KEBERADAAN UNSUR HARA DALAM MEDIA AIR LAUT BERSUBSTRAT ZEOCRETE PADA TINGKAT KONSENTRASI P BERBEDA
IDHAM ARDIANSYAH SAMMANA
SKRIPSI
DEPARTEMEN MANAJEMEN SUMBERDAYA PERAIRAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN INSTITUT PERTANIAN BOGOR BOGOR 2006
ABSTRAK IDHAM A. SAMMANA. Keberadaan Unsur Hara dalam Media Air Laut Bers ubstrat Zeocrete pada Tingkat Konsentrasi P Berbeda. Dibimbing oleh KADARWAN SOEWARDI dan MAJARIANA KRISANTI. Kandungan unsur hara di perairan tidak selalu tersedia dalam keadaan stabil, sementara keberadaan unsur hara erat kaitannya dengan kapasitas substrat dalam menyimpan dan melepaskan unsur hara sediaan biologis. Upaya menstabilkan dan menyediakan rasio unsur hara yang tepat akan lebih terkontrol bila unsur hara yang ditambahka n terikat pada substrat bukan terlarut dalam air. Dalam penelitian ini digunakan substrat zeocrete yaitu substrat yang terdiri dari zeolit dan diperkaya oleh pupuk sediaan unsur hara (N,P,dan Si) serta campuran materi semen putih dan ijuk. Substrat ini diharapkan dapat menyimpan cadangan serta melepaskan unsur hara sediaan biologis (biological available nutrients) di air. Pengamatan dilakukan pada media air laut yang sebelumnya dibuat dalam kondisi steril dari plankton. Penelitian ini difokuskan pada penilaian kualitas air media dengan tujuan untuk mengetahui dan mengkaji keberadaan unsur hara N, P, dan Si pada media air laut yang diberi substrat zeocrete. Rancangan perlakuan dalam kajian ini berupa pengkayaan nutrien pada substrat zeocrete dengan konsentrasi P yang telah ditentukan. Substrat diberi larutan pupuk dengan konsentrasi P yang berbeda sebesar 0,02 ppm (dilambangkan dengan ZK1), 0,2 ppm (dilambangkan ZK2), dan 2 ppm (dilambangkan dengan ZK3) pada rasio N/P yang sama yaitu 30:1. Untuk konsentrasi N di setiap perlakuan mengikuti rasio N/P yang sejalan dengan tingkat pengkayaan P pada substrat. Selanjutnya ditambahkan pula perlakuan dengan substrat zeocrete tanpa penambahan nutrien. Berdasarkan hasil pengamatan diperoleh hasil bahwa terjadi lepasan unsur hara N, P, dan Si dari substrat zeocrete dengan pola yang fluktuatif. Hasil pengukuran kandungan rata -rata amonia sampai pada akhir pengamatan berkisar antara 0,0951-0,7599 mg/l, sedangkan hasil pengukuran rata- rata nitrat untuk semua perlakuan sampai pada akhir pe ngamatan berkisar antara 0,2804-0,9053 mg/l. Untuk konsentrasi rata-rata ortofosfat selama periode pe ngamatan berkisar antara 0,0054-0,0186 mg/l. Selanjutnya pengamatan lepasan silika pada media air berkisar antara 6,9660-62,7026 mg/l. Untuk menajamkan analisa mengenai potensi media dalam mendukung aktivitas biologis, pada penelitian ini juga dilakukan perhitungan rasio N/P. Nilai rasio N/P pada air media menunjukkan pola yang fluktuatif mengikuti pola unsur hara pembentuknya yaitu berkisar 10,338-74,992 : 1. Kandungan unsur hara dan rasio N/P yang diperoleh dari hasil pengamatan memperlihatkan pola yang tidak sejalan antara peningkatan konsentrasi unsur hara pada substrat dengan kandungan unsur hara pada air media. Kisaran nilai unsur hara tersebut menunjukkan potensi susbtrat zeocrete sebagai media tumbuh bagi algae.
KEBERADAAN UNSUR HARA DALAM MEDIA AIR LAUT BERSUBSTRAT ZEOCRETE PADA TINGKAT KONSENTRASI P BERBEDA
IDHAM ARDIANSYAH SAMMANA
SKRIPSI sebagai salah satu syarat untuk memperoleh gelar Sarjana Perikanan pada Departemen Manajemen Sumberdaya Perairan
DEPARTEMEN MANAJEMEN SUMBERDAYA PERAIRAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN INSTITUT PERTANIAN BOGOR BOGOR 2006
RIWAYAT HIDUP PENULIS Penulis dilahirkan di Adelaide, Australia pada tanggal 22 Juli 1985 dari ayah Abdul Hamid Noer dan ibu Almaida Mas’ud. Penulis merupakan putra sulung dari empat bersaudara. Pada tahun 2001 penulis diterima di IPB melalui jalur Undangan Seleksi Masuk IPB (USMI). Penulis memilih Program Studi Pengelolaan Sumberdaya dan Lingkungan Perairan, Departemen Manajemen Sumberdaya Perairan, Fakultas Perikana n dan Ilmu Kelautan. Selama mengikuti perkuliahan, penulis aktif sebagai asisten pada mata kuliah Biota Air pada tahun ajaran 2003/2004 dan 2004/2005, asisten mata kuliah Ekologi Perairan pada tahun ajaran 2003/2004 dan Planktonologi pada tahun ajaran 2004/2005. Penulis juga aktif dalam kegiatan kemahasiswaan sebagai
pengurus BEM TPB IPB (2001-2002), Himpunan Mahasiswa
Manajemen Sumberdaya Perairan (2002-2004), Aquares Study Club (20032004) dan Music Agriculture X-pression (2004-2006). Selain itu penulis juga pernah mengikuti beberapa seminar dan pelatihan yang bertaraf nasional maupun internasional. Sebagai salah satu syarat untuk memperoleh gelar Sarjana pada Fakultas Perikanan dan Ilmu Kelautan, IPB, penulis menyusun skripsi yang berjudul “Keberadaan Unsur Hara dalam Media Air Laut Bersubstrat Zeocrete pada Tingkat Konsentrasi P Berbeda”.
PERNYATAAN MENGENAI SKRPSI DAN SUMBER INFORMASI Dengan ini saya menyatakan bahwa skripsi yang berjudul :
KEBERADAAN UNSUR HARA DALAM MEDIA AIR LAUT BERSUBSTRAT ZEOCRETE PADA TINGKAT KONSENTRASI P BERBEDA Adalah hasil karya saya sendiri dan belum diajukan dalam bentuk apapun kepada perguruan tinggi manapun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun yang tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan telah dicantumkan dalam Daftar Pustaka pada bagian akhir skripsi ini.
Bogor, Mei 2006
IDHAM ARDIANSYAH SAMMANA C24101010
RINGKASAN SEMINAR HASIL PENELITIAN DEPARTEMEN MANAJEMEN SUMBERDAYA PERAIRAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN INSTITUT PERTANIAN BOGOR 2006 Judul
: Keberadaan Unsur Hara dalam Media Air Laut Bersubstrat Zeocrete pada Tingkat Konsentrasi P Berbeda Pemrasaran : Idham Ardiansyah Sammana NRP : C24101010 Pembimbing : Dr. Ir. Kadarwan Soewardi Majariana Krisanti, S.Pi, M.Si Hari / Tanggal : Jum’at, 03 Maret 2006 Tempat : Ruang Diskusi Dept. MSP PENDAHULUAN Unsur hara merupakan salah satu faktor penentu yang diperlukan untuk pertumbuhan dan kelangsungan hidup alga. Organisme tersebut berperan sebagai mata rantai dari rantai makanan yang mendukung produktivitas perairan. Unsur hara utama yang diperlukan untuk pertumbuhan dan metabolisme organisme alga adalah N (nitrogen), P (fosfor), dan Si (silika) (Nontji, 1984). Keberadaan unsur hara di perairan tidak selalu tersedia dalam keadaan stabil, sementara keberadaan unsur hara erat kaitannya dengan kapasitas substrat dalam menyimpan dan melepaskan unsur hara sediaan biologis. Upaya menstabilkan dan menyediakan rasio unsur hara yang tepat akan lebih terkontrol bila unsur hara yang ditambahkan terikat pada substrat bukan terlarut dalam air. Dalam penelitian ini digunakan substrat zeocrete yaitu substrat yang terdiri dari zeolit dan diperkaya oleh pupuk sediaan unsur hara (N, P, dan Si) serta campuran materi semen putih dan ijuk. Penelitian ini dilakukan dengan tujuan untuk mengetahui dan mengkaji keberadaan unsur hara N, P, dan Si sediaan biologis pada media air laut yang diberi substrat zeocrete. METODE PENELITIAN Penelitian ini dilaksanakan pada bulan September 2004 selama 15 hari di Laboratorium Kultur Alga, Departemen Manajemen Sumberdaya Perairan, FPIK, IPB. Analisis fisika dan kimia dilakukan di Laboratorium Produktivitas dan Lingkungan Perairan, Departemen Manajemen Sumberdaya Perairan, FPIK, IPB. Alat yang digunakan dalam penelitian ini yaitu: Spektrofotometer UV-160 A Shimadzu, wadah air sample (botol gelap) volume 200 ml sebanyak 20 buah, vacum pump Welch, termometer raksa, refraktometer Atago, pH meter Hanna, DO meter 5509 Lutron, Whatman filter paper, miliophore type HA 0,45 poore size, gelas ukur 50 ml, corong, gelas erlenmeyer, gelas piala, pipet volumetrik, tissue, kapas, kertas label, alumunium foil, baki, dan alat tulis. Bahan yang digunakan adalah: substrat zeocrete, air laut bersalinitas 25-30 promil yang steril, larutan pupuk, akuades serta bahan-bahan yang digunakan untuk analisis kualitas air. Pengambilan sampel dilakukan sebanyak delapan kali, yaitu pada hari ke-1, 3, 5, 7, 9, 11, 13, dan 15. Data yang diperoleh dari hasil pengamatan disajikan dalam bentuk tabel dan grafik. Analisis secara deskriptif digunakan untuk mendapatkan informasi mengenai keberadaan unsur hara N, P dan Si sediaan biologis dari substrat zeocrete ke air media.
