PERENCANAAN KONSTRUKSI BAJA BANGUNAN GUDANG
JURNAL TUGAS AKHIR
Diajukan untuk Memenuhi Salah Satu Syarat Akademik Menempuh Gelar Sarjana Teknik Sipil Strata Satu
Oleh : RIZA ZAKARIYA 087011007
JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS SILIWANGI TASIKMALAYA 2013 0
PERENCANAAN KONSTRUKSI BAJA BANGUNAN GUDANG
Oleh : Ria Zakariya 087011007 Dosen Pembimbing 1 : Yusep Ramdani, MT. Dosen Pembimbing II : Agus Widodo, Ir., MM.
ABSTRAK Perencanaan suatu gudang sebagai pelindung mutu dan kualitas barang menggunakan perhitungan yang matang, karena bangunan ini digunakan dalam kurun waktu yang panjang dan juga bangunan yang dihasilkan harus aman, kuat, nyaman, dan sesuai dengan persyaratan yang telah ditetapkan. Pengolahan data dianalisis dengan menggunakan SAP 2000 v.14 untuk perhitungan portal, balok dan kolom. Pada perencanaan struktur gudang ini, digunakan Tata Cara Perhitungan Struktur Beton Bertulang Untuk Bangunan Gedung (SKSNI T-15-1991-03), Tata Cara Perencanaan Struktur Baja untuk Bangunan Gedung (SNI 03-1729-2002), Peraturan Perencanaan Bangunan Baia Indonesia 1984 (PPBBI), Peraturan Pembebanan Indonesia Untuk Gedung 1983 (PPIUG). Berdasarkan dari perhitungan, dapat disimpulkan bahwa perencanaan gudang ini menggunakan struktur profil baja IWF 300.200.8.12 dan pondasi setempat dengan ukuran tapak pondasi 2,3 x 2,8 meter dengan kedalaman 2,90 meter dinyatakan aman. Kata kunci : Gudang, IWF 300.200.8.12, Perencanaan Struktur
BAB I PENDAHULUAN 1.1. Latar Belakang Baja merupakan bahan yang mempunyai sifat struktur yang sangat baik sehingga pada akhir abad 19, dimulainya menggunaan baja sebagai bahan struktur (konstruksi) utama, ketika itu metode pengolahan baja yang murah dikembangkan dengan skala yang luas. Sifat Baja mempunyai kekuatan yang tinggi dan sama kuat pada kekuatan tarik maupun tekan dan oleh karena itu baja adalah menjadi elemen struktur yang memiliki batasan sempurna yang akan menahan beban jenis tarik aksial, tekan aksial, dan lentur dengan fasilitas yang hampir sama pada konstruksi (struktur) nya. Berat jenis baja tinggi, tetapi perbandingan antara kekuatan terhadap beratnya juga tinggi sehingga komponen baja tersebut tidak terlalu berat jika dihubungkan dengan kapasitas muat bebannya, selama bentuk-bentuk struktur (konstruksi) yang digunakan menjamin bahwa bahan tersebut dipergunakan secara efisien. Dan dalam pembangunan gudang, umumnya struktur bangunan gudang menggunakan material baja, hal ini karena kebutuhan jarak antar kolom yang jauh sedangkan atap biasanya merupakan atap metal yang ringan. Dengan material baja, dengan kekakuan 10x lipat dari beton didapat strutkur yang lebih kecil dan ringan.Untuk bentang antar kolom yang tidak terlalu panjang (misal 10m), bisa digunakan baja profil biasa, untuk yang lebih panjang dapat digunakan castileted, yaitu profil baja misal baja I/WF (wide flange) dibelah menjadi dua dengan irisan membentuk trapesium kemudian badan baja di geser ke samping dan keatas sedemikian hingga badan baja yang bawah bertemu dengan yang atas, badan ini kemudian di las, dan akan terbentuk lubang berbentuk segi enam. Castileted beam ini sangat efektif karena tinggi baja akan menjadi 2 kali lipat sehingga kekakuan dan kekuatan lenturnya jauh bertambah. Dan karena terdapat lubang segi enam tadi akan mengurangi berat sendiri struktur yang menjadikannya lebih efektif.
1
1.2. Identifikasi Masalah Permasalahan yang akan ditinjau adalah sebagai berikut : 1. Bagaimana menentukan jenis pembebanan yang akan digunakan dalam desain? 2. Bagaimana merencanakan struktur bangunan gudang? 3. Bagaimana melakukan analisa struktur pada baja Gable Frame? 4. Bagaimana menuangkan hasil perencanaan ke dalam gambar teknik? 1.3. Tujuan Perencanaan 1. Menghitung gaya-gaya dalam yang terjadi akibat beban kerja. 2. Melakukan analisa penampang untuk dapat menahan lenturan akibat gaya-gaya yang bekerja. 3. Menuangkan hasil analisa struktur ke dalam gambar teknik. 1.4. Batasan Masalah Permasalahan dalam penggunaan baja sebenarnya cukup banayk yang harus diperhatikan, namun mengingat keterbatasan waktu, perencanaan ini mengambil batasan : 1. 2. 3. 4.
Perencanaan yang akan dihitung adalah struktur Gudang tipe Portal Kaku (Gable Frame). Tinjauan meliputi struktur atas dan struktur bawah bangunan. Tidak melakukan peninjauan terhadap analisa biaya dan waktu perencanaan. Aspel-aspek peraturan yang dipakai dalam perencanaan Bangunan Gudang yakni SNI 03–1729–2002 tentang Tata Cara Perencanaan Struktur Baja untuk Bangunan Gedung.
