeren van nieuwe soorten alg en interessante metabolieten. 'Omics' analysetechnieken en genetische modificaties.
Prototype ontwikkelen van kunstmatig blad.
Welke inhoudsstoffen kunnen gemaakt worden uit welke soort alg? Raffinage proces optimaliseren. Kostenreductie van algen productie. Energiezuinig oogsten én raffineren.
Markt toepassingen van inhoudsstoffen. Raffinage en scheiding
Ontwikkel biogeïnspireerde responsieve matrices. Hoe werkt het katalyse/halfgeleider grensvlak? Nieuwe foto-anodes en kathodes nodig. Ontkoppel charge generation, scheiding en transport in artificial leaves (Nano?) Fluctuerende condities bij katalyse (intermittency). Kostenreductie electrolyse in P2G via synthese nieuwe materialen (e.g. prolymeermembranen) en nieuwe concepten (e.g. heat-integration en co-electrolyse bij high pressure solid oxide electrolysis) Ontwikkelen van nieuwe cyanobacterien door middel van synthetische biologie.
Solar water splitting devices.
-
-
-
Verhogen productie, downstream processing. Identificeren verbindingen met hoge toegevoegde waarde (bijvoorbeeld terpenen) die via deze route gemaakt kunnen worden.
Opschaling voor commerciële toepassingen
Welke producten en toepassingen zijn er? Wat is de meest geschikte conversie technologie? Verhogen van productiviteit en groeioptimalisatie. Bioraffinage. Bioraffinage. Welke applicaties zijn er voor de verkregen eiwit, suiker en vezel fractie?
Opzetten van teelt faciliteiten. Markt toepassingen van producten na bioraffinage.
Overige aquatische biomassa Zeewier
Identificatie en ontwikkeling van nieuwe soorten, omics en modificaties.
Overig (e.g. Eendenkroos, azolla)
Modificatie/veredeling voor hogere opbrengst.
Teelt faciliteiten. Markttoepassingen van fracties na bioraffinage.
Overige biomassaproductie Oliën / vetten (zoals palmolie, soja, etc.)
Vetzuurscheiding.
Koolhydraten (zoals suikerbieten)
Structuuranalyse. Structuur/functierelaties. Koolhydraatfunctionaliteit. Biotechnologische en
Building blocks voor hoogwaardige chemicals. Aansluiting bij eiwitten (eiwit/oliegewassen). Ontsluitings-, voorbehandelings-, scheidings- en fractioneringstechnologieen (minder energie, decentraal, verlenging beschikbaarheid).
38 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Inbedding in geïntegreerde bioraffinageconcepten. Implementatie koolhydraatbouwstenen voor chemicaliën en materialen. Nieuwe productmarktcombinaties. Inbedding in geïntegreer-
Vezelgewassen (zoals miscanthus, hennep)
Veredeling
chemo-enzymatische conversie: niet alleen nieuwe moleculen met extra functionaliteit t.o.v. fossiele variant, maar ook in een keer omzetting naar gewenste molecuul.
Functionalisering d.m.v.(bio) chemische en fysische modificaties.
de bioraffinageconcepten.
Verhogen biomassa (in droge stof) per hectare. Verwerking in nieuwe producten met nieuwe eigenschappen.
Verhogen van efficientie fotosynthese.
Toepassen van omics technieken voor verkrijgen van betere gewassen (groei, resistentie, product vorming etc.). Selectie van haalbare soorten
Op welke terreinen kan het gewas beplant worden zodat het ook een ecologisch effect kan hebben? (bijv. CO2afvangen, weghouden van diersoorten). Testen van nieuwe soorten tbv marktintroductie.
5.5 Actielijnen BBE: samenwerking als ambitie Een apart deel van de onderwerpenmatrix gaat over actielijnen. Dit omvat de oude programmalijnen ‘Economie, beleid en duurzaamheid’ uit het IC 2012-2016, en ‘Innoveren van kennisoverdracht’. Deze onderwerpen zijn niet toe te delen aan één van bovenstaande specifieke programmalijnen. Tabel 8 Onderzoeksvragen Actielijnen BBE Onderwerp
Fundamenteel
Toegepast
Valorisatie
Ecosysteembenadering en maatschappelijke waardering markt en consument (design)
Wat zijn de drivers voor gedragsverandering van consumenten?
duurzaamheid
Wat zijn de drivers voor gedragsverandering van consumenten?
