PEMBERIAN TANDA AIR MENGGUNAKAN TEKNIK KUANTISASI RATA-RATA DENGAN DOMAIN TRANSFORMASI WAVELET DISKRIT Nama Mahasiswa NRP Jurusan Dosen Pembimbing
: : : :
Tulus Sepdianto 1206 100 002 Matematika FMIPA-ITS DR. Mahmud Yunus, M.Si Drs. Soetrisno, MIKomp
Abstrak Pemberian tanda air (watermarking) merupakan salah satu teknik pengamanan citra digital. Watermarking digital telah banyak diterapkan untuk perlindungan hak cipta media digital. Watermarking terdiri dari dua proses utama, yaitu pelekatan dan ekstraksi. Pada umumnya proses ekstraksi pada watermarking menggunakan citra asli, ini tidak efektif dan efisien. Pada Tugas Akhir ini, digunakan teknik watermarking yang tidak menggunakan citra asli dalam proses ekstraksinya. Penanaman watermark dilakukan pada domain transformasi wavelet dengan mengkodekan setiap bit watermark ke dalam satu himpunan koefisien wavelet. Metode ini juga mengintegrasikan karakteristik dari system penglihatan manusia agar pelekatan watermark tidak menyebabkan penurunan kualitas citra host secara signifikan. Kata kunci: Watermarking, Koefisien Wavelet. 1. PENDAHULUAN Saat ini penggunaan internet dalam kehidupan sehari-hari telah menjadi hal yang umum. Banyak fasilitas yang ditawarkan di internet, salah satu fasilitas yang sering digunakan adalah upload dan download file gambar. Menggunakan internet, kita bisa mendapatkan copy dari sebuah file gambar dengan harga yang relatif murah (bahkan gratis) tanpa penurunan kualitas dari file tersebut. Selain itu kita juga dapat mendistribusikan suatu file gambar seluas-luasnya karena jangkauan internet adalah ke seluruh dunia. Keunggulan ini ternyata tidak sepenuhnya memberikan dampak yang positif. Semakin berkembang dan populernya internet menyebabkan semakin tinggi pula pelanggaranpelanggaran terhadap hak cipta karya digital sehingga perlindungan hak cipta telah menjadi bagian penting dalam dunia informasi. Salah satu solusi efektif terhadap masalah distribusi yang tidak sah adalah dengan menanamkan watermark digital kedalam data multimedia. Watermark adalah kode digital yang tidak bisa dibuang, kuat, dan tak kentara yang tertanam dalam data host dan biasanya berisi informasi tentang kepemilikan [1]. Agar efektif, watermark setidaknya harus memenuhi persyaratan berikut [1]: a. Tidak terlihat secara visual (transparan). b. Sulit untuk dihapus tanpa mempengaruhi kualitas citra secara drastis. c. Mampu menolak untuk distorsi citra yang disebabkan oleh serangan seperti operasi pengolahan citra umum dan kompresi citra.
Melalui Tugas Akhir ini, penulis menggunakan teknik kuantisasi rata-rata untuk menanamkan watermark ke dalam koefisien wavelet serta tidak memerlukan citra asli untuk mengekstraksi watermark tersebut. Teknik ini mengkodekan setiap informasi dari bit watermark ke dalam satu set koefisien wavelet untuk mengurangi efek distorsi pada citra. Teknik ini juga menyertakan model sistem pengelihatan manusia (HVS) dan strategi khusus untuk memberikan watermark dengan transparansi yang maksimum, tetapi juga tahan untuk berbagai macam distorsi citra. Pada penelitian ini diberikan batasan masalah dan asumsi sebagai berikut : a. Citra Host yang diproses berupa citra RGB, bertipe bitmap berukuran M Γ M. b. Citra Watermark yang digunakan adalah citra biner bertipe bitmap berukuran N Γ N, dengan 1 π β€ π. 2 c. Gangguan (attack) yang akan diberikan pada citra ter-watermark berupa penambahan Gaussian noise. 2. DASAR TEORI 2.1 Citra Digital Citra digital merupakan citra yang tersusun dari piksel diskrit dari tingkat kecerahan dan warna yang telah terkuantisasi yang merupakan sebuah representasi dari citra asal yang bersifat analog [3]. Umumnya citra digital dibentuk dari persegi empat yang teratur sehingga jarak horizontal dan vertikal
1
antara piksel satu dengan yang lain adalah sama pada seluruh bagian citra. Indeks x bergerak ke bawah dan indeks y bergerak ke kanan. Untuk menunjukkan koordinat digunakan posisi kanan bawah dalam citra berukuran π Γ π piksel. Gambar 2.1 menunjukkan koordinat pada suatu citra digital.