BAB II TINJAUAN PUSTAKA 2.1. Umum Gudang adalah sebuah ruangan yang digunakan untuk menyimpan berbagai macam barang. Setiap jenis bangunan bisa saja memiliki gudang, misalnya saja gudang pada bangunan pabrik, toko, dan bahkan rumah tinggal. Karena digunakan untuk menyimpan berbagai macam barang, biasanya gudang berpotensi untuk menyimpan debu. Karena itu, peletakan gudang perlu diperhatikan agar tidak mengganggu aktivitas lain dalam bangunan tersebut. Pada saat ini kebutuhan akan gudang sangat tinggi. Salah satunya diakibatkan oleh bertumbuhnya pasar retail yang pesat terutama di kota-kota besar. Sarana penyimpanan berbagai komoditas sebelum akhirnya didistribusikan ke pasar menjadi hal yang perlu diperhatikan. Oleh karena itu dibutuhkan bangunan yang dapat mengakomodir keperluan ini dengan baik, aman, fungsional, dan tentunya kuat. Umumnya struktur bangunan gudang menggunakan material baja, hal ini karena kebutuhan jarak antar kolom yang jauh sedangkan atap biasanya merupakan atap metal yang ringan. Dengan material baja, dengan kekakuan 10x lipat dari beton didapat strutkur yang lebih kecil dan ringan.Untuk bentang antar kolom yang tidak terlalu panjang (misal 10m), bisa digunakan baja profil biasa, untuk yang lebih panjang dapat digunakan castileted, yaitu profil baja misal baja I/WF (wide flange) dibelah menjadi dua dengan irisan membentuk trapesium kemudian badan baja di geser ke samping dan keatas sedemikian hingga badan baja yang bawah bertemu dengan yang atas, badan ini kemudian di las, dan akan terbentuk lubang berbentuk segi enam. Castileted beam ini sangat efektif karena tinggi baja akan menjadi 2 kali lipat sehingga kekakuan dan kekuatan lenturnya jauh bertambah. Dan karena terdapat lubang segi enam tadi akan mengurangi berat sendiri struktur yang menjadikannya lebih efektif. 2.2. Struktur Gudang Standarisasi struktur baja pembangunan pabrik atau gudang (disesuaikan dengan bentangan) antara lain : Kolom Utama Kolom Gable Rafter/Portal Tie Beam (untuk mengikat kolom utama terhadap portal) Struktur Pondasi
2
Accesories (Base Plate, Stifner, Futte, Top Plate, End Plate, Plat Join, Plat Gording, dll). Dalam kenyataannya konstruksi adalah berbentuk ruang, sehingga secara keseluruhan konstruksi belum stabil, maka perlu diatur lagi dalam arah yang lain. Contoh : P P P P H
Gambar 2.8. Contoh Pembebanan
Pada bidang kuda-kuda, konstruksi ini stabil, sebab sudah diperhitungkan terhadap beban yang bekerja yaitu P dan H (angin / gempa) -kuda, bila ada beban H bekerja dalam arah ini, konstruksi akan roboh/terguling, jadi masih labil. Maka perlu distabilkan dalam arah ini. Konstruksi untuk memberikan stabilitas dalam arah ini dinamakan :
Yang dipasang pada bidang atap dan pada bidang dinding. 2.3. Bentuk-Bentuk Konstruksi Rangka Gudang a) Konstruksi kap rangka sendi – rol
A sendi
B rol sendi Gambar 2.1. Rangka Sendi-Rol
Konstruksi kuda-kuda dengan tumpuan A sendi, B rol merupakan konstruksi statis tertentu, maka penyelesaian statikanya dengan statis tertentu. Namun sering didalam praktek dibuat A sendi, B sendi, dengan demikian konstruksi menjadi statis tak tentu. Tetapi sering diselesaikan dengan cara pendekatan dengan menganggap perletakan A = B didalam menerima beban H. RAH = RBH = H/2
H
A
H/2
B
H/2=RBH
3
Gambar 2.2. RAH = RBH = H/2
Untuk mencari gaya-gaya batangannya dapat digunakan cara :
Cremona Keseimbangan titik Ritter Dan lain-lain
Kemudian untuk mendukung kuda-kuda diperlukan kolom. Apabila dipakai kolom dengan perletakan bawah sendi, maka struktur menjadi tidak stabil bila ada beban H (angin/gempa).
H S
S
akan roboh
sendi
sendi
Gambar 2.3. Gaya yang Bekerja akibat Beban H
Karena itu untuk mendukung kuda-kuda ini, harus dipakai kolom dengan perletakan bawah jepit.
H
H/2
H/2
h V H/2
M = H/2 = h jepit
H/2
V M jepit
Gambar 2.4. Kestabilan Gaya
Bila gaya H bekerja maka struktur/konstruksi ini akan stabil/kokoh. Pada perletakan bawah kolom terjadi gaya V, H dan M. Besarnya M = adalah cukup besar. Maka bila struktur ini yang dipilih pada tanah yang jelek, pondasinya akan mahal. hH.2 Dicari penyelesaian suatu bentuk struktur agar pondasi tidak terlalu mahal. b) Kuda-kuda dihubungkan dengan pengaku pada kolom 1. Kuda-kuda dengan pengaku dan perletakan bawah kolom jepitan. Struktur dengan sistem ini cukup kaku dan memberikan momen M lebih kecil dari pada struktur sebelumnya.
4
H e
f
c
d
h1 a S a
S
H/2 H/2 M jepit
H/2 H/2 M jepit
A
Gambar 2.5. Struktur Statis Tak Tentu
Struktur semacam ini adalah statis tak tentu, maka statistikanya diselesaikan dengan cara statis tak tentu. Namun sering didalam prkateknya diselesaikan dengan cara pendekatan/sederhana yaitu : - Bila beban vertikal (gravitasi) yang bekerja, struktur dianggap statis tertentu, yang bekerja pada kolom gaya V saja. Selanjutnya gaya-gaya batang KRB dicari dengan : Cremona, Kesetimbangan Titik, Ritter, dan sebagainya. - Bila beban H bekerja, dianggap terjadi titik balik (= inflection point) terjadi ditengah-tengah yaitu S1 dan S2. M pada titik balik = 0 (seperti sendi) 2. Kuda-kuda dengan pengaku dan perletakan bawah kolom sendi.
c
c
b
h1
h1
a
h
b
a
h sendi
sendi
sendi
sendi
Gambar 2.6. Kuda-kuda Berpengaku dan perletakan bawah kolom sendi
Struktur ini sama seperti pada perletakan bawah kolom jepit. Gaya batang (a), (b) dan (c) dapat dihitung seperti sebelumnya, hanya mengganti jarak a dengan h. Keuntungan kolom dengan perletakan sendi ini adalah : - Momen pada perletakan bawah/sendi = 0 - Momen pada pondasi menjadi kecil, pondasinya menjadi murah - Namun momen pada kolomnya menjadi besar ∞ 2 kali dari pada kolom perletakan jepit (h = 2a) c. Konstruksi 3 Sendi S
RAH
A
sendi
sendi
RBH RBV
RAV
Gambar 2.6. Konstruksi Tiga Sendi
5
d. Konstruksi Portal Kaku (Gable Frame)
haunch rafter
stiffener
kolom
base plate