Sociaal-economische analyses tbv beleidskeuzes
-
Logistiek
Wet- en regelgeving
Hoe kun je biobased producten positioneren in de (duurzame) markt. Kennis ontwikkelen over duurzaamheid van biobased producten. Onderzoek is nodig bij de grenswaarden van o.a. biodiversiteit, bodemkwaliteit e.a. duurzaamheidscriteria. Doorrekenen en ontwerpen van productieketens. Ontwikkelen van logistieke concepten en inpassen in regionale infrastructuur. Ontwikkelen LCA's voor bepaling van CO2 reductie bij biobased productie.
Innoveren van kennisoverdracht naar verschillende doelgroepen
39 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Toepassingsmogelijkheden van biobased materialen in verschillende sectoren.
Hoe kan op meest efficiënte en effectieve wijze duurzaamheid geïmplementeerd worden in biomassaproductie en gebruik. LCA's van biobased productie ketens.
Langs welke regelgeving kunnen biobased producten bijdragen aan de CO2 reductie en via wetgeving daartoe gestimuleerd worden.
-
Ontwerpen van open leeromgevingen gericht op functioneren op de arbeidsmarkt, waarin kennis, ontmoetingen met praktijksituaties en ICT instrumenten in onderlinge interactie een plaats hebben.
Hoe kunnen CoEs en lectoraten in het HBO bijdragen aan het implementeren van innovatieve open leeromgevingen, waarbinnen regionale kennis-, innovatie- en opleidingsvragen leidend zijn. Hoe kunnen hierbij bruggen geslagen worden tussen het HBO (CoEs) en MBO (CIVs).
Maatschappelijke en Economische Verkenningen Vanwege de dynamiek in de biobased ontwikkeling heeft het TKIBBE opdracht gegeven voor een nieuwe macro economische verkenning (MEV II). De project coördinatie is momenteel in handen van het WUR-LEI te Den Haag. Doelstellingen van deze MEV-II: - Het inzichtelijk maken van de macro-economische effecten en van de grootschalige toepassing van biomassa voor verschillende toepassingen (elektriciteit, warmte, biobrandstoffen, chemicalien) in Nederland tot 2030 en gerelateerde duurzaamheidsaspecten. - Inzicht te geven in de technologische ontwikkelingen van de belangrijkste routes om energie en chemicaliën te produceren waaronder veranderingen in fossiele routes, CO2 afvang en opslag en alternatieve vormen van hernieuwbare energie (bv. wind, zon). - Het inzichtelijk maken van macro-economische ontwikkelingen op regionaal niveau als het gevolg van de opkomende biobased economie in Nederland - Het inzichtelijk maken van biomassa export naar Nederland en de gerelateerde duurzaamheidsaspecten van de productie in exporterende landen. Het project zal voor de zomer van 2015 de eerste resultaten opleveren en eind 2015 worden afgerond. De verkenning is van belang om de economische effecten te kunnen beoordelen van snelheid van technologieontwikkeling, en de beleidsveranderingen in biomassa importen en energie en klimaat beleid. Het uitvoeren van verkenningen naar de economische en duurzaamheidsaspecten van de biobased economy zal afhankelijk van de actuele vragen worden uitgezet. Maatschappelijke waardering Naast de uitdagingen op het gebied van R&D is er nog een ander aspect wat essentieel is voor de transitie naar een Biobased Economy: maatschappelijke waardering van BBE producten. De commissie Corbey heeft sinds 2009 de opdracht om een forum te bieden voor maatschappelijke discussie op het gebied van biomassa en duurzaamheid. Er is echter een grotere maatschappelijke waarde40 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