Sistem ruang warna RGB merupakan sistem ruang warna dasar, diperkenalkan oleh National Television System Committee (NTSC) yang banyak digunakan untuk menampilkan citra berwarna pada monitor CRT. Sistem ini diilustrasikan menggunakan sistem koordinat tiga-dimensi seperti Gambar 2.6 berikut.
Gambar 2.1 Koordinat pada Citra Digital Untuk menunjukkan tingkat intensitas cahaya hitam-putih (grayscale) suatu piksel, digunakan bilangan bulat antara 0-255, dimana 0 untuk warna hitam dan 255 untuk warna putih. Sistem visual manusia dapat membedakan ratusan ribu warna tetapi hanya dapat membedakan 100 shade keabuan[6].
Gambar 2.3 Sistem Ruang Warna RGB
2.2 Konsep Tetangga Piksel Pada pengolahan citra digital dibutuhkan beberapa konsep dasar tentang citra, misalnya untuk mencari rata-rata piksel atau variansi lokal citra dibutuhkan konsep piksel tetangga. Piksel p pada koordinat (x, y) mempunyai 4 tetangga horisontal dan vertikal, dinotasikan dengan N4(p) juga mempunyai 4-tetangga diagonal, dinotasikan dengan ND(p)[4]. Salah satu konsep piksel tetangga yang digunakan adalah 8-tetangga, yang dinotasikan dengan N8(p) yang merupakan gabungan dari N4(p) dan ND(p). Agar piksel tepi dapat dioperasikan seperti piksel di bagian dalam citra maka dilakukan penambahan satu piksel di sekeliling citra. Piksel tambahan dapat bernilai 0, 1 atau sama dengan piksel tepi dan pemilihannya disesuaikan dengan kebutuhan. Hubungan piksel N8(p) direpresentasikan oleh Gambar 2.2. f(x-1,y-1)
f(x-1,y)
f(x-1,y+1)
f(x,y-1)
f(x,y)
f(x,y+1)
f(x+1,y-1)
f(x+1,y)
f(x+1,y+1)
Pada gambar di atas tampak bahwa setiap warna akan diwakili oleh tiga buah nilai dalam koordinat tersebut yang menyatakan komponen warna RGB, sebagai misal warna merah akan diwakili oleh titik (255,0,0). Rentang nilai untuk setiap sumbu berkisar dari 0 sampai 255. Pada gambar tersebut tampak juga bahwa warna cyan, magenta dan kuning merupakan komplemen warna merah, hijau, dan biru. 2.3.2 Ruang Warna YCbCr Ruang warna YCbCr disebut juga ruang warna CCIR 601 (International Radio Consultative Committe). Model warna ini dikembangkan untuk mengantisipasi perkembangan informasi berbasiskan video, sehingga model ini banyak digunakan pada video digital. Secara umum dapat dikatakan bahwa model warna ini merupakan bagian dari ruang transmisi video dan televisi. Model warna lain yang mirip dengan YCbCr adalah YUV dan YIQ, perbedaannya terletak bahwa YCbCr adalah system warna digital sedangkan yang lain adalah system warna analog. Model warna YCbCr memisahkan nilai RGB menjadi informasi luminance dan chrominance. Formulasi konversi RGB-YCbCr ditunjukan sebagai berikut. π = 0.299900π
+ 0.58700πΊ + 0.11400π΅ πΆπ = β0.16874π
β 0.33126πΊ + 0.50000π΅ πΆπ = 0.50000π
β 0.41869πΊ β 0.08131π΅
Gambar 2.2 Hubungan Piksel N8(p) 2.3 Ruang Warna 2.3.1 Ruang Warna RGB
2
π
= 1.00000π + 1.40200πΆπ πΊ = 1.00000π β 0.34414πΆπ β 0.71414πΆπ π΅ = 1.00000π + 1.77200πΆπ
π π π ,π ,π π₯, π¦ = 2π 2 π π 2π π₯ β π, 2π π¦ β π π = {π», π, π·}