Penelitian ini dilakukan di dalam ruang laboratorium tanpa cahaya guna menghindari tumbuhnya organisme autotrof. Sedangkan kondisi suhu, pH, oksigen terlarut, dan salinitas dijaga agar tetap berada pada rentang kondisi yang mendukung keberadaan unsur hara N, P, dan Si pada air media. Untuk suhu diupayakan berada pada kisaran 20-25 ºC, pH pada kisaran 7-8,5, salinitas 20-35 promil, dan oksiden terlarut 711 mg/l (Isnansetyo dan Kuniastuty,1995). HASIL DAN PEMBAHASAN A. Kandungan Unsur Hara Sediaan Biologis dalam Air Media Nitrat
0.70 0.60 Z K 0
0.50 0.40 0.30
Z K 1 Z K 2 Z K 3
0.20 0.10 0.00 1
3
5
7
9
11
13
Konsentrasi (mg/l)
Konsentrasi (mg/l)
Amonia 0.80
1.00 0.80 Z K 0
0.60
Z K 1 Z K 2
0.40
Z K 3
0.20 0.00
15
1
Hari Pengamatan
3
5
7
9
11
13
15
Hari Pengamatan
Silika
0.016 Z K 0
0.012
Z K 1 Z K 2
0.008
Z K 3
0.004
Konsentrasi (mg/l)
Konsentrasi (mg/l)
Ortofosfat 0.020
70 60 50
Z K 0
40
Z K 1 Z K 2
30
Z K 3
20 10 0
0.000 1
3
5
7
9
Hari Pengamatan
11
13
15
1
3
5
7
9
11
13
15
Hari Pengamatan
Air media memperoleh masukan unsur hara dari substrat zeocrete. Hasil pengukuran kandungan rata-rata ammonia sampai pada akhir pengamatan berkisar antara 0,0951-0,7599 mg/l. Kandungan ammonia untuk semua perlakuan menunjukkan pola fluktuatif yang cenderung meningkat sampai pada akhir pengamatan. Hasil pengukuran nitrat untuk semua perlakuan sampai pada akhir pengamatan berkisar antara 0,2746-0,9217 mg/l dan menunjukkan pola yang fluktuatif. Kisaran tersebut telah mencapai kisaran yang berpotensi bagi pertumbuhan alga meskipun kandungan haranya masih dalam tahap yang rendah. Hal ini sesuai dengan pernyataan Chu (1943) in Andarias (1991) yang menyebutkan bahwa kisaran nitrat 0,9–3,5 mg/l merupakan konsentrasi optimum untuk pertumbuhan alga. Kisaran nitrat yang masih tergolong rendah ini dipengaruhi oleh faktor pH. Rata-rata pH selama penelitian diatas 7, nilai ini sesuai dengan pernyataan Viner (1975) in Pratiwi (1997) bahwa pada tingkat pH diatas 6, kandungan unsur hara N dalam perairan rendah. Kandungan ortofosfat pada semua perlakuan fluktuatif dengan kecenderungan meningkat sampai pada akhir pengamatan. Pada perlakuan zeocrete dengan konsentrasi P 2 ppm (ZK3) kandungan ortofosfatnya memiliki nilai yang rendah dibandingkan dengan perlakuan lainnya. Hal ini menunjukkan bahwa tingkat pengkayaan P pada substrat yang mengandung zeolit (zeocrete) belum tentu sejalan dengan kandungan P yang dilepaskan. Kondisi demikian sejalan dengan penelitian terdahulu yang menggambarkan sulitnya P terlepas dari zeolit (Krisanti, 2003). Separti halnya dengan unsur hara terukur lain, kandungan silika secara umum menunjukkan pola fluktuatif dengan kecenderungan meningkat sampai pada akhir pengamatan. Untuk semua perlakuan, nilai silika terendah terjadi pada hari ke-5 dan tertinggi pada hari ke-13. Kisaran ini menunjukkan bahwa lepasan silika sangat tinggi. Suwardi (2002) menyebutkan bahwa penyusun utama zeolit adalah silika. Untuk itu dapat diduga kandungan silika pada air media selama penelitan tidak saja berasal dari
pengkayaan silika pada substrat tetapi juga berasal dari zeolit sebagai salah satu komponen penyusun substrat zeocrete. B. Rasio N/P Rasio N/P available 80 70 Rasio N/P
60 ZK0 ZK1
50 40
ZK2 ZK3
30 20 10 0 1
3
5
7
9
11
13
15
Hari pengamatan
Besarnya komposisi pada masing-masing unsur menunjukkan tingkatan prioritas kebutuhan unsur hara di perairan. Hal ini sesuai dengan pernyataan Klausmeier (2004) bahwa pada saat kandungan unsur hara P di perairan rendah dan rasio N/P menjadi tinggi, maka P berperan sebagai pembatas untuk mendukung kesetimbangan ekosistem. Begitupun sebaliknya pada saat ketersediaan unsur hara N dan P banyak terdapat di ekosistem dan rasio N/P menjadi rendah, maka N berperan sebagai pembatas dalam mendukung pertumbuhan eksponensial organisme di perairan. Penentuan rasio N/P pada penelitian ini didasarkan pada total kandungan unsur hara N dan P yang dibutuhkan oleh komponen biologis (biological available nutrients). Nilai N diperoleh dari nilai nitrat dan ammonium, sedangkan nilai P diperoleh dari nilai ortofosfat yang terkandung pada air media. Dari hasil pengamatan, secara umum rasio N/P berkisar antara 10,338-74,992 : 1 (Lampiran 4) dengan puncak nilai rasio terbesar untuk semua perlakuan terjadi pada hari ke-11. Besarnya rasio N/P pada setiap perlakuan relatif sama dan berfluktuasi mengikuti kandungan masing-masing unsur hara pembentuknya. KESIMPULAN DAN SARAN A. Kesimpulan 1. Secara umum pola lepasan unsur hara N, P dan Si sediaan biologis oleh substrat zeocrete baik yang diperkaya dengan nutrien maupun yang tidak, menunjukkan pola yang fluktuatif dengan kecendrungan meningkat sampai akhir pengamatan. Pola fluktuatif yang terjadi menunjukkan pola aktivitas substrat zeocrete dalam melepas dan menyerap unsur hara pada air media. 2. Rasio N/P selama penelitian menunjukkan rentang nilai yang berpotensi sebagai media tumbuh bagi beberapa jenis alga. B. Saran 1. Untuk mengetahui potensi unsur hara hasil lepasan zeocrete, diperlukan penelitian lebih lanjut dengan menggunakan alga perifitik sebagai organisme uji untuk mengetahui pemanfaatan unsur hara oleh alga DAFTAR PUSTAKA Isnansetyo, A. dan Kurniastuty. 1995. Teknik Kultur Phytoplankton dan Zooplankton. Pakan Alami untuk Pembenihan Organisme Laut. Penerbit Kanisius. Yogyakarta. Klausmeier, C. 2004. Phytoplankton and Climate Change : Model shows longheld constant in Ocean Nutrient Ratio May Very as Ecological Conditions Changes. Georgia Institute of Technology, Atlanta, Georgia
Suwardi. 2002. Pemanfaatan Zeolit untuk Meningkatkan Produksi Tanaman Pangan, Peternakan, dan Perikanan. Makalah Seminar Teknologi Aplikatif Pertanian. Fakultas Pertanian IPB. Bogor.