ring en vraag vanuit de maatschappij nodig voor de transitie naar BBE. Er vindt een maatschappelijke kanteling plaats naar een samenleving met meer aandacht voor kwaliteit en betrokkenheid. Dat is belangrijk, want technologische innovatie is niet voldoende om de transitie naar een Biobased te voltooien. Dit vraagt niet alleen maatschappelijk draagvlak, maar ook gedragsverandering bij consumenten en producenten. Juist instituties (normen en waarden, wet- en regelgeving) en sociale innovaties zullen doorslaggevend zijn. 23 Er is dan ook aandacht voor deze maatschappelijke factoren binnen regelingen vanuit de overheid. Binnen de topsector Energie draait het STEM programma wat zich focust op niet-technologische innovatie uitdagingen. Projecten die hieruit voortgekomen zijn, zijn gericht op verkrijgen van inzicht in het effect van sociale prikkels op energiegebruik, de behoeftes van consumenten en hoe bottom-up projecten opgeschaald kunnen worden. Deze projecten zijn gericht op de energiesector, maar er zijn ook zeker lessen uit te halen voor de gehele BBE. Via het programma Maatschappelijk Verantwoord Innoveren van NWO-Geesteswetenschappen wordt er onderzoek gedaan naar maatschappelijke factoren zodat duurzame productie van bijvoorbeeld voedsel en energie meer gewaardeerd wordt. Voor de volle breedte van de biobased economy is deze maatschappelijke waardering zeer belangrijk. Er lijkt behoefte te zijn aan een ‘microeconomische’ verkenning: om het MKB zijn dynamische rol te laten vervullen is een inzicht in de opbouw van Unique Selling Propositions of Waardeproposities naar de consument essentieel. De applicatie Biobased Huis op de website van biobasedeconomy.nl is een eerste stap in het zichtbaar maken van de BBE. Met behulp van deze infographic kunnen consumenten zien welke biobased producten nu al op de markt verkrijgbaar zijn. Overheden kunnen hierin tot voorbeeld zijn door biobased in te kopen. Het Expertisecentrum Aanbesteden PIANOo besteedt hier aandacht aan en adviseert overheidsinkopers in biobased inkopen. Normering en certificering van Biobased producten is dan wel van groot belang.
6
De Middelen, De Mensen en de Regels
6.1 Investering Onderzoek en Innovatie
23Ganzevles,
J. & R. Van Est (red.) (2011). Energie in 2030. Maatschappelijke keuzes van nu. Boxtel: Aeneas. Rotmans, J. (2012). In het Oog van de Vulkaan. Nederland in Transitie. Boxtel: Aeneas.
41 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Wat is nu een realistisch budget (zowel aan de publieke als aan de private kant)? HierBudget wordt berevoor is de volgende aanpak ontwikkeld: er kend vanuit de doelen via de uiteindelijke zijn doelstellingen (hoofdstuk 8). Vanuit deinvestering terug naar ze doelen kan met een vuistregel de totale benodigde middelen investering tot en met fabriek of centrale voor de drie TRLworden berekend. Om daar te komen (en blokken. dat is uiteraard een einddoel) wordt een percentage van die investering gezien als R&I uitgave. Deze kan worden teruggerekend met een bepaalde verhouding naar de verschillende TRL blokken. Vervolgens kan via het OO&I steunkader worden aangegeven wat de publieke en wat de private R&I inspanningen zullen zijn. Uitgangspunten: - Gemiddeld wordt gerekend dat voor 100 kton biomassa een investeringsvolume van 100 M€ benodigd is voor een full-scale fabriek (is 1000 € / ton); - Voor materialen / biochemicaliën toepassingen geldt een factor 2 op upstream / downstream investeringen; - Berekeningen gelden tot en met een pilot-plant of flagship / firstof-a-series, hiervan wordt een percentage genomen van de fullscale investeringen; - Om op dit punt te komen wordt voor onderzoek over de gegroepeerde TRL’s een verdeelsleutel gezet; - Er wordt gecorrigeerd voor de slaagkans van projecten (zit een programmalijn overwegend in hoge TRL’s dan zal de slaagkans van een afgeleid project in lage TRL’s een hogere slaagkans hebben); - Er wordt gerekend met droge en natte biomassa (18 of 9 GJ/ton); - De verdeling over publiek en privaat komt overeen met het OO&I Europese Steunkader (90% - 60% - 25% publiek over de 3 TRL blokken). Tabel 9 Budgetbehoefte uitgaand van de doelstelling per programmalijn.