(2.1)
(2.3)
dan indeks i adalah superscript yang mengasumsikan nilai H,V, dan D pada persamaan
2.4 Watermarking Watermarking dapat diartikan sebagai suatu teknik penyembunyian data atau informasi rahasia kedalam suatu data lainnya untuk ditumpangi, tetapi orang lain tidak menyadari kehadiran adanya data tambahan pada data host-nya. Jadi seolah-olah tidak ada perbedaan antara data host sebelum dan sesudah prosesnya [4]. Secara umum proses watermarking dibagi menjadi dua yaitu pelekatan dan ekstrasi. Berikut ini adalah gambar dari proses tersebut :
π π» π₯, π¦ = π π₯ π π¦ π π π₯, π¦ = π π₯ π π¦ π π· π₯, π¦ = π π₯ π π¦ π = {π», π, π·}
(2.4)
Dengan ππ ,π π₯ = 2π 2 π 2π π₯ β π ππ,π π₯ = 2π 2 π π 2π π₯ β π
(2.5)
j0 adalah sebarang nilai awal skala dan koefisien dari ππ π0 , π, π mendefinisikan pendekatan dari π(π₯, π¦) pada skala jo. Koefisien π π π π, π, π menambahkan rincian horizontal, vertikal, dan diagonal untuk skala j β₯ j0. Umumnya jo= 0 dan memilih N = M = 2j, maka j = 0,1, . . ,J-1 dan m,n = 0, 1, 2, β¦ , 2 j-1. Dan berikut ini adalah persamaan invers dari DWT :
Gambar 2.4 Pelekatan Watermark
π π₯, π¦ = +
1
1 ππ
ππ π0 , π, π ππ 0 ,π ,π π₯, π¦ π
β
π
ππ π=π»,π,π· π =π
π π π π, π, π π π π ,π ,π π₯, π¦ 0
π
π
(2.6) Sebuah sinyal harus dilewatkan dalam dua filterisasi DWT yaitu highpass filter dan lowpass filter agar frekuensi dari sinyal tersebut dapat dianalisis. Analisis sinyal dilakukan terhadap hasil filterisasi highpass filter dan lowpass filter di mana highpass filter digunakan untuk menganalisis frekuensi tinggi dan lowpass filter digunakan untuk menganalisis frekuensi rendah. Analisis terhadap frekuensi dilakukan dengan cara menggunakan resolusi yang dihasilkan setelah sinyal melewati filterisasi. Pembagian sinyal menjadi frekuensi tinggi dan frekuensi rendah dalam proses filterisasi highpass filter dan lowpass filter disebut sebagai dekomposisi [4]. Dekomposisi pada citra seperti pada Gambar 2.9 menghasilkan informasi rentang frekuensi yang berbeda yaitu LL frekuensi rendah-rendah (low- low frequency), LH frekuensi rendah-tinggi (low-high frequency), HL frekuensi tinggi-rendah (high-low frequency), dan HH frekuensi tingi-tinggi (high-high frequency). Kesemuanya ini membentuk struktur
Gambar 2.5 Ekstraksi Watermark
2.4 Transformasi Wavelet Diskrit Dasar dari DWT dimulai pada tahun 1976 dimana teknik untuk mendekomposisi sinyal waktu diskrit ditemukan [6]. DWT dari fungsi f(x,y) dengan ukuran M x N adalah [2] ππ π0 , π, π =
1 ππ
πβ1 π₯=0
πβ1 π¦=0 π(π₯, π¦)ππ 0 ,π ,π
π₯, π¦
π π π π, π, π = 1 ππ
πβ1 π₯=0
πβ1 π π¦ =0 π(π₯, π¦)π π ,π ,π π₯, π¦ ππ,π ,π dan π π π ,π ,π pada adalah
(2.2)
dimana fungsi skala dan fungsi basis peubah yang didefinisikan ππ ,π ,π π₯, π¦ = 2π 2 π 2π π₯ β π, 2π π¦ β π
3
piramid Gambar 2.10 dari sebuah citra [6]. Rentang frekuensi LL merupakan rentang taksiran penskalaan, sedangkan rentang frekuensi LH, HL, dan HH merupakan rentang frekuensi informasi detil [6].