Gambar 2.7. Konstruksi Portal Kaku (Gable Frame) Konstruksi ini adalah statis tak tentu. Diselesaikan dengan cara cross, clapeyron, slope deflection, tabel, dan sebagainya. Gaya yang bekerja pada batang-batangnya N, D dan M. Batang menerima Nu dan Mu → perhitungan sebagai beam column. Suatu Gable Frame mempunyai berbagai macam komponen yang berperan dalam menunjang kekuatan strukturnya secara keseluruhan, yaitu antara lain rafter, kolom, base plate, haunch, dan stiffener. Dalam perhitungan atau pemodelan struktur, beberapa komponen tersebut seringkali tidak diperhitungkan. Demikian juga halnya dengan haunch (pengaku). Dalam pelaksanaan di lapangan, gable frame biasanya diberi pengaku. Biasanya pengaku diberi untuk memuat alat penyambung baut dan mencukupi kekuatan sambungan. Sedangkan pengaku sebagai salah satu komponen gable frame tersebut mempunyai pengaruh terhadap kekuatan struktur secara keseluruhan. Jika haunch diikutsertakan dalam perhitungan struktur gable frame maka diharapkan terjadi penurunan tegangan dan lendutan yang terjadi, bila dibandingkan dengan yang tidak mempunyai haunch. 2.4. Material 2.4.1. Baja Keuntungan Baja sebagai Material Struktur Bangunan (Konstruksi bangunan). Sifat Baja di samping kekuatannya yang besar untuk menahan kekuatan tarik dan tekan tanpa membutuhkan banyak volume, baja juga mempunyai sifat-sifat lain yang menguntungkan sehingga menjadikannya sebagai salah satu bahan bangunan yang sangat umum dipakai dewasa ini. Beberapa keuntungan baja sebagai material struktur antara lain: Baja memiliki Kekuatan yang Tinggi Baja mudah dalam pemasangan Baja memiliki Keseragaman Baja memiliki sifat Daktail/Liat (Daktilitas) Di samping itu keuntungan-keuntungan lain dari struktur baja, antara lain adalah :
Proses pemasangan di lapangan berlangsung dengan cepat. Dapat di las (welding) atau sistem baut (bolting). Komponen-komponen struktumya bisa digunakan lagi untuk keperluan lainnya. Komponen-komponen yang sudah tidak dapat digunakan lagi masih mempunyai nilai sebagai besi tua. Struktur yang dihasilkan bersifat permanen dengan cara pemeliharaan yang tidak terlalu sukar. Selain keuntungan-keuntungan tersebut bahan baja juga mempunyai kelemahan-kelemahan sebagai berikut : o Komponen-komponen struktur yang dibuat dari bahan baja perlu diusahakan supaya tahan api sesuai dengan peraturan yang berlaku untuk bahaya kebakaran. o Diperlukannya suatu biaya pemeliharaan untuk mencegah baja dari bahaya karat. o Akibat kemampuannya menahan tekukan pada batang-batang yang langsing, walaupun dapat menahan gaya-gaya aksial, tetapi tidak bisa mencegah terjadinya pergeseran horisontal
6
Sifat Mekanis Baja : Menurut SNI 03-1729-2002 tentang TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG sifat mekanis baja struktural yang digunakan dalam perencanaan harus memenuhi persyaratan minimum yang diberikan pada tabel 1. Tabel 1. Sifat mekanis baja struktural : Jenis Baja BJ 34 BJ 37 BJ 41 BJ 50 BJ 56
Tegangan Putus Minimum fu (MPa) 340 370 410 500 550
Tegangan Leleh Minimum fy (MPa) 210 240 250 290 410
Peregangan Minimum (%) 22 20 18 16 13
Sifat-sifat mekanis lainnya, Sifat-sifat mekanis lainnya baja struktural untuk maksud perencanaan ditetapkan sebagai berikut: Modulus elastisitas : E = 200.000 MPa Modulus geser : G = 80.000 MPa Nisbah poisson : μ = 0,3 Koefisien pemuaian : á = 12 x 10 -6 / o C Menurut SNI 03 – 1729 – 2002 tentang TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG, semua baja struktural sebelum difabrikasi, harus memenuhi ketentuan berikut ini:
SK SNI S-05-1989-F: Spesifikasi Bahan Bangunan Bagian B (Bahan Bangunan dari Besi/baja); SNI 07-0052-1987: Baja Kanal Bertepi Bulat Canai Panas, Mutu dan Cara Uji; SNI 07-0068-1987: Pipa Baja Karbon untuk Konstruksi Umum, Mutu dan Cara Uji; SNI 07-0138-1987: Baja Kanal C Ringan; SNI 07-0329-1989: Baja Bentuk I Bertepi Bulat Canai Panas, Mutu dan Cara Uji; SNI 07-0358-1989-A: Baja, Peraturan Umum Pemeriksaan; SNI 07-0722-1989: Baja Canai Panas untuk Konstruksi Umum; SNI 07-0950-1989: Pipa dan Pelat Baja Bergelombang Lapis Seng; SNI 07-2054-1990: Baja Siku Sama Kaki Bertepi Bulat Canai Panas, Mutu dan Cara Uji; SNI 07-2610-1992: Baja Profil H Hasil Pengelasan dengan Filter untuk Konstruksi Umum; SNI 07-3014-1992: Baja untuk Keperluan Rekayasa Umum; SNI 07-3015-1992: Baja Canai Panas untuk Konstruksi dengan Pengelasan; SNI 03-1726-1989: Tata Cara Perencanaan Ketahanan Gempa Untuk Rumah dan Gedung.
2.6. Pembebanan Perencanaan suatu struktur untuk keadaan-keadaan stabil batas, kekuatan batas, dan kemampuan-layan batas harus memperhitungkan pengaruh-pengaruh dari aksi sebagai akibat dari beban-beban berikut ini: 1) beban hidup dan mati seperti disyaratkan pada SNI 03-1727-1989 atau penggantinya; 2) untuk perencanaan keran (alat pengangkat), semua beban yang relevan yang disyaratkan pada SNI 031727-1989, atau penggantinya; 3) pembebanan gempa sesuai dengan SNI 03-1726-1989, atau penggantinya; 4) beban-beban khusus lainnya, sesuai dengan kebutuhan. 2.6.1. Pembebanan pada Gording a. Beban Mati / Dead Load Gording ditempatkan tegak lurus bidang penutup atap dan beban mati Px bekerja vertikal, P diuraikan pada sumbu X dan sumbu Y, sehingga diperoleh :
7
Y X
qy X a
qx q
Gambar 2.10. Gaya kerja pada gording qx = q . sin a .............................................. (2.1) qy = q . cos a .............................................(2.2) Dimana : qx : Beban mati arah x qy : Beban mati arah y a : Sudut kemiringan Gording diletakan di atas beberapa tumpuan (kuda-kuda), sehingga merupakan balok menerus di atas beberapa tumpuan dengan reduksi momen lentur maksimum adalah 80 %. Momen maksimum akibat beban mati : Mx1 = 1/8 . qx . (l)2 . 80 % ..........................................(2.3) My1 = 1/8 .qy . (l)2 . 80 % ........................................... (2.4) Dimana : Mx : Momen maksimum arah x My : Momen maksimum arah y b.
Beban Hidup / Live Load Y X
Py X a
Px P
Gambar 2.12. Gaya yang bekerja pada beban hidup Beban hidup adalah beban terpusat yang bekerja di tengah-tengah bentanggording, beban ini diperhitungkan jika ada orang yang bekerja di atas gording. Besarnya beban hidup diambil dari PPURG 1987, P = 100 kg Px = P . sin a .................................. (2.5) Py = P . cos a ................................ (2.6) Dimana : Px : Beban hidup arah x Py : Beban hidup arah y Momen yang timbul akibat beban terpusat dianggap Continous Beam
c.
Momen maksimum akibat beban hidup Mx2 = (1/4 . Px . l) . 80 % My2 = (1/4 . Py . l) . 80 % Beban Angin Beban angin diperhitungkan dengan menganggap adanya tekanan positif (tiup) dan tekanan negatif (hisap), yang bekerja tegak lurus pada bidang atap. Menurut PPPURG 1987, tekanan tiup harus diambil minimal 25 kg/m2. Y X
X
Y a
Gambar 2.14. Gaya kerja pada beban angin
8
d.
Kombinasi Pembebanan Akibat Beban Tetap M = Mbeban Mati + M Beban Hidup Akibat Beban Sementara M = Mbeban Mati + M Beban Hidup + M Beban Angin
e.