PL 1 2 3 4
----- TRL 1-3 ----- ----- TRL 4-6 ----- ----- TRL 7-8 ----Doel Hout Massa Invest R&D R&D SR Deel Budget SR Deel Budget SR Deel Budget Totaal M€ M€ GWh/jr MJ/ton ton/jr M€ % M€ M€ M€ 0.5 0.3 0.39 31.2 0.5 0.6 28.8 60.5 850 18000 485714 486 5 24 0.5 0.01 30 0.3 0.35 70 0.5 0.6 72 172 70 9000 80000 240 25 60 0.1 0.05 30 0.3 0.35 70 0.5 0.6 72 172 70 9000 80000 240 25 60 0.1 0.05 18.7 0.5 0.2 5.6 80.3 10 9000 11429 34 40 14 0.1 0.4 56 0.3 0.4 1000 158 116.5 189.9 178.4 484.8 Waarvan Publiek 104.85 113.94 44.6 263.39 Waarvan Privaat 11.65 75.96 133.8 221.41
De totale budgetbehoefte blijkt 485 M€ over de periode 2015-2023, waarvan 263 publiek en 221 privaat. Dit is exclusief de actielijnen, waarvoor 1 M€ per jaar een reëel budget is. 42 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
Met de open consultatie tot 4 april 2015 is tevens een oproep gedaan aan private partijen om Letters of Intent af te geven. Inmiddels is vanuit de ondernemers (grote bedrijven, en opvallend veel MKB) een committment afgegeven van 407 miljoen euro. Na een reality check is dat nog altijd 278 miljoen euro. De conclusie is dan ook dat elke publieke euro dus worden gecofinancierd door private partijen.
6.2 Rol van de Onderzoeksinstituten: Aan de Onderzoeksinstituten is gevraagd na te gaan, welke onderzoeksagenda ze zelf hebben en hoe ze bij kunnen dragen aan het Biobased onderzoek in Nederland 24. Binnen deze integrale onderzoeksagenda is de complementariteit op technologie-niveau in belangrijke mate het gevolg van een toenemende focussering/specialisatie op (unieke) speerpunten en technologieën. Deze focussering is nodig om bij een toenemende globalisering van de R&D een sterke rol te kunnen blijven spelen. De focussering is bovendien sterk industrie-gedreven, want de TO2 instituten zijn voor een substantieel deel afhankelijk van private financiering en ook bij publieke financiering is industriële participatie meestal een vereiste. Binnen BBE vormt het toegepast onderzoek een belangrijke schakel naar valorisatie. De focusgebieden van de drie TO2 instituten kunnen als volgt worden samengevat: - ECN: thermochemische conversie (biomassaopwerking, verbranding, vergassing, pyrolyse, fractionering, chemo-katalytische processing, resource-efficiency), accent op energie + coproductie chemicaliën/materialen, focus op milieu-impact biomassa inzet, economische studies en beleidsondersteuning met name energiegerelateerd. - TNO: biomassa voorbewerking en bioraffinage, performance materialen op basis van renewables, elektrochemie en CO2benutting, sustainability assessment en innovatie decision support. - Wageningen UR-DLO: biomassaproductie (incl. aquatisch) en – beschikbaarheid (incl. reststromen), pre-treatment technologie, bioraffinage, (bio-)chemische conversietechnologie en procesontwerp, ontwikkeling van biobased chemicaliën, bioplastics en andere biomaterialen, sociaaleconomische studies en duurzaam ketenontwerp. De drie TO2 instituten zien belangrijke synergie-mogelijkheden in het versterken/intensiveren van de onderlinge samenwerking, gericht op het vergroten van de positieve economische en maatschappelijke impact. Deze komen in belangrijke mate voort uit de noodzaak bij BBE-ontwikkelingen van een integrale (sector 24
www.tki-bbe.nl/downloads
43 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
overschrijdende, multidisciplinaire) aanpak vanuit een waardeketenbenadering en betreffen o.a.: - Het gezamenlijk inzetten van complementaire expertise en faciliteiten op het gebied van o.a. voorbewerking, thermochemische, katalytische en biochemische conversietechnologie en scheidingstechnologie. - Het afstemmen van biomassateelt en -oogst op BBE processen en toepassingen - Het samenbrengen van (industriële) netwerken vanuit verschillende sectoren (energie, chemie, materialen, agrifood, tuinbouw & uitgangsmaterialen). - Het samenbrengen van expertise m.b.t. de rol van TO2 instituten als innovatiekatalysator en het delen van de verschillende inzichten over innovatiestrategieën. - Samen als TO2 instituten, en samen met de Nederlandse industrie, ontwikkelen van BBE markten in het buitenland (bijv. BRICS landen) en het verder uitbouwen van internationale R&D samenwerking. - Samen op nationaal en Europees niveau sterker agendavormend bezig zijn en nadrukkelijker gezamenlijk aanwezig zijn in het publieke debat. - Het gezamenlijk met het HBO en WO mee ontwikkelen van BBE opleidings- en scholingsprogramma’s.