π0 π2 ππ π₯, π¦
=
ππ π₯, π¦ 1β 127
1 2
+3
πππ ππ π₯, π¦ β€ 127 πΎ ππ π₯, π¦ β 127 + 3 πππ ππ π₯, π¦ > 127
πΌ ππ π₯, π¦
= ππ π₯, π¦ Γ 0.0001 + 0.115
π½ ππ π₯, π¦ = π β ππ π₯, π¦ Γ 0.01 πππ 0 β€ π₯ < π», 0 β€ π¦ < π
Gambar 2.6 Dekomposisi Wavelet Satu Tingkat Terhadap Citra
(2.7)
dimana 0 β€ π₯ β€ π» & 0 β€ π¦ β€ π, f1 merupakan ambang visibilitas kesalahan akibat Contrast Masking, f2 merupakan ambang visibilitas karena Luminance Masking, H dan W menunjukkan tinggi dan lebar dari masing-masing gambar, mg(x,y) menunjukkan maximal weighted average of luminance gradients di sekitar pixel di (x,y), bg (x, y) adalah average background luminance. Gambar 2.7 Struktur pyramid dari citra
2.6 Teknik Kuantisasi Rata-rata Untuk mengurangi efek distorsi terhadap 2.5 Just-Noticeable-Distortion watermark tertanam, kami mengusulkan suatu Proses penanaman watermark perlu teknik kuantisasi rata-rata yang setiap menanamkan ditambahkan Just-Noticeable-Distortion (JND) setiap bit watermark ke dalam n koefisien wavelet. model untuk memenuhi imperceptibility dari sistem watermarking. JND model memberikan nilai untuk masing-masing koefisien wavelet yang 2.6.1 Pelekatan Watermark Kami asumsikan bahwa panjang watermark mengkuantifikasi distorsi maksimum yang dapat adalah NW dan terdiri dari unsur himpunan (0,1). diterapkan pada koefisien tersebut agar tidak Watermark ini dilambangkan dengan W = w1 w2 ... mempengaruhi kualitas gambar. Visibilitas noise di wNW, di mana wi β (0,1), i = 1, . . . , NW. Kami suatu gambar tergantung pada dua faktor utama[1]: a. Luminance Masking: Rata-rata pencahayaan latar menanamkan watermark ke dalam koefisien wavelet belakang suatu daerah mempengaruhi visibilitas dari citra asli dengan menggunakan sebuah kunci. distorsi watermark. Distorsi di daerah terang dan Kuncinya terdiri dari dua komponen (i) Nw dan (ii) n sangat gelap pada gambar kurang terlihat di mana n adalah jumlah koefisien yang digunakan dibandingkan dengan di area gambar dengan untuk mengkodekan bit watermark. Untuk menanamkan watermark dalam domain wavelet tingkat kecerahan menengah. b. Contrast Masking: Daerah bertekstur dan tepi diskrit, perubahan relatif dilakukan pada koefisien pada gambar di mana variasi spasialnya besar sehingga gambar asli tidak diperlukan untuk jauh lebih baik pada distorsi masking dari pada ekstraksi. Berikut adalah algoritma penanaman daerah halus dimana variasi spasialnya jauh lebih watermark dengan Teknik Kuantisasi Rata-rata[1]: kecil. Dari dua faktor utama di atas, maka nilai JND dapat [Langkah 1] Hitung DWT dari citra asli. diperoleh dari persamaan berikut [6]: [Langkah 2] Untuk i = 1 sampai NW π½ππ· π₯, π¦ ο· Pilih n koefisien (xi1, ..., xin) dari subband LL. = max π1 ππ π₯, π¦ , ππ π₯, π¦ , π2 ππ π₯, π¦ ο· Hitung nilai JND (Just-Noticeable-Distortion) π1 ππ π₯, π¦ , ππ π₯, π¦ untuk setiap koefisien yang dipilih. = ππ π₯, π¦ πΌ ππ π₯, π¦ + π½ ππ π₯, π¦