LEMBAR PENGESAHAN Judul Penelitian
: Keberadaan Unsur Hara dalam Media Air Laut Bersubstrat Zeocrete pada Tingkat Konsentrasi P Berbeda
Nama Mahasiswa
: Idham Ardiansyah Sammana
NIM
: C24101010
Departemen
: Manajemen Sumberdaya Perairan
Mengetahui : Pembimbing I
Pembimbing II
Dr. Ir. Kadarwan Soewardi NIP. 130 805 031
Majariana Krisanti, S.Pi, M.Si NIP. 132 133 970
Diketahui : Dekan Fakultas Perikanan dan Ilmu Kelautan
Dr. Ir. Kadarwan Suwardi, NIP. 130 805 031
Tanggal lulus : 7 April 2006
KATA PENGANTAR
Puji syukur kehadirat Allah SWT atas rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan penulisan skripsi ini yang berjudul “Keberadaan Unsur Hara dalam Media Air Laut Bers ubstrat Zeocrete pada Tingkat Konsentrasi P Berbeda”. Skripsi ini disusun sebagai salah satu syarat dalam memperoleh gelar sarjana pada Departemen Manajemen Sumberdaya Perairan, Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor. Pada kesempatan ini, penulis mengucapkan terima kasih kepada : 1. Dr. Ir. Kadarwan Soewardi dan Majariana Krisanti, S.Pi, M.Si selaku pembimbing atas segala arahan, bimbingan dan masukan selama penyusunan skripsi ini. 2. Ir. Niken T. M. Pratiwi, M.Si yang telah memberi arahan, masukan dan kesempatan kepada penulis untuk ikut serta dalam penelitian studi ini. 3. Komisi Pendidikan Departemen Manajemen Sumberdaya Perairan atas koreksi dan masukan bagi penulis dalam penyempurnaan skripsi ini. 4. Ir. Sigid Hariyadi, M.Sc atas kesediaannya memberi saran, masukan dan koreksi dalam perannya sebagai penguji tamu dalam sidang penulis. 5. dan Prof. Dr. Ir. Soedarsono yang telah memberikan saran dan dukungan pustaka kepada penulis selama proses penyusunan skripsi ini. 6. Zulhamsyah Imran, S.Pi, M.Si yang turut memberikan dukungan moril serta fasilitas yang bermanfaat bagi penulis untuk menyelesaikan skripsi ini. 7. Dr. Ir. Yusli Wardiatno, M.Sc selaku pembimbing akademik serta segenap civitas Departemen Manajemen Sumberdaya Perairan yang telah memberikan arahan, masukan, dan bantuan kepada penulis selama mengikuti perkuliahan. 8. Ayah dan Ibu serta adik-adikku Ami, Aci, dan Luth atas dukungan doa, kasih sayang dan kepercayaan. 9. Keluarga besar Dr. Ir Zaenal Alim Mas’ud, DEA atas dukungan dan arahan moril selama penulis menjalani masa perkuliahan. 10. Himpunan Mahasiswa Manajemen Sumberdaya Perairan dan Keluarga besar MAX !! atas kesan dan inspirasi yang berarti dalam membangun karakter penulis sampai penulis dapat menyelesaikan skripsi ini.
i
11. Sahabat-sahabat sejatiku MSP’38 yang telah menemani suka dan duka yang dilalui penulis selama menjalani masa perkuliahan. 12. Keluarga besar COSMO CAFE atas doa dan kebersamaan yang terjalin selama ini. Penulis menyadari bahwa skripsi ini tidak luput dari kekurangan dan masih jauh dari sempurna. Untuk itu kritik dan saran yang membangun sangant penulis harapkan untuk kesempurnaan dimasa akan datang.
Bogor, Maret 2006 Penulis
ii
DAFTAR ISI
Halaman DAFTAR TABEL ........................................................................................ v DAFTAR GAMBAR ...................................................................................
vi
DAFTAR LAMPIRAN................................................................................
vii
I. PENDAHULUAN .................................................................................. A. Latar Belakang ................................................................................. B. Perumusan Permasalahan................................................................... C. Tujuan Penelitian................................................................................
1 1 2 3
II. TINJAUAN PUSTAKA......................................................................... A. Unsur Hara ......................................................................................... 1. Fosfor ............................................................................................ 2. Nitrogen.......................................................................................... 3. Silika ............................................................................................... B. Zeolit................................................................................................... C. Parameter Fisika Kimia yang mempengaruhi Unsur Hara ................. 1. Suhu................................................................................................ 2. Salinitas .......................................................................................... 3. Oksigen Terlarut (DO) ................................................................... 4. pH...................................................................................................
4 4 4 5 7 8 9 9 10 10 11
III. METODE PENELITIAN....................................................................... A. Waktu dan Tempat Penelitian ............................................................ B. Metode Penelitian............................................................................... 1. Rancangan Perlakuan..................................................................... 2. Rancangan Percobaan.................................................................... 2.1 Persiapan.................................................................................. 2.1.1 Alat dan Bahan................................................................ 2.1.2 Substrat Zeocrete............................................................. 2.2 Penelitian.................................................................................. 2.2.1 Persiapan Alat dan Bahan ............................................... 2.2.2 Pengukuran Kualitas Air ................................................. 2.2.3 Pengambilan Sampel....................................................... C. Analisis Data ......................................................................................
12 12 12 12 13 13 13 13 16 16 16 17 17
IV. HASIL DAN PEMBAHASAN.............................................................. A. Kandungan Unsur Hara Sediaan Biologis dalam Media Air Laut..... 1. Amonia .......................................................................................... 2. Nitrat .............................................................................................. 3. Ortofosfat....................................................................................... 4. Silika .............................................................................................. B. Rasio N/P pada Media Air Laut .........................................................
18 18 18 19 21 22 23
iii
C. Kondisi Lingkungan Penunjang .........................................................
27
V. KESIMPULAN DAN SARAN.............................................................. A. Kesimpulan........................................................................................ B. Saran..................................................................................................
30 30 30
DAFTAR PUSTAKA ..................................................................................
31
LAMPIRAN.................................................................................................
33
iv
DAFTAR TABEL
Tabel
Halaman
1. Urutan selektivitas pertukaran ion pada berbagai zeolit ..........................
9
2. Parameter fisika kimia serta metode dan alat ukur yang digunakan........
16
3. Kisaran nilai suhu, pH, salinitas, da n DO air media selama penelitian......................................................................................
27
v
DAFTAR GAMBAR
Gambar
Halaman
1. Skema pe ndekatan per masalahan pengunaan substrat zeocrete sebagai penyedia unsur hara sediaan biologis .........................................
3
2. Bentuk penampakan blok substrat............................................................
14
3. Posis i substrat dalam stoples .................................................................
15
4. Susunan stoples dan pipa aerasi...............................................................
15
5. Konsentrasi rata -rata amonia selama penelitian.......................................
18
6. Konsentrasi rata -rata nitrat selama penelitian..........................................
20
7. Konsentrasi rata -rata ortofosfat selama penelitia n...................................
21
8. Konsentrasi rata -rata silika selama penelitian..........................................
22
9. Rasio N/P selama penelitian.....................................................................
24
vi
DAFTAR LAMPIRAN
Lampiran
Halaman
1. Perhitungan pupuk.................................................................................. .
34
2. Kandungan unsur hara pada air media sebelum diberi perlakuan (H0)........................................................................................ .
35
3. Kandungan unsur hara pada air media selama penelitian ......................
36
4. Nilai rata-rata beberapa parameter físika-kimia selama penelitian..........
37
5. Tabel rasio N/P pada air media selama penelitian ...................................
38
vii
I. PENDAHULUAN
A. Latar Belakang Unsur hara merupakan salah satu faktor penting yang diperlukan untuk pertumbuhan dan kelangsungan hidup algae. Keberadaan organisme tersebut berperan sebagai mata rantai dari proses perpindahan energi yang mendukung kesuburan perairan. Unsur hara utama yang diperlukan untuk pertumbuhan dan metabolisme organisme alga adalah N (nitrogen), P (fosfor), dan Si (silika) (Nontji, 1984). Keberadaan unsur hara tidak selalu tersedia dalam keadaan stabil untuk memenuhi kebutuhan biologis di perairan, sementara produktivitas perairan sangat dipengaruhi oleh komposisi unsur hara terutama perbandingan N terhadap P (N-P rasio). Pada perairan alami keberadaan unsur hara P relatif lebih sedikit daripada N. Hal ini dikarenakan sedikitnya sumber P yang terdapat di alam dibandingkan dengan sumber N. Ketersediaan unsur hara P berkaitan erat dengan kapasitas substrat dalam menyimpan cadangan dan melepaskan sediaan biologis P dalam perairan (Wetzel, 1975). Upaya menstabilkan dan menyediakan rasio unsur hara yang tepat akan lebih terkontrol bila unsur hara yang ditambahkan terikat pada substrat bukan terlarut dalam air. Disamping itu adanya substrat dapat menjadi media tumbuh bagi organisme autotrof yang sifat hidupnya menempel pada substrat sehingga mendukung kesuburan perairan. Dalam penelitian ini digunakan substrat zeocrete yaitu substrat yang terdiri dari zeolit dan diperkaya oleh pupuk sediaan unsur hara (N,P,dan Si) serta campuran materi semen putih dan ijuk.
Substrat ini diharapkan dapat
menyimpan cadangan serta melepaskan unsur hara sediaan biologis (biological available nutrients) di perairan.
Kemampuan ini didasarkan pada adanya
komponen zeolit sebagai unsur utama penyusun substrat yang diduga berperan dalam menyeimbangkan kandungan unsur hara di perairan. Zeolit dicirikan oleh kemampuannya mengikat dan melepaskan air secara bolak-balik serta menukar beberapa kandungan kationnya tanpa mengubah struktur penyusun utamanya.
2
B.