Kontrol Tegangan Akibat Beban Mati + Beban Hidup .................................... (2.7)
Akibat Beban Mati + Beban Hidup + Beban Angin ............................... (2.8)
Dimana : : Tegangan yang bekerja : Tegangan ijin maksimal \ Wx : Beban arah x Wy : Beban arah y f. Kontrol Lendutan Lendutan yang diijinkan untuk gording (pada arah x terdiri 2 wilayah yang ditahan oleh trakstang) ......................................... (2.9) ......................................... (2.10) Dimana : fx : lendutan arah x fy : lendutan arah y E : modulus elastisitas Ix : Momen inersia penampang x Iy : momen inersia penampang y 2.6.2. Perhitungan Batang Tarik Batang tarik (trackstang) berfungsi untuk mengurangi lendutan gording pada arah sumbu x (miring atap) sekaligus untuk mengurangi tegangan lendutan yang timbul pada arah x. Gx = Berat sendiri gording + penutup atap sepanjang gording arah sumbu x Px = Beban hidup arah sumbu x P total = Gx + Px = (qx . L) + Px ..................................... (2.11) Jika batang tarik yang dipasang dua buah, maka per batang tarik adalah : P = Ptotal / 2 = (qx . L) + Px) / 2 ..................................... (2.12) σ= .......................................... (2.13) Fn = .................................................... (2.14) Dimana : P : Beban hidup qx :beban mati arah x L : lebar bentang Fn : gaya yang terjadi 2.6.3. Perhitungan Ikatan Angin Ikatan angin hanya bekerja menahan gaya normal (axial0 tarik saja. Adapun cara kerjanya adalah apabila salah satu ikatan angin bekerja sebagai batang tarik, maka yang lainnya tidak menahan gaya apapun. Sebaliknya apabila arah angin berubah, maka secara bergantian batang tersebut bekerja sebagai batang tarik. gording P
P
Nx
h
b
kuda-kuda P
N N
Ny
ikatan angin
N dicari dengan syarat keseimbangan, sedangkan P = gaya / tekanan angin Gambar 2.15. Ikatan Angin
9
2.7. Sambungan 2.7.1. Sambungan Baut Jenis baut yang dapat digunakan adalah baut yang jenisnya ditentukan dalam SII (0589-81, 0647-91 dan 0780-83, SII 0781-83) atau SNI (0541-89-A, 0571-89- A, dan 0661-89-A) yang sesuai, atau penggantinya. Tegangan-tegangan yang diizinkan dalam menghitung kekuatan baut adalah sebagai berikut. Tegangan geser yang diizinkan :
= 0,6 ................................ Tegangan tarik yang diizinkan :
( 2.15 )
ta = 0,7 ................................ ( 2.16) Kombinasi tegangan geser dan tegangan tarik yang diizinkan :
1
=
1,56 2
≤
................................. ( 2.17)
Tegangan tumpu yang diizinkan :
tu
= 1,5
untuk
s1 ≥ 2 a ................................ ( 2.18 )
tu
= 1,2 untuk 1,5 d ≤ s1 < 2 d .................( 2.19 ) Dimana : s1 = jarak dari sumbu baut yang paling luar ke tepi bagian yang disambung.
d = diameter baut. = tegangan dasar, di mana persamaan ( 2.15 ), ( 2.16 ) , ( 2.17)menggunakan tegangan dasar dari bahan baut, sedangkan persamaan ( 2.18 )dan ( 2.19) menggunakan tegangan dasar bahan yang disambung. 2.7.2. Sambungan Las Pengelasan harus memenuhi standar SII yang berlaku (2441-89, 2442-89, 2443-89, 2444-89, 2445-89, 2446-89, dan 2447-89), atau penggantinya.
Las Tumpul Pada suatu pelaksanaan yang baik, dimana penampang las sesuai dengan penampang batang, tegangan pada las sama dengan tegangan pada batang, sehingga apabila batang itu telah cukup kuat, maka las itu tidak perlu dihitung lagi. Las Sudut Panjang netto las adalah : Ln = L brutto - 3 a ........................................... ( 2.20) Panjang netto las tidak boleh kurang dari 40 mm atau 8a 10 kali tebal teras batang las. Panjang netto las tidak boleh lebih dari 40 kali tebal las. Apabila ternyata diperlukan panjang netto las yang lebih dari 40 kali tebal las, sebaiknya dibuat las yang terputus-putus ( las terputus ). Untuk las terputus pada batang tekan, jarak antara bagian-bagian las itu tidak boleh melebihi 16 t atau 30 cm, sedangkan pada batang tarik, jarak itu tidak boleh melebihi 24 t atau 30 cm, dimana t adalah tebal terkecil dari elemen yang dilas. Las terputus tidak diperkenankan jika dikhawatirkan terjadi pengkaratan pada permukaan bidang kontak dibagian yang tidak ada lasnya, atau pada elemen yang dipengaruhi gaya getar. Tebal las sudut tidak boleh lebih dari ½ t 2 , dimana t adalah tebal terkecil pelat yang dilas. Apabila gaya P yang ditahan oleh las membentuk sudut α dengan bidang retak las, tegangan miring yang diizinkan adalah :
10
2.9. Pondasi 2.9.1. Desain Perencanaan Pondasi Telapak 1. Menentukan Dimensi Pondasi Dimensi yang direncanakan meliputi : panjang, lebar dan ketebalan telapak pondasi. Semuanya harus di desain sedemikian rupa, sehingga tegangan yang terjadi pada dasar pondasi tidak melebihi daya dukung tanah dibawahnya. 2. Mengontrol Kuat Geser 1 Arah Kerusakan akibat gaya geser 1 arah terjadi pada keadaan dimana mula- mula terjadi retak miring pada daerah beton tarik (seperti creep), akibat distribusi beban vertikal dari kolom (Pu kolom) yang diteruskan ke pondasi sehingga menyebabkan bagian dasar pondasi mengalami tegangan. Akibat tegangan ini, tanah memberikan respon berupa gaya reaksi vertikal ke atas (gaya geser) sebagai akibat dari adanya gaya aksi tersebut. Kombinasi beban vertikal Pu kolom (ke bawah) dan gaya geser tekanan tanah ke atas berlangsung sedemikian rupa hingga sedikit demi sedikit membuat retak miring tadi semakin menjalar keatas dan membuat daerah beton tekan semakin mengecil. Dengan semakin mengecilnya daerah beton tekan tersebut, maka mengakibatkan beton tidak mampu menahan beban geser tanah yang mendorong ke atas, akibatnya beton tekan akan mengalami keruntuhan. Berikut ini ilustrasinya : Pu