4
ο· Normalsasi koefisien tersebut dengan JND ο· sehingga modifikasi maksimal yang diperbolehkan untuk koefisien ternormalisasi adalah 1. ο· Hitunglah rata-rata koefisien ternormalisasi: ο· 1 π π₯π = π =1 π₯ππ π
ο· Jika wi = 1 maka π₯π dikuantisasikan ke nilai terdekat yang ditunjukkan oleh garis vertikal tebal pada Gambar 2.6 selain itu π₯π dikuantisasikan ke nilai terdekat yang ditunjukkan oleh garis vertikal putus-putus. ο· Untuk Ξ adalah jumlah modifikasi pada π₯π setelah kuantisasi. Hitunglah π₯ππ = π₯ππ + β, π = 1, 2, β¦ , π ο· Ambil invers dari normalisasi (Langkah 2.3) pada koefisien xij, j = 1, ..., n. [Langkah 3] Lakukan invers transformasi wavelet diskrit pada koefisien yang dimodifikasi untuk mendapatkan citra ter-watermark. Ξ tidak pernah lebih besar dari 1 seperti yang ditunjukkan pada Gambar 2.6 yaitu jumlah maksimum pada setiap modifikasi koefisien wavelet tidak melampaui nilai JND. Oleh karena itu, sinyal watermark tertanam tidak mempengaruhi kualitas gambar secara signifikan.
ο·
Normalsasi koefisien tersebut dengan JND sehingga modifikasi diijinkan maksimal dinormalisasi koefisien adalah 1. Hitunglah mean koefisien dinormalisasi π₯π = 1 π π =1 π₯ππ
π
Bit watermark Wi didapatkan dengan mencari nilai terkuantisasi, yang ditetapkan oleh garis vertikal tebal atau putus-putus pada Gambar 2.6, ke π₯π dan mengubahnya menjadi nomor biner.
2.7 Koefisien Korelasi Metode ini digunakan untuk mengukur derajat keeratan hubungan antara dua peubah. Bilangan yang mengukur kekuatan hubungan antara dua peubah disebut dengan koefisien korelasi (R). Koefisien korelasi memiliki nilai antara -1 sampai dengan 1. R = 1 artinya hubungan antara X dan Y kuat dan searah (positif) ; R = -1 artinya hubungan antara X dan Y kuat dan berlawanan arah (negatif) ; R = 0 artinya hubungan antara X dan Y lemah atau hubungan antara X dan Y bukan hubungan yang linier. Berikut adalah bentuk umum untuk menghitung koefisien korelasi antara dua citra : π
π,π =
π π₯π¦
(2.8)
π π₯π₯ π π¦π¦
dimana : π π₯π¦ =
π π=1
π π =1
π π₯π₯ =
π π=1
π π =1 (π π,π
π π,π β π π π,π β π β π )2
Gambar 2.8 Proses Kuantisasi Watermarking 2.6.2 Ekstraksi Watermark π π¦π¦ = Tujuan dari proses ekstraksi watermark adalah untuk memperoleh estimasi watermark asli dari citra ter-watermark yang telah dilekatkan pada proses 1 watermarking. Proses ekstraksi membutuhkan π = ππ pengetahuan tentang kunci (Nw, n) serta wavelet 1 family yang digunakan untuk domain pelekatannya. π = ππ Algoritma ini digambarkan sebagai berikut[1]: [Langkah 1] Hitunglah transformasi wavelet diskrit dari gambar ter-watermark. [Langkah 2] Untuk i = 1 sampai Nw ο· Pilih n koefisien (xi1, ..., xin) dari subband LL. ο· Hitung nilai JND untuk setiap koefisien yang dipilih.