Perumusan Masalah Keberadaan unsur hara sediaan biologis erat kaitannya dengan kapasitas
substrat dalam menyimpan dan melepaskan unsur hara tersebut. Kemampuan pengikatan dan pelepasan ion akan berbeda bila komposisi unsur hara dalam substrat pada perairan berbeda. Pada kondisi demikian dimungkinkan adanya proses penyediaan unsur hara yang berbeda (Pratiwi, 1997) Dalam kajian ini akan dicobakan tipe substrat zeocrete yang terdiri dari unsur zeolit sebagai komponen utama. Kemampuan menukar kation merupakan salah satu sifat zeolit yang berguna. Kerangka alumunium dan silikat pada zeolit dapat berikatan satu sama lain melalui penggunaan bersama atom-atom oksigen. Gugus SiO4 bersifat netral (Si+44O-) tetapi gugus AlO4 menghasilkan beban negatif (Al+3 4O-). Beban negatif ini diseimbangkan oleh kation-kation yang sa ngat mobile dan dapat dipertukarkan dengan kation la in. Kation yang dipertukarkan pada zeolit terikat lemah pada kerangka tetrahedral sehingga dapat dipindah atau dipertukarkan dengan mudah menggunakan larutan kation lain yang kuat (Ming dan Mumpton in Krisanti, 20031). Substrat zeocrete kemudian diperkaya dengan cairan yang berasal dari pupuk teknis. Pupuk ini
nantinya menjadi penyedia unsur hara yang akan
dilepaskan substrat pada air media melalui proses realese yang dimiliki oleh komponen zeolit. Komposisi unsur hara yang disediakan pada susbstrat ini ditentukan sesuai dengan tingkat kemampuan realese substrat hingga dapat menyediakan unsur hara sediaan biologis pada air media. Dari uraian tersebut di atas diharapkan substrat zeocrete ini mampu menjadi penyedia unsur hara sediaan biologis. Untuk melihat seberapa besar potensi substrat tersebut, maka diperlukan uji skala laboratorium dengan pendekatan permasalahan yang dapat dirumuskan sebagai berikut: 1. Seberapa besar konsentrasi unsur hara yang dilepaskan substrat zeocrete ? 2. Bagaimana kondisi rasio N/P media air dengan adanya substrat zeocrete ? 3. Apakah kandungan unsur hara yang disediakan substrat berpotensi sebagai unsur hara sediaan biologis ? 4. Substrat zeocrete dengan komposisi seperti apa yang dapat memberikan hasil yang baik bagi penyediaan unsur hara pada air media ?
3
Pendekatan masalah tersebut dapat disarikan dalam bentuk skema, sebagaimana disajikan pada Gambar 1.
INPUT
PROSES
OUTPUT
SUBSTRAT ZEOCRETE zeolit+semen+ijuk
?
+
Konsentrasi dan rasio N/P lepasan zeocrete pada air media
Pupuk teknis (urea,TSP)
+
Substrat zeocrete sebagai penyedia unsure hara sediaan biologis
-
Gambar 1. Skema pendekatan permasalahan pengunaan substrat zeocrete sebagai penyedia unsur hara sediaan biologis
C. Tujuan Penelitian Penelitian ini dilakukan dengan tujuan untuk mengetahui dan mengkaji keberadaan unsur hara N, P dan Si sediaan biologis pada media air laut yang diberi substrat zeocrete.
II. TINJAUAN PUSTAKA
A. Unsur Hara Unsur hara merupakan salah satu faktor yang diperlukan untuk pertumbuhan dan kelangsungan hidup organisme autotrof. Unsur hara atau nutrien dikelompokkan atas unsur hara makro dan mikro. Unsur hara makro merupakan unsur hara yang dibutuhkan dalam jumlah yang banyak, sehingga apabila tidak mencukupi akan banyak mengganggu proses biologis yang berjalan.
Unsur hara mikro merupakan unsur hara yang dibutuhkan dalam
jumlah sedikit, sehingga jika tidak terpenuhi maka sedikit berpengaruh terhada p proses biologis yang berjalan. Unsur hara makro meliputi unsur hara Nitrogen (N), Fosfor (P), sedangkan unsur hara mikro meliputi Silika (Si), Besi (Fe), Seng (Zn), Tembaga (Cu), dan Molibdenum (Mo) (Effendi,2003). Unsur hara yang diperlukan untuk pertumbuhan dan metabolisme adalah Nitrogen (N), Fosfor (P), Silika (Si), walaupun unsur hara lain seperti Fe, Mn, Cu, Zn, dan Mo juga diperlukan untuk pertumbuhan tetapi dalam jumlah yang relatif sedikit. Unsur P dalam ortofosfat dan N dalam bentuk nitrat berfungsi membentuk jaringan protoplasma, sedangkan Si berfungsi untuk membentuk dinding sel atau cangkang, sehingga bagi organisme diatom unsur ini turut menjadi faktor pembatas bagi aktivitas biologisnya (Jeffries dan Mills, 1996).
1.Fosfor Fosfor merupakan salah satu unsur hara makro bagi organisme di perairan. Pada ekosistem perairan, fosfor tidak ditemukan dalam bentuk bebas sebagai unsur tetapi dalam bentuk senyawa anorganik terlarut (orthofosfat, metafosfat, dan polifosfat) dan orga nik (dalam tubuh organisme, asam nukleat, fosfolipid, gula fosfat, dan senyawa organik lainnya ). Ortofosfat adalah fosfat anorganik, merupakan salah satu bentuk fosfor yang terlarut dalam air dan dapat dimanfaatkan langsung oleh organisme (APHA, 1989). Or tofosfat sangat reaktif dan mudah mengendap ke permukaan yang tersuspensi seperti tanah atau sedimen. Konsekuensinya ortofosfat jarang ditemukan dalam bentuk larutan (Seller dan Markland, 1987) .
5
Sumber alami fosfor di perairan adalah pelapukan batuan mineral seperti fluorapatite
[Ca(PO4) 3F],
hydroxylapatite
[Ca5(PO4) 3OH],
strengite
[Fe(PO4)2H 2O], whitlockite [Ca 3(PO4) 2], dan berlinite [AlPO4], disamping itu juga berasal dari dekomposisi bahan organik (Effendi, 2003).
Sumber
antropogenik fosfor adalah limbah industri dan domestik, seperti penggunaan detergen. Limpasan dari daerah pertanian yang menggunakan pupuk juga memberikan kontribusi yang cukup besar bagi keberadaan fosfor di perairan. Karakteristik fosfor di perairan berbeda dengan unsur-unsur lainnya yang merupakan penyusun biosfer karena fosfor tidak terdapat di atmosfer. Fosfor membentuk kompleks dengan ion besi dan kalsium pada kondisi aerob, bersifat tidak larut dan mengendap pada sedimen sehingga tidak dapat dimanfaatkan oleh organisme akuatik (Jeffries dan Mills, 1996). Orthofosfat adalah bentuk fosfor yang secara langsung dimanfaatkan oleh organisme autotrof , sedangkan polifosfat terlebih dahulu harus mengalami hidrolisis membentuk orthofosfat sebelum dimanfaatkan sebagai fosfor. Fosfor yang telah diserap oleh sel akan menjadi bagian dari komponen struktural sel dan berperan dalam proses-proses pengalihan energi dalam sel (Nontji, 1984). Keberadaan fosfor yang relatif sedikit pada kera k bumi dan mudah mengendap membuat fosfor merupakan unsur esensial bagi tumbuhan tingkat tinggi dan alga, sehingga keberadaannya mempengaruhi produktivitas perairan. Prowse in Musa (1992) memberikan informasi bahwa perairan dengan kandungan fosfat rendah, yaitu 0,00-0,02 ppm akan didominasi ole h Diatom, pada kadar sedang 0,02-0,05 ppm didominasi oleh Chlorophyceae dan pada kadar tinggi lebih dari 0,10 ppm didominasi oleh jenis Cyanophyceae. Klasifikasi perairan berdasarkan kandungan fosfor total adalah 0.00-0,02 mg/l untuk perairan dengan tingkat kesuburan rendah, 0,021-0,05 mg/l tingkat kesuburan sedang, dan 0,051-0,1 mg/l tingkat kesuburan tinggi.
2. Nitrogen Senyawa nitrogen merupakan salah satu senyawa yang sangat penting dan menjadi faktor pembatas di perairan (Grahme, 1987). Meskipun nitrogen ditemukan berlimpah di lapisan atmosfer akan tetapi unsur ini tidak dapat
6
dimanfaatkan secara langsung oleh makhluk hidup (Dugan, 1972 in Effendi, 2003).