Pu
h
h retak miring
d
retak miring menjalar ke atas
d
ds
ds
tekanan tanah
tekanan tanah
Gambar 2.18. Kerusakan Pondasi Akibat Gaya Geser 1 arah Kerusakan pondasi yang diakibatkan oleh gaya geser 1 arah ini biasanya terjadi jika nilai perbandingan antara nilai a dan nilai d cukup kecil, dan karena mutu beton yang digunakan juga kurang baik, sehingga mengurangi kemampuan beton dalam menahan beban tekan. luas bid. geser
kolom B
d
b h
L Pu
a
h
a
retak miring
d d ds L tekanan tanah
Gambar 2.19. Keretakan Pondasi Akibat Gaya Geser 1 arah Tegangan tanah pada bidang kritis geser qx = qmin + (Bx - ax) / Bx . (qmax - qmin) ............................... (2.21) Dimana : qx : tegangan tanah qmin : tegangan tanah minimum qmax : tegangan tanah maksimum Bx : lebar pondasi ax :jarak bidang kritis terhadap sisi luar
11
3. Mengontrol Kuat Geser 2 Arah (Punching Shear) Kuat geser 2 arah atau biasa disebut juga dengan geser pons, dimana akibat gaya geser ini pondasi mengalami kerusakan di sekeliling kolom dengan jarak kurang lebih d/2. Gaya geser pons yang terjadi, Vup = ( Bx . By - cx . cy ) . [ ( qmax + qmin ) / 2 - q ] ................. (2.22) Dimana : Vup : gaya geser pons Bx & By : lebar pondasi cx : lebar bidang geser pons arah x cy : lebar bidang geser pons arah y qmin : tegangan tanah minimum qmax : tegangan tanah maksimum q : tekanan akibat berat pondasi pada tanah lokasi retak yang diakibatkan oleh punching shear
h d/2
B
d/2
Gambar 2.20. Kerusakan Pondasi Akibat Gaya Geser 2 arah 4. Menghitung Tulangan Pondasi L Pu
a
h
a
retak miring
d ds
tekanan tanah L Pu
Beban yang bekerja pada pondasi adalah beban dari reaksi tegangan tanah yang bergerak vertikal ke atas akibat adanya gaya aksi vertikal kebawah (Pu) yang disalurkan oleh kolom. Tulangan pondasi dihitung berdasarkan momen maksimal yang terjadi pada pondasi dengan asumsi bahwa pondasi dianggap pelat yang terjepit dibagian tepi- tepi kolom. Menurut SNI 03-2847-2002, tulangan pondasi telapak berbentuk bujur sangkar harus disebar merata pada seluruh lebar pondasi (lihat pasal 17.4.3) Rasio tulangan yang diperlukan :
h
= 0.85 . fc’ / fy . [ 1 - √ {1 – 2 . Rn / ( 0.85 . fc’ ) } ] ..................... (2.23) Dimana :
keruntuhan beton pondasi akibat punching shear
: rasio tulangan yang diperlukan fc’ : kuat tekan beton fy :kuat leleh baja tulangan Rn : faktor reduksi kekuatan lentur 5. Mengontrol Daya Dukung Pondasi Pondasi sebagai struktur bangunan bawah yang menyangga kolom memikul beban-beban diatasnya (bangunan atas), harus mampu menahan beban axial terfaktor (Pu) dari kolom tersebut. Maka dari itu beban dari Pu diisyaratkan tidak boleh melebihi daya dukung dari pondasi (Pup) yang dirumuskan sebagai berikut : Pu < Pup Pup = Ø x 0,85 x fc’ x A Dimana : Pu = Gaya aksial terfaktor kolom…………….…… (N) Pup = Daya dukung pondasi yang dibebani………... (N) fc’ = Mutu beton yang diisyaratkan………………. (Mpa) A = Luas daerah yang dibebani……………………(mm2)
12
BAB III METODA DAN LANGKAH PERENCANAAN MULAI
TINJAUAN PUSTAKA
Data :
Asumsi :
Gambar Rencana Struktur Portal Gable
Beban Angin, Beban Hidup, σ tanah, fc’, fy
PERLIMINARY DESIGN
HITUNG BEBAN-BEBAN YANG BEKERJA
PROSES PROGRAM SAP 2000
OUTPUT GAYA DALAM & GAYA BATANG
YA
Asumsi Data Teknis : Fc’, fy, profil
PERENCANAAN ELEMEN STRUKTUR TIDAK
A
B
YA KONTROL SYARAT BATAS
YA PERENCANAAN SAMBUNGAN
TIDAK KONTROL SYARAT BATAS
SAMBUNGAN TERPASANG
SELESAI
Adapun data-data perencanaan adalah sebagai berikut: 1. 2. 3. 4. 5. 6.
Tipe Konstruksi Bahan penutup Atap Jarak Antar Portal Bentang Kuda-Kuda (L) Jarak Gording Tinggi Kolom (H)
: Gudang tipe Gable Frame : Alumunium Gelombang : 6,25 meter : 25 meter : 1,9 meter : 8 meter
13
7. 8. 9. 10. 11. 12. 13. 14. 15. 16.
: 20o : 40 kg/m2 : 100 kg : Berat Sendiri Profil : Baut dan Las : BJ 41 : fc’ = 25 MPa : fy = 400 MPa : 1660 kg/cm2 : 3 kg/m2
Kemiringan Atap (a) Beban Angin Beban Hidup Beban Mati Alat Sambung Baja Profil Mutu Beton Mutu Baja Tegangan Ijin Baja Berat Penutup Atap
BAB IV HASIL DAN PEMBAHASAN 4.1. Umum Perhitungan perencanaan struktur gudang adalah perhitungan-perhitnugan elemen struktural pembentuk struktur gudang secara keseluruhan. Perhitungan struktur ini dilakukan supaya struktur gudang dapat dibangun sesuai kebutuhan, baik dari segi mutu bahan bangunan, umur rencana dan segi keamanan serta stabilitas struktur.
4.2. Data Perhitungan
D
02 13.3
4.55
o
C
20
E
8.00
A
B 12.50
12.50 25.00
Gambar 4.1. Portal Gudang 4.3. Perhitungan Struktur 4.3.1. Perhitungan Gording sb y
D r
C
x = 12 L
y
F
sb x
Gambar 4.2. Perhitungan Gording
14
Menghitung Panjang Balok Panjang balok adalah 13,302/7
= 1,90 m
Perhitungan Dimensi Gording Untuk dimensi gording dicoba dengan menggunakan profil baja Light Lip Channel C 150.75.20.4,5 dengan data-data sebagai berikut : - A = 13,97 cm2 - Ix = 489 cm4 - q = 11,0 kg/m - Iy = 99,2 cm4 - ix = 5,92 - Zx = 65,2 cm3 - iy = 2,66 cm - Zy = 19,8 cm3 Pembebanan pada Gording : a. Beban Mati / Dead Load - Berat gording - Berat penutup atap (1,90 m x 3 kg/m2)
= 11,0 kg/m = 5,7 kg/m ∑q = 16,7 kg/m
Momen maksimum akibat beban mati : Mx1 = 1/8 . qx . (l)2 . 80% = 1/8 . 5,71 . (6,25)2 . 0,8 = 22,30 kgm My1 = 1/8 . qy . (l)2 . 80% = 1/8 . 15,7 . (6,25)2 . 0,8 = 61,32 kgm b.