π π=1
π π =1 (π π,π
π π=1
π π=1 π(π,π)
π π=1
π π =1 π(π,π )
β π )2
(2.9)
2.8 Peak Signal to Noise Ratio (PSNR) Mean Square Error (MSE) dan Peak Signal to Noise Ratio (PSNR) adalah dua ukuran kesalahan yang digunakan untuk membandingkan kualitas dua citra. MSE merupakan kuadrat kesalahan kumulatif antara dua citra, sedangkan PSNR merupakan ukuran dari kesalahan puncak. Semakin rendah nilai MSE, semakin rendah kesalahan. Untuk menghitung PSNR, kali pertama yang harus dilakukan adalah menghitung MSE menggunakan persamaan berikut:
5
πππΈ =
1
π β1 π=0
ππ
πβ1 π =0 [πΌ
π, π β πΎ(π, π)]2
estimasi citra watermark sebagai hasil dari proses ekstraksi. Dengan menggunakan wavelet Haar untuk transformasinya, hasil dari uji coba pertama dapat dilihat pada Tabel 3.1 dan Tabel 3.2
(2.10)
dengan m dan n adalah jumlah baris dan kolom dalam citra masukan I dan K. Kemudian dilanjutkan dengan menghitung PSNR dengan menggunakan persamaan berikut: ππππ
= 10. log10
πππ₯ πΌ 2 πππΈ
(2.11)
πππ₯πΌ adalah fluktuasi maksimum dalam jenis input data citra dengan nilai πππ₯πΌ = 2π΅ β 1, dimana B kedalaman bit dari citra masukan. Misal untuk citra 8-bit nilai dari πππ₯πΌ = 2π΅ β 1 = 28 β 1 = 255. Pendekatan yang berbeda dilakukan untuk menghitung PSNR citra warna. Karena mata manusia sangat sensitif terhadap informasi luma (intensitas), penghitungan PSNR untuk citra warna dilakukan dengan mengkonversi citra ke ruang warna YcbCr. Y, dalam YCbCr merepresentasikan nilai luma dari citra. Dengan pertimbangan ini, hitung PSNR hanya pada saluran luma dalam hal ini Y.
(a) (b) Gambar 3.2 Citra ter-watermark (0) Lena.jpg (b) Baboon.jpg Tabel 3.1 Nilai MSE dan PSNR dari Citra Host dan Citra Ter-Watermark Hasil Uji Coba 3.a No. 1. 2. 3. 4. 5. 6.
3. PENGUJIAN DAN PEMBAHASAN Uji coba pada program dalam Tugas Akhir ini dilakukan terhadap citra RGB berukuran 512 Γ 512 piksel sebagai citra host dan citra biner berukuran 64 Γ 64 piksel sebagai citra watermark serta nilai n yang menyatakan banyaknya koefisien wavelet yang digunakan untuk melekatkan satu bit watermark.
Citra Host Lena.jpg Lena.jpg Lena.jpg Baboon.jpg Baboon.jpg Baboon.jpg
n
MSE
PSNR
4 8 16 4 8 16
2.29308 4.61289 9.96907 1.74788 3.49045 7.04331 4.85945
44.5266 41.4911 38.1443 45.7057 42.702 39.653 42.0371
Rata-rata
Tabel 3.2 Nilai Koefisien Korelasi ππ,π dari Watermark dan Estimasi Watermark Hasil Uji Coba 3.a No 1. 2. 3. 4. 5. 6.
(a)
(b) Gambar 3.1 Citra Host (a) Lena.jpg (b) Baboon.jpg
Citra ter-watermark Lena.jpg Lena.jpg Lena.jpg Baboon.jpg Baboon.jpg Baboon.jpg Rata-rata
n
ππ,π
4 8 16 4 8 16
0.997433 0.998973 1 0.99487 0.996921 0.990782 0.996496
Berdasar pada uji coba pertama yang kami lakukan, dapat ditarik kesimpulan bahwa semakin besar nilai n yang diterapkan semakin kecil eror yang didapat pada saat proses ekstraksi watermark. Namun hal ini berbanding terbalik dengan kualitas Gambar 3.2 Citra Watermark citra ter-watermark. Semakin besar nilai n yang diterapkan akan memperbesar penurunan kualitas a. Uji coba pertama Uji coba pertama akan menghasilkan citra ter- citra ter-watermark. watermark sebagai hasil dari proses embedding dan
6
b. Uji coba kedua Uji coba kedua dilakukan dengan menambahkan Gaussian noise dengan mean 0, setiap uji coba dilakukan sebanyak 30 kali. Citra terwatermark : Lena.jpg Ukuran watermark yang tertanam : 64 Γ 64 piksel Nilai n : 16 Wavelet family yang digunakan : Haar
No.