Nitrogen harus mengalami fiksasi terlebih dahulu menjadi amonia
(NH3), amonium (NH4+), dan nitrat (NO3-) baru bisa dimanfaatkan oleh tumbuhan dan hewan. Nitrogen di perairan berupa nitrogen organik dan anorganik. Nitrogen anorganik terdiri dari amonia (NH3), amonium (NH 4+), nitrit (NO2-), nitrat (NO3 -) dan molekul nitrogen (N2) dalam bentuk gas. Nitrogen organik berupa: protein , asam amino dan urea (Effendi, 2003). Bentuk-bentuk nitrogen ini mengalami transformasi di perairan sebagai bagian dari siklus nitrogen. Proses transformasi nitrogen bisa melibatkan komponen biologi, seperti: fiksasi gas nitrogen, amonifikasi, nitrifikasi, dan denitrifikasi. Sedangkan transformasi nitrogen yang tidak melibatkan faktor biologi adalah volatilisasi, penyerapan, dan pengendapan (sedimentasi). Amonia anorganik dan garam-garamnya mudah larut dalam air. Amonia di perairan biasanya berasal dari dekomposisi bahan organik yang dilakukan mikroba
dan
jamur
da lam
suatu
proses
yang
disebut
amonifikasi
dan proses-proses lainnya seperti denitrifikasi. Dalam bentuk yang tidak terdisosiasi, ammonia relatif lebih beracun terhadap organisme daripada amonium yang merupakan bentuk transisinya dan keadaan ini berkaitan dengan kondisi pH perairan. Daya racun amonia akan semakin
meningkat dengan
menurunnya konsentrasi oksigen terlarut, pH dan meningkatnya suhu. Senyawa nitrogen sangat dipengaruhi oleh kandungan oksigen bebas dalam air. Pada saat kandungan oksigen rendah, nitrogen berubah menjadi amonia dan saat kandungan oksigen tinggi nitrogen berubah menjadi nitrat. Hilangnya amonia ke atmosfer dapat meningkat dengan meningkatnya kecepatan angin dan suhu. Nitrat adalah bentuk nitrogen utama di perairan alami dan merupakan unsur hara utama bagi pertumbuhan alga. Nitrat sangat mudah larut dalam air dan stabil. Nitrat dihasilkan dari proses oksidasi sempurna senyawa nitrogen di perairan (Effendi, 2003). Nitrat bukan merupakan racun bagi organisme akuatik, konsentrasinya disuatu perairan diatur dalam proses nitrifikasi, yang merupakan proses oksidasi senyawa amonia dalam kondisi aerob oleh bakteri autotrof menjadi nitrat melalui senyawa tengah nitrit (Suton, 1974 in Musa , 1992).
7
Kadar nitrat di perairan alami hampir tidak pernah lebih dari 0,1 ppm. . Konsentrasi nitrat 0,9 hingga 3,55 ppm merupakan konsentrasi optimum untuk pertumbuhan alga (Chu, 1943 in Andarias, 1991). Pada konsentrasi di bawah 0,1 ppm pengaruh pembatasan nitrogen terjadi, sedang pada konsentrasi di atas 45 ppm pengaruh penghambat mulai tampak. Nitrit merupakan bentuk peralihan antara amonia dan nitrat (nitrifikasi) dan antara nitrat
da n gas nitrogen (denitrifikasi). Keberadaan
nitrit
menggambarkan berlangsungnya proses biologis dan perombakan bahan organik dengan kadar oksigen terlarut yang sangat rendah. Menurut Novotny dan Olem (1994), nitrit biasanya ditemukan dalam jumlah yang sedikit di perairan dan bersifat tidak stabil.
3. Silika Silika (SiO3 )
merupakan bentuk umum dari silikon (Si) yang
keberadaanya melimpah pada kerak bumi. Silika terdapat pada hampir semua batuan dan mudah mengalami pelapukan.
Sumber alami utama silika adalah
mineral kuarsa dan feldspar. Sumber antropogenik silika di peraira relatif sangat kecil (Effendi, 2003). Silika merupakan elemen yang sangat penting bagi kehidupan diatom yang diperoleh dari perairan yang ditimbun dalam sel. Silika berperan dalam pembentukan protein dan karbohidrat.
Unsur Si diserap dalam bentuk
ortosilikat yang pelarutan dan penguraiannya dipengaruhi oleh CO2 bebas dan asam-asam organik dalam perairan (Lewin dan Ching-Hong Chen, 1968; Chen, 1971 in Pratiwi, 1997).
Silika bersifat tidak larut dalam air atau asam dan
biasanya dalam bentuk koloid.
Pada perairan alami silika biasanya terdapat
dalam asam silika Silika termasuk salah satu unsur yang esensial bagi makhluk hidup. Beberapa alga terutama diatom (Bacillariophyceae) membutuhkan silika untuk pembentukan frustule (dinding sel). Menurut Pratiwi (1997) naiknya kelimpahan kelompok Bacillariophyceae (diatom) dipengaruhi oleh peningkatan rasio N/P dan kandungan silika di perairan, sedangkan kelompok Chlorophyceae meningkat setara dengan
8
rasio N/P dan N total. Selanjutnya Fogg (1975) menyatakan diatom tidak akan berkembang dengan baik pada konsentrasi silikat lebih kecil dari 0,5 ppm. Dikatakan juga bahwa diatom akan semakin meningkat apabila konsentrasi nitrat, nitrit, fosfat, dan silikat cukup tersedia.
B. Zeolit Zeolit merupakan mineral yang terdiri dari kristal aluminosilikat terhidrasi yang mengandung kation alkali atau alkali tanah dalam kerangka tiga dimensinya. Ion-ion logam tersebut dapat diganti oleh kation lain tanpa merusak struktur zeolit dan dapat menyerap air secara reversibel (Rachmawati dan Sutarti, 1994). Kerangka dasar struktur zeolit terdiri dari unit-unit tetrahedral AlO 4 dan SiO4 yang saling berhubungan melalui atom O, dan di dalam struktur tersebut Si4+ dapat diganti dengan Al3+.
Meskipun memiliki bermacam bentuk dan
rumus kimia, zeolit memiliki rumus umum (Ming dan Mumpton in Krisanti, 2003) sebagai berikut: M 2nO. Al2O3. x SiO2. y H2O Keterangan : M = kation alkali atau alkali tanah. n = valensi logam alkali x = bilangan tertentu (2 s/d 10) y = bilangan tertentu (2 s/d 7) Zeolit terdiri dari tiga komponen yaitu kation yang dipertukarkan, kerangka aluminosilikat, dan fase air. Ikatan ion Al-Si-O membentuk struktur kristal, sedangkan logam alkali merupakan sumber kation yang mudah dipertukarkan. Menurut Ming dan Mumpton in Krisanti (2003) kation yang dipertukarkan pada zeolit terikat lemah pada kerangka tetrahedral sehingga dapat dipindah atau dipertukarkan dengan mudah menggunakan larutan kation lain yang kuat, sedangkan air yang berada dalam pori-pori zeolit dapat dikeluarkan (dehidrasi) dengan cara pemanasan dan selanjutnya zeolit dapat menyerap kembali air (rehidrasi). Kemampuan menukar kation merupakan salah satu sifat zeolit yang sangat berguna. Kondisi pertukaran ion pada zeolit sangat mempengaruhi adsorpsi dan
9
sifat-sifat zeolit lainnya (Munson dan Sheppard, 1974 in Krisanti 2003). Menurut Sherman (1978), setiap jenis zeolit mempunyai urutan selektivitas kation berbeda. Beberapa karakteristik dan sifat yang mempengaruhi selektivitas pertukaran kation antara lain: 1. Struktur terbentuknya zeolit, yang mempengaruhi besarnya rongga yang terbentuk serta efek menyeleksi molekul. 2. Mobilitas kation yang dipertukarkan. 3. Efek medan elektris yang ditimbulkan kation dan anion pada zeolit. 4. Pengaruh difusi ion ke dalam larutan dan energi hidrasi. Urutan selektivitas menurut kenaikan kemudahan pertukaran ion berbagai zeolit disajikan dalam Tabel 1. Tabel 1. Urutan selektivitas pertukaran ion pada berbagai zeolit (Sherman, 1978) Jenis zeolit Analcime Chabazite Clinoptilolite Heulandite Mordenite
Urutan selektivitas K
Peneliti Barer (1950) Sherry (1989) Ames (1961) Filizova (1974) Ames (1961)
Penggunaan zeolit sebagai penyerap sudah diaplikasikan dalam kegiatan industri, pertanian, peternakan, per ikanan, dan pengolahan limbah. Dengan kemampuan pertukaran tersebut zeolit akan menyerap unsur hara yang ditambahkan dalam air pembentuk zeocrete dan akan melepaskannya kembali setelah direndam dalam air laut.
C. Parameter Fisika Kimia yang Mempengaruhi Unsur Hara 1. Suhu Suhu merupakan parameter yang penting dan berpengaruh secara langsung maupun tidak langsung terhadap kehidupan di suatu perairan. Pescod (1973) menyatakan bahwa suhu air mempengaruhi secara fisik, kimia, dan biologi perairan. Pengaruh suhu secara langsung menentukan kehadiran dari spesies akuatik, aktivitas pemijahan, penetasan, dan pertumbuhan, sedangkan secara
10
tidak langsung dapat menyebabkan perubahan keseimbangan kimia di perairan. Suhu merupakan fungsi dari kelarutan gas-gas dalam air laut dimana kelarutan akan meningkat pada saat temperatur rendah (Sumich, 1992 in Massenreng, 2002). Peningkatan suhu mengakibatkan peningkatan viskositas, reaksi kimia, evaporasi, dan volatilasi. Selain itu proses dekomposisi bahan organik oleh mikroba juga menunjukkan peningkatan dengan semakin meningkatnya suhu. Kisaran optimum bagi proses
nitrifikasi di perairan adalah 20-25ºC
(Effendi, 2003). 2. Salinitas Salinitas adalah garam-garam terlarut dalam satu kilogram air laut dan dinyatakan dalam satuan perseribu (promil) (Nybakken,1992). Salinitas menggambarkan padatan tota l di dalam air setelah semua karbonat dikonversi menjadi oksida, semua bromida dan iodida telah digantikan oleh klorida, dan semua bahan organik telah dioksidasi (Effendi, 2003). Nilai salinitas di perairan laut berkisar antara 30 sampai 40 promil. Meningkatnya salinitas berpengruh pada berkurangnya kelarutan oksigen dan gas-gas lainnya. 3. Oksigen Terlarut (DO) Oksigen terlarut di perairan menggambarkan jumlah kandungan gas oksigen yang terlarut dalam air. Oksigen terlarut dalam perairan umumnya berasal dari fotosintesis oleh alga dan difusi dari udara (APHA,1995). Kadar oksigen terlarut diperairan alami bervariasi bergantung pada suhu, salinitas, turbulensi air, dan tekanan atmosfer. Kadar oksigen berkurang dengan semakin meningkatnya suhu, dan berkurangnya tekanan atmosfer (Jefries dan Mils in Effendi, 2000). Aspek penting lainnya dari distribusi oksigen terlarut di perairan yaitu berhubungan dengan parameter kimia lainnya seperti fosfat, nitrat, karbondioksida, dan pH (Rilley et al, 1975 in Massenreng, 2002). Dalam hal ini oksigen berperan pada proses kimiawi dalam pembentukan parameterparameter kimia tersebut.