Beban Hidup / Live Load y x
Py x
Px o
20
P
Gambar 4.5. gaya kerja pada beban hidup Beban hidup adalah beban terpusat yang bekerja di tengah-tengah bentang gording, beban ini diperhitungkan kalau ada orang yang bekerja di atas gording. Besarnya beban hidup diambil dari PPURG 1987, P = 100 kg. Px
= P . sin a = 100 . sin 20o = 34,20 kg Py = P . cos a = 100 . cos 20o = 93,96 kg Momen maksimum akibat beban hidup Mx2 = (1/4 . Px . l) . 80% = (1/4 . 34,20 . 6,25) . 0,8 = 42,75 kgm My2 = (1/4 . Py . l) . 80% = (1/4 . 93,96 . 6,25) . 0,8 = 117,45 kgm c. Beban Angin Beban angin diperhitungkan dengan menganggap adanya tekanan positif (tiup) dan tekanan negatif (hisap), yang bekerja tegak lurus pada bidang atap. Menurut PPPURG 1987, tekanan tiup harus diambil minimal 25 kg/m2. Dalam perencanaan ini, besarnya tekanan angin (w) diambil sebesar 40 kg/m2.
15
y x
x o
y
20
Gambar 4.7. Gaya kerja pada beban angin
-
-
Ketentuan : Koefisien angin tekan (c) = (0,02 x a -0,4) Koefisien angin hisap (c’) = -0,4 Beban angin kiri (W1) = 40 kg/m2 Beban angin kanan (W2) = 40 kg/m2 Kemiringan atap (a) = 20o Jarak gording = 1,90 m Koefisien tekan : C1 = 0,02 a -0,4 = (0,02 x 20) -0,4) =0 Koefisien hisap : C2 = -0,4 Maka : W1 = C1 x W x jarak gording = 0 x 40 x 1,90 =0 W2 = C2 x W x jarak gording = -0,4 x 40 x 1,90 = -30,4 kg/m Momen maksimum akibat beban angin Mx3 = 1/8 x W . l2 = 1/8 x -30,4 x 6,252 → karena tegak lurus gording = 148,437 kgm Atap+gording q Kg/m 16,7 5,71 15,7 22,30 61,32
x y Mx My
d.
e.
Beban orang P kg 100 34,20 93,96 42,75 117,45
Angin kg 0 0 0 148,43 0
Tabel 4.1. Perhitungan momen Kombinasi Pembebanan Akibat beban tetap M = M beban mati + M beban hidup = 178,77 kgm = 17877 kgcm Akibat beban sementara M = M beban mati + M beban hidup + M beban angin = 213,48 kgm = 21348 kgcm My = My1 + My2 + My3 = 178,77 kgm = 17877 kgcm Kontrol Tegangan Akibat beban mati + beban hidup σ=
σ= .............. ok! Akibat beban mati + beban hidup + beban angin σ=
16
f.
σ= .................ok! Kontrol lendutan Lendutan yang diijinkan untuk gording (pada arah x terdiri 2 wilayah yang ditahan oleh trakstang).
f
fx 2 fy 2 1,37 2 0,76 2 1,56cm.... 1,736cm.........OK!
Jadi gording Light Lip Channel C 150.75.20.4,5 aman untuk digunakan.
4.3.2. Perhitungan Batang Tarik (Trackstang) Gording
batang tarik (trekstang)
Balok WF
Gambar 4.8. Perletakan Batang Tarik (trackstang) batang tarik yang dipakai adalah Ø 19 mm 4.3.3. Perhitungan Ikatan Angin Ikatan angin hanya bekerja menahan gaya normal (axial) tarik saja. Adapun cara kerjanya adalah apabila salah satu ikatan angin bekerja sebagai batang tarik, maka yang lainnya tidak menahan gaya apa-apa. Sebaliknya apabila arah angin berubah, maka secara bergantian batang tersebut bekerja sebagai batang tarik. gording P
P
Nx
h N
kuda-kuda P
b
N
Ny
ikatan angin
Gambar 4.8. Ikatan angin digunakan ikatan angin Ø 19 mm
4.3.4. Perhitungan Dimensi Balok dan Kolom Kuda-kuda 1. Pembebanan pada Balok Gable P8 P7
P7 P6
P6
P5 P4
P5
D
P3
P4 P3
P2
P2
P1
P1
o
C
20
E
8.00
A
B 12.50
12.50 25.00
Gambar 4.9. Pembebanan pada balok gable akibat beban-beban yang dipikul oleh gording terpanjang 6,25 m
17
Ikatan Angin
Balok Gable
3.125 m
6.25 m
3.125 m
Gording
1.90 13.302
Gambar 4.10. Pembebanan yang dipikul gording Balok yang direncanakan menggunakan I WF 300.200.8.12 - H = 300 mm - b = 200 mm - Ts = 12 mm - tb = 8 mm - Zx = 771 cm3 - Zy = 160 cm3 4 - Ix = 11300 cm - Iy = 1600 cm4 - ix =12,5 cm - iy = 4,71 cm - A = 72,38 cm2 - q = 56,8 kg/m 200
300
276
8
12
Gambar 4.11. Penampang baja I WF Pembebanan pada balok gable akibat beban-beban yang dipikul oleh 1 gording dengan 6,25 m : a.
Beban Gording Gording 1 (terletak di ujung balok ) Beban mati - Berat sendiri penutup atap : 3,125 m x 3 kg/m2x0,95 = 8,906 kg - Berat alat penyambung : 10% x qWF (56,8 kg/m ) = 5,68 kg/m+ 15,055 kg/m - Beban hidup (P) = 100 kg/m Gording 2 = G3 = G4 = G5 = G6 = G7 Beban mati Berat sendiri penutup atap : 6,25 m x 3 kg/m2x1,90 = 35,625 kg Berat alat penyambung : 10% x qWF (56,8 kg/m) = 5,68 kg/m + = 24,43 kg/m Beban hidup (P) = 100 kg Dengan cara yang sama untuk mempermudah perhitungan beban-beban pada balok gable akibat masing-masing gording dilakukan secara tabelaris sebagai berikut : G1 G2 = G3 = G4 = G5 = G6 = G7 No. Pembebanan (kg/m) (kg/m) 1 Berat Penutup Atap 8,906 35,625 2 Beban Hidup 100 100 3 Berat Alat Penyambung 5,396 10,792 ∑ P 114,302 146,417 Tabel 4.2. Pembebanan pada joint atap
18
b. c. d. e.
Tekanan Angin pada Bidang Atap q = 50 . c0s 20o = 46,98 kg/m q’ = -100 . cos 20o = -93,96 kg/m Tekanan Angin pada Bidang Dinding Koefisien angin tekan C1h = 0,9 Wt = 0,9 . 40 . 6,25 = 225 kg/m Koefisien angin hisap C’hs = -0,4
f.
Beban Portal
TABLE: Groups 3 - Massa dan Berat SelfMass SelfWeight TotalMassX TotalMassY TotalMassZ Kgf-s2/m Kgf Kgf-s2/m Kgf-s2/m Kgf-s2/m 3045,9 29870,09 3045,9 3045,9 3045,9 0 0 0 0 0 807,71 7920,88 807,71 807,71 807,71 1345,89 13198,71 1345,89 1345,89 1345,89 786,07 7708,75 786,07 786,07 786,07 0 0 0 0 0 0 0 0 0 0 27,91 273,74 27,91 27,91 27,91
GroupName Text SEMUA KOLOM TENGAH KOLOM UTAMA FRAME GORDING JOINT 1 JOINT TENGAH JOINT UJUNG -
Wh = -0,4 . 40 . 6.25 = -100 kg/m
Tabel 4.3. output dari SAP 2000 v.14 Berat Portal = 3425,96 Berat dinding pas. Batako : 8 x 6,25 x 300 = 2812,5 kg/m x 2 + ∑W= 9050,96 kg/m
Perhitungan Beban Gempa Perhitungan beban gempa ekivalen mengacu pada SNI – 1726 – 2002 konstruksi
Wi ( kg )
hi ( kg )
Wi. hi
H (W)
9050,96
12,55
113589,548
∑W
9050,96
∑ W.h
113589,548
Tabel 4.4. Berat struktur gudang yang dianalisis Lokasi = Tasikmalaya ( wilayah gempa zona 4) Struktur di atas tanah sedang I = 1 R = 5,5 T
= 0,06.H .