Nilai Variansi
Rata-Rata ππ,π
1. 2. 3. 4. 5.
Tanpa penambahan 0.001 0.002 0.003 0.004
0.990782 0.878274 0.755929 0.646286 0.534915
Hasil penghitungan koefisien korelasi dari estimasi citra watermark hasil ekstraksi citra ternoise dengan variansi > 0.004 pada uji coba kedua dan ketiga telalu kecil ( < 0.5) sehingga kami menganggap bahwa watermarking menggunakan metode Kuantisasi Rata-rata tidak mampu menangani penambahan Gaussian noise dengan mean 0 dan variansi > 0.004. 4. KESIMPULAN DAN SARAN 4.1. Kesimpulan Berdasarkan pembahasan sebelumnya, maka Gambar 3.3 Lena.jpg ter-noise dapat ditarik kesimpulan sebagai berikut: a. Semakin besar nilai n yang diterapkan semakin Tabel 3.9 Kualitas Estimasi Watermark Hasil Uji kecil eror yang didapat pada saat proses ekstraksi Coba 3.b watermark. Namun hal ini berbanding terbalik dengan kualitas citra ter-watermark. Semakin No. Nilai Variansi Rata-Rata ππ,π besar nilai n yang diterapkan akan memperbesar 1. Tanpa penambahan 1 pnurunan kualitas citra ter-watermark. 2. 0.001 0.942863 b. Program watermarking menggunakan metode 3. 0.002 0.849941 Kuantisasi Rata-rata dapat mengekstraksi 4. 0.003 0.737376 watermark dengan baik tanpa menggunakan citra asli. 5. 0.004 0.658847 c. Watermark yang tertanam pada citra terwatermark bersifat invisible dan tahan terhadap c. Uji coba ketiga gangguan berupa Gaussian noise dengan mean 0 Uji coba ketiga dilakukan dengan dan variansi hingga 0.004. menambahkan Gaussian noise dengan mean 0, setiap uji coba dilakukan sebanyak 30 kali. 4.2 Saran Citra terwatermark : Baboon.jpg Berdasarkan pembahasan sebelumnya, saran yang Ukuran watermark yang tertanam : 64 Γ 64 piksel dapat kami berikan dalam pengembangan Tugas Nilai n : 16 Akhir ini antara lain adalah: Wavelet family yang digunakan : Haar a. Citra watermark yang menjadi input dalam program ini adalah citra biner dan diharapkan dalam penelitian selanjutnya dapat menggunakan citra grayscale. b. Gangguan yang dilakukan terhadap citra terwatermark berupa Gaussian noise, pada penelitian selanjutnya diharapkan dapat ditambahkan satu proses lagi yaitu denoising sebelum dilakukan proses ekstraksi. c. Sebagai pengembangan program, dapat dibuat program watermarking pada data digital lainnya misalkan teks, suara, video Gambar 3.4 Baboon.jpg ter-noise dan sebagainya. Tabel 3.10 Kualitas Estimasi Watermark Hasil Uji Coba 3.c
7
5.
DAFTAR PUSTAKA
[1] Chen, Liang-Hua & Lin, Jyh-Jiun. 2003. Mean Quantization Based Image Watermarking. Taiwan journal of Image and Vision Computing hal. 717β727. [2] Chen, SS; Bermak, A; Yan, W; Martinez, D. 2007. Adaptive-quantization Digital Image Sensor for Low-power Image Compression. IEEE Transactions on Circuits and System-I: Regular Papers vol. 54. [3] Gonzalez, Rafael C. 2002. Digital Image Processing. Prentice Hall, Upper Saddle River, New Jersey. [4] JISC Digital Media . 2006 . The Digital Still Image.
diunduh tanggal 20 Oktober 2010 jam 11.17 WIB. [5] Pranindya, Yunita. 2010. Pemberian Tanda Air Pada Citra Digital Menggunakan Metode Tanda Air Dengan Analisis Komponen Bebas Transpose Citra. . Tugas Akhir Jurusan Matematika Institut Teknologi Sepuluh Nopember, Surabaya. [6] Sripathi, Deepika. 2003. Efficient Implementations of Discrete Wavelet Transform using FPGAs . Florida State University.
8