6.3 Kansen creëren voor WO, HBO en MBO Het realiseren van een Biobased Economy vraagt om innovatieve oplossingen op allerlei gebieden. Het gaat niet alleen om het ontwikkelen van nieuwe kennis en het vertalen daarvan naar toepassingen, maar ook om het opleiden van mensen die dat allemaal waar moeten gaan maken. Het kan daarbij, gezien de maatschappelijke urgentie, niet alleen gaan om het opleiden van jonge mensen binnen het formele onderwijs, ook mensen die al actief zijn op de arbeidsmarkt moet de gelegenheid worden geboden zich de nieuwe kennis eigen te maken op een manier die bij het eigen leven en werken past. Dat laatste vraagt, nog sterker dan het organiseren van opleidingen binnen het formele onderwijs, om flexibiliteit en opleiden op maat. Het noodzaakt tot reflectie op de manier waarop opleidingen voor die verschillende doelgroepen worden ontworpen en geïmplementeerd. Deze wijze van denken heeft consequenties voor de manier waarop kennisoverdracht georganiseerd wordt. Omdat onderwijs een historisch gegroeide en dure infrastructurele voorziening is geldt dat op innovatie van kennisoverdracht gerichte activiteiten niet vanzelf gaan. Het streven naar systeeminnovatie binnen het onderwijs lijkt dan ook geen kansrijke route en de voor BBE gewenste vernieuwingen zouden georganiseerd moeten worde als een ‘drop-in’ stroom
44 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
binnen de bestaande infrastructuur. Verder lijkt het tot samenwerking brengen van bestaande initiatieven een conditio sine qua non. Het flexibel en op maat opleiden van mensen biedt kansen voor WO, HBO en MBO. Echter, ook het benutten van die kansen vraagt om innovatieve oplossingen en niet om doorgaan langs de bekende paden. Veel instellingen denken over opleidingen gericht op de BBE, maar dat gebeurt veelal vertrekkend vanuit het eigen bestaande kader en gangbare praktijken. Het wiel wordt op die manier wellicht op meerdere plaatsen tegelijk uitgevonden en dat lijkt niet zo efficient. Verder zal het als er sprake is van samenwerking in veel gevallen om samenwerking binnen bestaande netwerken gaan terwijl de BBE juist vraagt om nieuwe combinaties tussen chemie, agri en andere disciplines. Pre-competitief samenwerken en daar vervolgens competitief mee acteren op de opleidings- en scholingsmarkt zou wel eens zeer de moeite waard kunnen zijn. Het lijkt verstandig de verschillende regionale biobased economy clusters in Nederland te kiezen als vertrekpunt en uit te gaan van de daar levende opleidingswensen voor wat betreft het formele onderwijs en Leven Lang Leren. Het is uiteraard niet de bedoeling dat die regio’s ‘territoriumgedrag’ gaan vertonen, maar juist dat ze actief kennis uitwisselen en daarbij volop gebruik maken van de mogelijkheden die de moderne ICT biedt.