3 4 3
= 0,06.12,55 4 = 0,400 Didapat, C C V
0.42 T (untuk tanah sedang) 0.42 = 1,05 0.400 C.I = .Wt R =
19
=
1,05.1 .9050,96 5,5
= 1727,91 kg Perhitungan beban gempa ekivalen untuk joint pada portal Untuk joint H ( F) F
W .H .V W .h 113589,548 = .1727,91 113589,548 =
= 1727,91 kg Beban gempa arah x dan y F = 1727,91 kg
1727,91 863,995kg 2 g.
Perhitungan Momen Perhitungan analisa struktur menggunakan Program SAP 2000 Versi 14.
Gambar 4.12. BMD dan SFD h.
Kontrol balok yang direncanakan Terhadap momen tekanan (Wx) Mmax = 11057,03 kgm = 1105703 kgcm Wx = Profil baja I WF 300.200.8.12 dengan harga Wx hitung = 663,68 cm 3 < Wx rencana = 771 cm3, maka profil baja ini dapat digunakan.....ok! Stabilitas batang tekan Lk = 13,302 m = 1330,2 cm
(tabel 3 PPBBI 1984) Terhadap balok yang dibebani lentur (KIP) Cek profil berubah bentuk atau tidak :
= =
= 20,80
44,34 ≥ 20,80........ok! Penampang tidak berubah bentuk = 1752,01 kg/cm2 > 556,96 kg/cm2 .........ok! Kontrol terhadap tegangan N = 2227,45 (output SAP 2000 v14)
20
= 67,94 kg/cm2 < 1666 kg/cm2.....ok! Kontrol terhadap lendutan 0,76 cm < 3,695 cm .....ok! Kontrol tegangan geser D = 1754,26 (output SAP 2000 v14)
i.
= 7,61 kg/cm2 ≤ 966,288 kg/cm2...........ok! Kontrol kolom yang direncanakan Dari hasil analisa SAP didapatkan Pu kolom sebesar -3779,997 kg ≈ -3780 kg Dimana nilai kc pada kolom dengan asumsi ujung jepit sendi : 0,7 Tinggi kolom = 8 m = 800 cm Lk = 0,7 x 800 = 560 cm rmin ≥
Kontrol penampang : 1. Cek kelangsingan penampang a. Pelat sayap ..............ok! b.
2.
Pelat badan
..............ok! Kuat tekan rencana kolom, øPn øPn = 0,85 . Ag . Fy = 0,85 . 72,38 . 2500 = 153807,5 kg maka digunakan persamaan :
3.
4.
Kuat lentur rencana kolom øMnx Mnx = Fy x Wx = 2500 x 771 = 1927500 kgcm = 19275 kgm Diperoleh nilai Mmax = 11057,03 Rasio tegangan total ..........ok! .200.8.12 kuat menerima beban dan memenuhi syarat!
4.3.5.
Perencanaan Base Plate Gaya normal dengan gaya hitung yang terjadi adalah : DA = 6188,23 kg NA = 3779,997 kg Mmax = 10579,80 kgm = 1057980 kgcm Ukuran base plate ditaksir 35 cm x 30 cm dan tebal = 12 mm = 1,2 cm
Kontrol tegangan yang timbul F = a . b = 35 . 30 = 1050 cm2 Wn = 1/6 . a2 . b = 1/6 . 352 . 30 = 6125 cm2
Angker baut Angker baut yang digunakan sebanyak 4 buah Akibat beban gaya geser tiap baut memikul beban Diameter angker baut d =
=
Ambil baut ø19 mm sebanyak 4 buah Fgs = 4 . ¼ . . d2 = 4 . 0,25 . 3,14 . (1,9)2 = 11,3354 cm2
21
.........aman!
4.3.6.
Sambungan a. Pertemuan balok dan kolom Momen maksimal yang bekerja 11057,03 kgm Dipakai baut (mutu tinggi) ø16 Jarak baut dalam 1 baris ambil = 5d = 8 cm (antara 2,5 d s/d 7d)
b.
Kita tinjau akibat momen 11057,03 kgm .......ok! Perhitungan sambungan di titik buhul MC = 1661,52 kgm = 166152 kgcm DC = 1396,14 kg
............aman! Gaya geser baut akibat gaya lintang : D = 1396,14 kg Setiap baut memikul gaya geser sebesar Q = V/6 = 1396,14/6 = 232,69 kg Gaya geser pada baut : .........aman! Kombinasi gaya geser dan gaya aksial baut :
= 831,42 kg/cm2 < = 1666 kg/cm2 Gaya geser pada ulir : c.
Perhitungan las pelat sambungan arah sejajar kolom Tebal las ditaksir a = 4 mm = 0,4 cm Panjang las (lbr) = 36 cm P = N balok = 2333,469 kg ≈ 2334 kg
22
Kontrol :
d.
........ok! Kesimpulan : tebal las 0,4 cm dapat digunakan pada pelat penyambung arah sejajar kolom. Perhitungan las pelat sambungan arah sejajar balok Tebal las ditaksir a = 4 mm = 0,4 cm Panjang las (lbr) = 100 cm Kontrol : ........ok! Kesimpulan : tebal las 0,4 cm dapat digunakan pada pelat penyambung arah sejajar balok.
4.3.7.
Perhitungan Pondasi Telapak a. Data Pondasi Kedalaman pondasi (Df) = 2,90 m lebar pondasi (Bx) = 2,30 m lebar pondasi (By) = 2,80 m tebal pondasi (h) = 0,60 m lebar kolom (bx) = 0,40 m lebar kolom (by) = 0,35 m kuat tekan beton (f’c) = 25 MPa kuat leleh baja tulangan (fy) = 400 MPa berat baja ( = 25 kN/m3 Pu = 33,381 kN Mux = 12,572 kNm Muy = 180,157 kNm
b. kapasitas dukung tanah Kapasitas dukung tanah menurut Meyerhof (1956) : qa =
(dalam kg/cm2)
dengan, Kd = 1 + 0,33 . Diambil Kd =
harus ≤ 1.33
1,33
Kapasitas dukung ijin tanah qa = 247,01 kN/m2 c.
Kontrol Tegangan Tanah
Tekanan akibat berat foot plat dan tanah q = (h . c) + (z . ) = (0,60.25) + (2,30.20,00) = 61 kN/m2 Tegangan tanah maksimum yang terjadi pada dasar fondasi : qmax = qmax < qa 131,230 < 247,01..... Aman (OK) Tegangan tanah minimum yang terjadi pada dasar fondasi : qmin = qmin > 0 1,137 > 0 ...... tak terjadi teg.tarik (OK)
23
d.