11
Novotny dan Olem (1994) menyatakan bahwa kadar oksigen terlarut pada perairan laut berkisar antara 11 mg/ l pada suhu 0o C dan 7 mg/l pada suhu 25oC. Kelarutan oksigen dan gas-gas lainnya berkurang dengan meningkatnya salinitas sehingga kadar oksigen pada air laut cenderung lebih rendah daripada kadar oksigen pada air tawar.
4. pH Nilai pH merupakan hasil pengukuran aktivitas ion hidrogen dalam perairan dan menunjukan keseimbangan antara asam dan basa air. Nilai pH dipengaruhi oleh beberapa faktor antara lain aktivitas biologis seperti fotosintesis dan respirasi organisme, suhu, dan keberadaan ion-ion dalam perairan (Pescod, 1973). Nilai pH mempengaruhi toksisitas senyawa kimia di perairan. Senyawa ammonium yang dapat terionisasi banyak ditemukan pada perairan dengan pH rendah. Pada suasana alkalis (pH tinggi) lebih banyak ditemukan ammonia yang tidak terionisasi (unionized) dan bersifat toks ik (Boyd, 1990). Proses biokimiawi seperti nitrifikasi juga turut dipengaruhi oleh pH. Proses tersebut akan berakir jika pH bersifat asam.
III. METODE PENELITIAN
A. Tempat dan Waktu Penelitian Penelitian ini dilaksanakan pada bulan September 2004 selama 15 hari di Laboratorium Kultur Alga, Departemen Manajemen Sumberdaya Perairan, FPIK, IPB. Analisis fisika dan kimia dilakukan di Laboratorium Produktivitas dan Lingkungan Perairan, Departemen Manajemen Sumberdaya Perairan, FPIK, IPB.
B. Metode Penelitian 1. Rancangan Perlakuan Kegiatan penelitian ini difokuskan pada pengukuran kandungan unsur hara (N, P, Si) pada air media yang diberi substrat zeocrete. Substrat zeocrete yang digunakan diperkaya unsur hara yang berasal dari larutan pupuk teknis. Sedangkan media air yang digunakan adalah air laut yang sebelumnya dibuat dalam kondisi steril dari plankton. Konsentrasi larutan pupuk yang ditambahkan pada substrat ini yaitu: 0,02 ppm (dilambangkan dengan ZK1), 0,2 ppm (dilambangkan ZK2), dan 2 ppm (dilambangkan dengan ZK3) pa da rasio N/P yang sama yaitu 30:1. Untuk konsentrasi N di setiap perlakuan mengikuti rasio N/P yang sejalan dengan tingkat pengkayaan P pada substrat. Selanjutnya ditambahkan pula perlakuan dengan substrat zeocrete tanpa penambahan nutrien (dilambangkan dengan ZK0). Rancangan perlakuan dalam kajian ini didasarkan pada hasil kajian sebelumnya, yaitu oleh Krisanti (2003) yang mendapatkan bahwa P sulit terlepas dari komponen zeolit. Oleh karena itu dalam penelitian ini dicobakan pemberian beberapa tingkat konsentrasi pupuk P pada substrat zeocrete. Adapun alasan penggunaan rasio N/P 30:1 dalam penelitian ini didasarkan pada pengetahuan bahwa pada rasio tersebut media air optimum dalam mendukung kehidupan organisme diatom (Massenreng, 2002). Diatom sangat diharapkan keberadaanya dalam proses budidaya perikanan karena berperan sebagai pakan alami yang memiliki nilai gizi yang baik.
13
2. Rancangan Percobaan 2.1 Persiapan 2.1.1 Alat dan Bahan Persiapan dimulai dengan mensterilisasi terlebih dahulu media dan semua peralatan yang akan digunakan pada pelaksanaan penelitan. Tujuan sterilisasi agar media beserta alat dan wadah menjadi steril atau bebas dari segala organisme kontaminan.
Alat-alat dan wadah yang akan digunakan dicuci
sampai bersih dengan sabun terlebih dahulu, kemudian diberi alkohol 70%. Untuk air media digunakan air laut dengan salinitas 25-30‰ yang sudah disterilisasi dengan cara merebusnya sampai mendidih, kemudian dilakukan penyesuaian dengan lingkungan yang akan digunakan untuk penelitian Adapun alat dan bahan yang digunakan dalam tahap persiapan adalah: Stoples 3000 ml, aerator, selang, pipa paralon, saringan bertingkat dengan mesh size
0,425 mm dan 1 mm, ember, baki, lesung, autoclave, dan timbangan
digital. Bahan-bahan yang digunakan adalah HCL, NaOH, pupuk (TSP, Urea dan sodium metasilika) serta akuades.
2.1.2 Substrat Zeocrete Dalam penelitian ini digunakan substrat zeocrete yang merupakan campuran zeolit, semen putih dan ijuk yang diperkaya oleh kandungan nutrien sediaan biologis dari cairan pupuk teknis. Sebelum dilakukan pencampuran, komponen zeolit yang akan digunakan terlebih dahulu diaktivas i. Aktivasi zeolit dimaksudkan untuk meningkatkan kemampuan zeolit dalam menukar ion-ion yang dikandungnya. Adapun tahapan pengaktivasiannya sebagai berikut: 1. Zeolit yang berupa bongkahan di tumbuk untuk mendapatkan ukuran yang lebih kecil.
Zeolit ini kemudian disaring dengan menggunakan saringan
bertingkat dengan mesh size 0,425 mm dan 1 mm. Ukuran zeolit yang diinginkan adalah ukuran di antara kedua saringan di atas. 2. Pencucian
zeolit
dengan
menggunakan
akuades
de ngan
tujuan
menghilangkan debu-debu yang ada, kemudian zeolit dikeringkan. 3. Tahap pengasaman zeolit dengan menggunakan larutan HCL 0,02 N. Zeolit direndam dalam larutan HCL 0,02 N dengan dosis 50 gram zeolit ke dalam
14
1000 ml selama 24 jam. Setelah itu zeolit dicuci dengan akuades sampai bersih. 4. Ze olit direndam ke dalam larutan NaOH selama 24 jam, kemudian zeolit dicuci dengan a kuades sampai bersih. 5. Tahap terakhir, yaitu tahap pemanasan zeolit dengan menggunakan oven pada suhu 150 oC selama 1 jam. Zeolit yang telah dipanaskan tersebut adalah zeolit yang telah diaktivasi dan siap digunakan untuk membuat substrat. Setelah pengaktivasian, zeolit kemudian dicampurkan dengan cairan pupuk teknis sebagai sumber unsur hara sediaan biologis.
Cairan yang digunakan
dalam pembentukan substrat zeocrete ini adalah cairan pupuk dengan konsentrasi P yang telah ditentukan. Konsentrasi P yang diberikan adalah 0,02 ; 0,2; dan 2 ppm pada rasio N:P = 30:1 dan satu substrat tanpa pengkayaan unsur hara. Pupuk yang digunakan adalah TSP yang mengandung 32% P2 O5 , urea yang mengandung 46% nitrogen, serta sodium metasilika yang mengandung 34% Si(OH) 2 (Cara perhitungan pupuk pada Lampiran 1). Substrat zeocrete yang digunakan merupakan substrat padat berbentuk balok. Proses pemadatan dilakukan dengan mencampurkan komponen zeolit yang telah diperkaya oleh cairan pupuk teknis dengan semen dan ijuk. Komposisi ketiga bahan tersebut adalah dua bagian zeolit dicampur dengan satu bagian semen berdasarkan volume, dan ditambahkan ijuk sebanyak 1 kg setiap 50 kg semen. Selanjutnya campuran tersebut dibentuk dalam bentuk balok dengan luas permukaan 3 x 3 cm2 dengan ketebalan 2 cm. Bentuk penampakan blok substrat dapat dilihat pada Gambar 2.
Gambar 2. Bentuk penampakan blok substrat
15
Setelah dikeringkan, badan substrat dilapisi dengan lilin kecuali permukaan atasnya. Perlakuan ini dimaksudkan agar proses pelepasan unsur hara yang berasal dari susbtrat hanya melalui melalui permukaan atasnya. Blok substrat tersebut selanjutnya diletakkan dalam stople s yang berisi air laut (Gambar 3).