6.4 Open Educational Resources Precompetitief samenwerken aan Open Educational Resourcers (OER’s) lijkt in het licht van het voorgaande een voor de hand liggende optie. Het in interactie met kennisinstellingen, overheid en bedrijven ontwerpen en digitaal opslaan van bouwstenen waarmee vervolgens op flexibele manier opleidings- en scholingstrajecten op maat kunnen worden gemaakt lijkt uitermate kansrijk. Een bijkomend voordeel is dat zulke bouwstenen ook buiten de Nederlandse grenzen kunnen worden toegepast en zo kunnen bijdragen aan HCA-ontwikkelingen binnen internationale netwerken en aan de ‘branding’ van Nederland als koploper op het gebied van de biobased economy. In dat zelfde perspectief kan gedacht worden aan het verder ontwikkelen van een aantal Massive Online Open Courses (MOOCs) zoals die van TU Delft, Wageningen Universiteit, RUL, RUG, en Avans, die laten zien waar Nederland op het gebied van BBE goed in is. Uitwerking geschiedt via het TKI-BBE HCA actieplan binnen de topsector Energie 25, i.o.m. Chemie en Agri&Food 26.
6.5 Governance De stichting Topconsortium voor Kennis en Innovatie BioBased Economy (TKI-BBE) bestaat uit een directie en een Raad van Toezicht 25 26
TKI-BBE HCA actieplan september 2014 Onderwijs en Biobased Economy, Center for Biobased Economy, 2014
45 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
(RvT). Het TKI opereert vanuit een “lean & mean” gedachte, met een minimale bezetHet werk gebeurt in ting. Het TKI faciliteert PPSen, waarin al het PPSen. Niet in het TKI. werk (kennisontwikkeling en innovatie) gebeurt. TKI-BBE verwelkomt (of: financiert in een open competitieve tender-setting) PPsen ook uit andere gremia, bijvoorbeeld BE-Basic, BPM, CCC, DBC, DPI, ISPT, PCC, en Wetsus. Figuur 14 toont de huidige governancestructuur. De drie boegbeelden van de drie betrokken topsectoren plus de DG Bedrijfsleven en Innovatie van EZ fungeren momenteel als opdrachtgever van voorliggend plan.
Figuur 10 Governancestructuur TKI-BBE
Het plaatje toont een evidente complexiteit. De brede scope van het onderzoeksprogramma en projectvoorstellen vraagt om een bredere opzet van de structuur. Voorstel: - Integraal bestuur: nodig de drie boegbeelden uit voor de RvT (zoals nu reeds functioneert met de topsector Chemie). - Brede inhoudelijke discussie: integreer Themacommisie 1 van Agri & Food met de programmaraad van TKI-BBE tot één nieuwe programmaraad. - Brede onafhankelijke beoordeling voorstellen: de rankingcommissie (nu tevens de programmaraad) uitbreiden met deskundigheid uit Chemie en Agri & Food. - Evaluatie per instrument met brede doorkijk: overweeg het Advies- en Evaluatieteam uit te breiden met bestuurlijke expertise uit Agri & Food en Chemie.
46 | Onderzoeksagenda 2015-2027 BBE - Biobased economy
6.6 Wet- en Regelgeving Nationale en internationale regelgeving werpen belemmeringen op die de transitie naar een biobased economy in de weg staan. De 'valley of death' voor een innovatie in de biobased economy is langer en dieper door wet en regelgeving die niet is aangepast aan innovatie en door bestaande belangen die dat graag zo laten. Het ministerie van EZ werkt samen met het ministerie van I&M aan het oplossen van deze knelpunten in het programma ‘Ruimte voor regels’. Ook wordt op verzoek van de sector chemie een analyse gemaakt van belemmeringen in de toepassing van biomassa in de chemie. Vanuit de onderzoeksagenda is daar aan toe te voegen dat de diversiteit in het beleid in de stimulering van biobased toepassingen ook leidt tot een ongelijke stimulering in het onderzoek en innovatie: - Het ontbreekt momenteel aan een stimulans voor demonstratie van biobased chemie en materialen terwijl die er voor energie wel is (DEI, SDE+ innovatiemiddelen). - Er mag vanuit de Europese commissie geen subsidie worden gegeven aan innovatie en opschaling van biobrandstoffen die vallen onder de bijmengverplichting.
47 | Onderzoeksagenda 2015-2027 BBE - Biobased economy