Gaya geser pada foot plat 1. Tinjauan Geser Arah x
Tegangan tanah pada bidang kritis geser arah x, qx = 922,343 kN/m2 Gaya geser arah x Vux = 97,764 kN kuat geser foot plat Vc = 2450 kN Faktor reduksi kekuatan geser = 0,75 Kuat geser foot plat . Vc = 0,75.2450 = 1837,5 kN Syarat yang harus dipenuhi, . Vc ≥ Vux 1837,5 > 97,764.......Aman (OK) 2.
Tinjauan Geser Arah y
Tegangan tanah pada bidang kritis geser arah y, qy = 86,278 kN/m2 Gaya geser arah y Vuy = 106,264 kN kuat geser foot plat Vc = 1974,167 kN Faktor reduksi kekuatan geser = 0,75 Kuat geser foot plat .Vc = 0,75. 1974,167 = 1480,625 kN Syarat yang harus dipenuhi, . Vc ≥ Vuy 1480,625 > 106,264.....Aman (OK)
3.
Tinjauan Geser Dua Arah (Pons)
Gaya geser pons yang terjadi, Vup = 29,278 kN Tegangan geser pons yang disyaratkan, fp = 1,667 MPa Faktor reduksi kekuatan geser pons, = 0,75 Kuat geser pons, . Vnp = . Ap . p . 103 = 0,75 . 1,667.103 = 2291,75 kN Syarat : . Vnp ≥ Vup 2291,750 > 29,278 ...... Aman (OK) . Vnp ≥ Pu 2291,750 > 33,381 .......Aman (OK) e.
Pembesian Footplat
1.
Tulangan Lentur Arah
Tegangan tanah pada tepi kolom, qx = 77,496 kN/m2 Momen yang terjadi pada plat fondasi akibat tegangan tanah, Mux = 66,104 kNm Rmax = 6,574 Mn = 82,630 kNm Rn = 0,107 Rn < Rmax 0,107 < 6,574 ...... (OK)
24
Diameter tulangan yang digunakan, D 16 mm Jarak tulangan yang diperlukan, s = = Jarak tulangan maksimum, Smax = 200 mm Jarak tulangan yang digunakan, S = 153 mm Digunakan tulangan, D16-150 Luas tulangan terpakai, As =
= 3753,16 mm2
= 2.
= 153 mm
Tulangan Lentur Arah y
Tegangan tanah pada tepi kolom, qy = 74,314 kN/m2 Momen yang terjadi pada plat fondasi akibat tegangan tanah, Muy = 88,457 kNm Rmax = 6,574 Mn = 110,571 kNm Rn = 0,1812 Rn < Rmax 0,1812 < 6,574 ..........(OK) Rasio tulangan yang digunakan, = 0,0025 Luas tulangan yang diperlukan, As = . b . d = 0,0025.2300.515 = 2961,25 mm2 Diameter tulangan yang digunakan, D16 mm Jarak tulangan yang diperlukan, S = =
= 156 mm
Jarak tulangan maksimum, Smax = 200 mm Jarak tulangan yang digunakan, S = 156 mm Digunakan tulangan, D 16 - 150 Luas tulangan terpakai, As = = 3082,95 mm2
= 3.
Tulangan Susut
Diameter tulangan yang digunakan, ø 12 mm Jarak tulangan susut arah x, sx = =
= 154 mm
Jarak tulangan susut maksimum arah x, sx,max = 200 mm Jarak tulangan susut arah x yang digunakan, sx = 154 mm Jarak tulangan susut arah y, sy = =
= 157 mm
Jarak tulangan susut maksimum arah y, sy,max = 200 mm Jarak tulangan susut arah y yang digunakan, sy = 157 mm Digunakan tulangan susut arah x, ø12 - 157 Digunakan tulangan susut arah y, ø 12 - 157
25
BAB V KESIMPULAN DAN SARAN 5.1. Kesimpulan Dari uraian pada bab-bab sebelumnya dapat disimpulkan antara lain : 1. Baja merupakan bahan yang mempunyai sifat struktur yang sangat baik, terlebih untuk bangunan gudang karena kebutuhan jarak antar kolom yang jauh sedangkan atap biasanya merupakan atap metal yang ringan. 2. Profil baja yang digunakan dalam perencanaan ini adalah baja I WF 300.200.8.12 untuk struktur balok dan kolom, sedangkan untuk gording digunakan profil baja Light Lip Channel C 150.75.20.4,5. 3. Dengan kondisi tanah setempat yang keadaan tanahnya tidak keras dan daya dukungnya cukup baik, maka pondasi telapak atau foot plate yang digunakan. Dengan kedalaman pondasi 3,0 meter lebar pondasi 2,3 x 2,8 meter, tebal pondasi 0,6 meter, dan lebar kolom 0,40 x 0,35 meter. 4. Ketelitian dari cara dan data perencanaan akan sangat berpengaruh pada tingkat kekuatan struktur.
5.2. Saran 1. Untuk merelisasikan hasil perhitungan dengan di lapangan maka diperlukan pengawasan yang benarbenar teliti. 2. Pondasi yang direncanakan harus kuat menahan beban yang bekerja padanya. Selain itu tanah tempat pondasi diletakan juga harus bisa memberikan daya dukung yang cukup kuat agar pondasi tidak mengalami penurunan yang melebihi batas toleransi. 3. Pada keseluruhan pembangunan gudang ini seluruh material harus benar-benar sesuai dengan hasil perhitungan.
DAFTAR PUSTAKA Aminullah, Muhammad, Ir, Mt. Perencanaan Pondasi Telapak Beton. Pusat Pengembangan Bahan AjarUMB. Berutu, Beni. 2009. Efisiensi dan Optimalisasi Pemakaian Baja Sebagai Bahan Konstruksi. USU Repository. Departemen Pekerjaan Umum. Peraturan Perencanaan Bamgunan Baja Indonesia 1984 (PPBBI 1984). Bandung : Yayasan Lembaga Penyelidikan Masalah Bangunan. Departemen Pekerjaan Umum. Tata Cara Perencanaan Struktur Baja Untuk Bangunan Gedung. Standar Nasional Indonesia. Gunawan, Rudy, Ir. 1988. Tabel Profil Konstruksi Baja. Yogyakarta : Kanisius. Ilham, M. Noer. 2010. Perhitungan Fondasi Footplat (Bentuk Empat Persegi Panjang). Konstruksi Gudang Baja. [online]. Tersedia : http : //www.google.com/Perencanaan Konstruksi Gudang. (Maret 2013). Nt, Suyono. 2007. Rangkuman Peraturan Pembebanan Indonesia untuk Gedung – 1983. Perencanaan Konstruksi Baja II (Gable). [online]. Tersedia : http : //www.google.com/Perencanaan Konstruksi Gudang. (Maret 2013). Setiaawan, M. Ikhsan. 2013. Analisa Dimensi dan Biaya Struktur Baja. Setyowati, Sri Utami. 2013. Efisiensi Dimensi dan Biaya Atap Baja Rumah Susun C Siwalankerto.
26