A
B
Gambar 3. Posisi substrat pada stoples, A. Posisi substrat tampak samping, B. Posisi substrat tampak atas Wadah yang digunakan adalah stoples berkapasitas 2,5 liter sebanyak 20 buah, dengan rincian: lima stoples untuk perlakuan substrat tanpa nutrien serta masing-masing lima stoples untuk setiap perlakuan subtrat bernutrien. Rancangan tata letak stoples yang digunakan dalam penelitian dapat dilihat pada Gambar 4.
Gambar 4. Susunan stoples dan pipa aerasi Penelitian ini dilakukan di dalam ruang laboratorium tanpa cahaya guna menghindari tumbuhnya algae. Sedangkan kondisi suhu, pH, oksigen terlarut, dan salinitas dijaga agar teta p berada pada rentang kondisi yang mendukung
16
proses-proses penyediaan unsur hara N, P, dan Si pada air media . Untuk suhu diupayakan berada pada kisaran 20-25 ºC, pH pada kisaran 7-8,5, salinitas 2035 promil, da n oksigen terlarut 7-11 mg/l. 2.2 Penelitian 2.2.1 Persiapan Alat dan Bahan Alat yang digunakan dalam penelitian ini yaitu: Spektrofotometer UV160 A Shimadzu, wadah air sample (botol gelap) volume 200 ml sebanyak 20 buah, vacum pump Welch, termometer raksa, refraktometer Atago, pH meter Hanna, DO meter 5509 Lutron, Whatman filter paper, miliophore type HA 0,45 poore size, gelas ukur 50 ml, corong, gelas erlenmeyer, gelas piala, pipet volumetrik, tissue, kapas, kertas label, alumunium foil, baki, dan alat tulis. Bahan yang digunakan adalah: substrat zeocrete, air laut bersalinitas 25-30 promil yang steril, larutan pupuk, akuades serta bahan-bahan yang digunakan untuk analisis kualitas air.
2.2.2 Pengukuran Kualitas Air Metode pengukuran kualitas air dilakukan terhadap nilai suhu, pH, salinitas, dan oksigen terlarut.
Pengukuran kandungan unsur hara pada air
media dilakukan di laboratorium. Unsur hara yang diukur meliputi nitrat, ammonia, ortofosfat dan silika. Metode dan alat ukur dalam mengukur nilai dari parameter fisika-kimia air media dapat dilihat pada Tabel.2. Tabel 2. Parameter fisika-kimia serta metode dan alat ukur yang digunakan. No 1 2 3 4 5 6 7 8
Parameter Kandungan Unsur Hara Nitrat (mg/l) Amonia (mg/l) Ortofosfat (mg/l) Silika (mg/l) Kualitas Air Suhu air ( oC) Salinitas (‰) Nilai pH Oksigen terlarut (mg/l)
Metode dan alat ukur Brucine, spektrofotometer Phenate, spektrofotometer Molybdate Ascorbit Acid, spektrofotometer Molybdosilicate, spektrofotometer Termometer, pemuaian Refraktometer, refraksi cahaya pH-meter, elektroda DO-meter, elektroda
17
2.2.3 Pengambilan Sampe l Pengambilan sampe l air untuk pengukuran nitrat, amonia, ortofosfat dan silika dilakukan dengan cara mengambil air dalam stoples, kemudian dimasukkan ke dalam wadah yang telah disediakan untuk analisis kualitas air. Pengambilan contoh air dilakukan pada hari ke 1, 3, 5, 7, 9, 11, 13, dan 15.
C. Analisis data Data yang diperoleh dari hasil pengamatan disajikan dalam bentuk tabel dan grafik. Selanjutnya dilakukan analisis secara deskriptif untuk mendapatkan informasi yag lebih komprehensif mengenai keberadaan unsur hara N, P dan Si sediaan biologis pada media air laut bersubstrat zeocrete.
IV. HASIL DAN PEMBAHASAN
A. Kandungan Unsur Hara Sediaan Biologis dalam Media Air Laut 1. Amonia Konsentrasi rata-rata amonia pada air media selama periode pengamatan menunjukkan pola yang fluktuatif. Pada awal pengamatan yaitu sebelum media diberi substrat zeocrete, konsentrasi amonia yang diperoleh sebesar 0,6215 mg/l (Lampiran 2). Selanjutnya pada pengamatan hari berikutnya, yaitu setelah substrat berada pada air media, terjadi penurunan konsentrasi untuk semua perlakuan seperti yang ditunjukkan pada Gambar 5. Kondisi ini diduga karena adanya penyerapan kandungan amonia oleh substrat zeocrete. Hasil pengukuran konsentrasi rata-rata amonia setelah air media diberi substrat zeocrete sampai pada akhir pengamatan berkisar antara 0,0951-0,7599 mg/l (Lamp iran 3).
Konsentrasi (mg/l)
Amonia 0.8 0.7 0.6
ZK0
0.5 0.4
ZK1 ZK2
0.3 0.2
ZK3
0.1 0 0
1
3
5
7
9
11
13
15
Pengamatan hari ke-
Gambar 5. Konsentrasi rata-rata amonia selama penelitian Pada air media dengan substrat tanpa nutrien (ZK0) menunjukkan pola yang berbeda dibandingkan dengan perlakuan lainnya. Pada hari ke-7 amonia pada perlakuan ini tidak mengalami peningkatan, sedangkan pada perlakuan lainnya (konsentrasi P 0,02; 0,2; 2 ppm) meningkat. Hal ini diduga karena pada zeocrete tidak ada pengkayaan nutrien sehingga amonia masih dapat terserap substrat sampai hari ke-7. Amonia pada perlakuan air media yang diberi substrat zeocrete dengan
19
konsentrasi P 2 ppm (ZK3) berkisar antara 0,1140–0,7599 mg/l, nilai ini relatif tertinggi dibandingkan dengan perlakuan lainnya. Pola kandungan ammonia yang berfluktuasi diduga sebagai bentuk aktivitas penyerapan dan pelepasan unsur hara oleh substrat. Kandungan amonia yang dilepaskan selain berasal dari unsur N yang terkandung pada zeolit juga berasal dari proses penguraian urea. Selanjutnya kandungan amonia yang diserap substrat terjadi melalui mekanisme pengisian rongga. Amonia yang terserap kemudian terikat pada substrat dalam bentuk ion amonium (NH4 +). Kandungan unsur hara yang cenderung meningkat didasarkan pada sifat zeolit sebagai salah satu komponen penyusun substrat zeocrete. Zeolit tidak melepaskan unsur hara secara sekaligus, tetapi dilepaskan perlahan- lahan sejalan dengan waktu. Dapat diduga lepasan unsur hara merupakan fungsi waktu. Sesuai dengan pernyataan Suwardi (2002) zeolit dapat mengikat dan menyimpan air dan pupuk sementara dan melepasnya kembali serta berfungsi sebagai penyedia lambat (slow release agent) yang mengatur pelepasan unsur hara dalam air.
2. Nitrat Pola penurunan kandungan nutrien pada air laut oleh substrat zeocrete sebelum perlakuan diberikan pada air media kembali ditunjukkan pada awal pengamatan kandungan nitrat (Gambar 6). Konsentrasi nitrat media sebelum diberi perlakuan sebesar 0,4400 mg/l. Kemudian setelah diberi perlakuan, terjadi penurunan konsentrasi yang berkisar antara 0,0102-0,1096 mg/l. Hal ini dikarenakan adanya proses pengisia n rongga pada substrat meskipun telah dilakukan pengkayaan nutrien. Perbedaan kandungan nutrien yang terserap pada keempat perlakuan menunjukkan perbedaan besaran rongga substrat. Besaran rongga merupakan salah satu faktor dalam penyeleksian molekul yang akan terikat pada zeolit (Sherman 1978). Hasil pengukuran nitrat untuk semua perlakuan sampai pada akhir pengamatan berkisar antara 0,2746-0,9217 mg/l (Lampiran 3) dan menunjukkan
20
pola yang fluktuatif (Gambar 6). Kisaran tersebut telah mencapai kisaran yang berpotensi bagi pertumbuhan alga meskipun kandungan haranya masih dalam tahap yang rendah. Hal ini sesuai dengan pernyataan Chu (1943) in Andarias (1991) yang menyebutkan bahwa kisaran nitrat 0,9–3,5 mg/l merupakan konsentrasi optimum untuk pertumbuhan alga. Kisaran nitrat yang masih tergolong rendah ini dipengaruhi oleh faktor pH. Rata-rata pH selama penelitian berada pada kisaran diatas 7, nilai ini sesuai dengan pernyataan Viner (1975) in Pratiwi (1997) bahwa pada tingkat pH diatas 6, kandungan uns ur hara N dalam perairan rendah.
Konsentrasi (mg/l)
Nitrat 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
ZK0 ZK1 ZK2 ZK3
0
1
3
5
7
9
11
13
15
Pengamatan hari ke-
Gambar 6. Konsentrasi rata-rata nitrat selama penelitan
Konsentrasi nitrat terendah sebesar 0,2746 mg/l terjadi di hari ke-11 yaitu pada perlakuan ZK3 dan konsentrasi tertinggi terjadi di hari ke-3 sebesar 0,9217 mg/l juga pada perlakuan ZK3. Perlakuan ZK3 (zeocrete dengan P 2 ppm) juga menunjukkan pola lepasan dan penyerapan yang cenderung lebih tetap sampai pada akhir pengamatan dibandingkan perlakuan lainnya. Perlu diketahui bahwa fluktuasi kandungan N (ammonia dan nitrat) pada air media tidak saja dikarenakan aktivitas penyerapan dan pelepasan ion oleh substrat. Diduga adanya proses fiksasi perubahan bentuk N (amonifikasi dan nitrifikasi) turut mempengaruhi fluktuasi nilai konsentrasi amonia dan nitrat. Proses fiksasi N yang terjadi sangat dipengaruhi oleh parameter fisika kimia air seperti suhu, pH, salinitas dan DO. Disamping itu proses fiksasi N juga didukung oleh keberadaan bakteri
21
kemotrofik yang mendapat energi dari proses kimiawi tersebut. Keberadaan organisme tersebut diduga turut mempengaruhi kandungan nitrat hasil fiksasi N di air media.
3. Ortofosfat Konsentrasi ortofosfat selama periode pengamatan (H1-H15) fluktuatif dan berkisar antara 0,0054-0,0186 mg/l (Gambar 7 dan Lampiran 3). Kisaran tersebut menunjukkan bahwa lepasan ortofosfat mampu mendukung pertumbuhan diatom, sesuai
dengan
pernyataan
Moyle
(1946)
in
Andarias
(1991)
bahwa
Bacillariophyceae (diatom) akan dominan pada konsentrasi ortofosfat antara 0,00-0,02 mg/l.
Konsentrasi (mg/l)
Ortofosfat 0.04 0.035 0.03
ZK0
0.025
ZK1
0.02
ZK2
0.015
ZK3
0.01 0.005 0 0
1
3
5
7
9
11
13
15
Pengamatan hari ke-
Gambar 7. Konsentrasi rata-rata ortofosfat selama penelitian Pada awal pengamatan substrat zeocrete menyerap sediaan ortofosfat pada air media dengan kisaran serapan sebesar 0,0236-0,0274 mg/l. Nilai serapan ini melebihi nilai lepasan ortofosfat semua perlakua n sampai pada akhir pengamatan. Kondisi demikian menunjukkan bahwa mudahnya P terserap substrat dan sebaliknya sejalan dengan penelitian terdahulu yang menggambarkan sulitnya P terlepas dari zeolit (Krisanti, 2003). Kandungan
ortofosfat
pada
semua
perlakuan
fluktuatif
dengan
kecenderungan meningkat sampai pada akhir pengamatan. Pada perlakuan zeocrete
22
dengan konsentrasi P 2 ppm (ZK3) kandungan ortofosfatnya memiliki nilai yang rendah dibandingkan dengan perlakuan lainnya.
Hal ini menunjukkan bahwa
besarnya pengkayaan P pada substrat yang mengandung zeolit (zeocrete) belum tentu sejalan dengan kandungan P yang dilepaskan pada air media.
4. Silika Berbeda dengan amonia, nitrat dan ortofosfat, pada pengamatan silika terjadi peningkatan konsentrasi yang cukup besar di awal pemberian perlakuan substrat zeocrete pada air media. Konsentrasi silika air laut sebelum diberi perlakuan sebesar 1,9373 mg/l. Selanjutnya terjadi peningkatan konsentrasi dengan kisaran peningkatan mencapai 22,1267 mg/l pada pengamatan hari berikutnya. Peningkatan nilai kandungan silika tertinggi justru ditunjukkan pada substrat zeocrete tanpa pengkayaan nutrien (ZK0). Sehingga dengan demikian pengkayaan silika dengan sodium metasilika (Si(OH)2 ) pada substrat zeocrete tidak memberikan dampak yang berarti dalam proses penyediaan silika sebagai salah satu unsur hara sedia biologis pada media air laut. Konsentrasi rata-rata silika setelah diberikan perlakuan berkisar antara 6,9660-62,7026 mg/l (Lampiran 3). Lepasan silika tersebut mampu mendukung pertumbuhan diatom untuk pembentukan frustule (dinding sel), sesuai dengan Fogg (1975) bahwa diatom tidak akan berkembang dengan baik pada konsentrasi silika yang lebih kecil dari 0,05 mg/l. Pola konsentrasi silika selama periode pengamatan fluktua tif dengan kecenderungan meningkat sampai pada akhir pengamatan seperti terlihat pada Gambar 8.
23
Konsentrasi (mg/l)
Silika 70 60 50
ZK0
40
ZK1
30
ZK2 ZK3
20 10 0 0
1
3
5
7
9
11
13
15
Pengamatan hari ke-
Gambar 8. Konsentrasi rata-rata silika selama penelitian Untuk semua perlakuan, nilai silika terendah terjadi pada hari ke-5 dan tertinggi pada hari ke-13. Gambar 8 juga menunjukkan kandungan silika pada zeocrete tanpa nutrien (ZK0) memiliki kisaran tertinggi dibandingkan dengan perlakuan lainnya, yaitu berkisar antara 9,6640-62,7026 mg/l.
Kisaran ini
menunjukkan bahwa lepasan silika sangat tinggi. Suwardi (2002) menyebutkan bahwa penyus un utama zeolit adalah silika. Untuk itu dapat diduga kandungan silika pada air media selama penelitan tidak saja berasal dari pengkayaan silika pada substrat. Silika juga berasal dari zeolit sebagai salah satu komponen penyusun substrat zeocrete.
B. Rasio N/P pada Media Air Laut Rasio kandungan unsur hara nitrogen (N) dan fosfor (P) penting untuk dibahas kaerena keberadaan organisme autotrof tidak semata- mata dipengaruhi oleh besarnya konsentrasi kedua unsur tersebut, me lainkan juga ditentukan oleh besarnya perbandingan antara keduanya. Besarnya komposisi pada masing- masing unsur menunjukkan tingkatan prioritas kebutuhan unsur hara di perairan. Hal ini sesuai dengan pernyataan Klausmeier (2004) bahwa pada saat kandungan unsur hara P di perairan rendah dan rasio N/P menjadi tinggi, maka P berperan sebagai pembatas untuk mendukung kesetimbangan ekosistem. Begitupun sebaliknya pada saat ketersediaan unsur hara N dan P banyak terdapat di ekosistem dan rasio N/P
24
menjadi rendah, maka N berperan sebagai pembatas dalam mendukung pertumbuhan eksponensial organisme di perairan. Penentuan rasio N/P pada penelitian ini didasarkan pada total kandungan unsur hara N dan P yang dibutuhkan oleh komponen biologis (biological available nutrients). Nilai N diperoleh dari nilai nitrat dan ammonium, sedangkan nilai P diperoleh dari nilai ortofosfat yang terkandung pada air media. Berikut rumus penentuan N total (Fresenius et al, 1988) : N Total (mg/l) = (A x 0,23) + (B x 0,30) + (C x 0.89) + D Keterangan: A = Nitrat B = Nitrit C = Amonium D = N-organik Pada penelitian ini air media diasumsikan tidak mengandung nitrit dan Norganik. Proses penyediaan oksigen melalui aerasi yang terus dilakukan pada air media selama periode pengamatan diduga menyebabkan nitrit tidak stabil karena dengan cepat teroksidasi menjadi nitrat.
Disamping itu media air laut yang
digunakan dalam penelitian ini diupayakan dalam kondisi yang steril tanpa organisme, sehingga pada air media dianggap tidak mengandung N-organik. Oleh karena itu nilai N total pada air media diperoleh dari total nitrat dan amonium. Hasil pengamatan dari hari pertama sampai pada akhir pengamatan, secara umum rasio N/P berkisar antara 10,338-74,992 : 1 (Lampiran 5) dengan puncak nilai rasio terbesar untuk semua perlakuan terjadi pada hari ke-11. Besarnya rasio N/P pada setiap perlakuan relatif sama dan berfluktuasi mengikuti kandungan masing- masing unsur hara pembentuknya, sebagaimana tersaji pada Gambar 9.
25
Konsentrasi (mg/l)
Rasio N/P available 80 70 60
ZK0
50
ZK1
40
ZK2
30
ZK3
20 10 0 0
1
3
5
7
9
11
13
15
Pengamatan hari ke-
Gambar 9. Rasio N/P selama penelitian Untuk zeocrete tanpa nutrien (ZK0) diperoleh rasio N/P 17,926-52,529 : 1. Berdasarkan pernyataan FAO/ UNDP (1978) in Ahmad (1998) apabila rasio N/P berada pada kisaran 10-30 : 1, maka perairan akan didominasi oleh diatom. Oleh karena itu dapat disimpulkan substrat ZK0 memiliki potensi sebagai media tumbuh bagi diatom. Hal ini terlihat pada hasil pengamatan, dimulai dari hari ke-3 (19,970 : 1) sampai pada hari ke-9 (17,926 : 1) rasio N/P berada dalam kisaran yang optimum bagi pertumbuhan diatom. Selanjutnya pada hari ke-11 nilai rasio naik (52,529 : 1) kemudian kembali lagi pada kisaran optimum bagi pertumbuhan diatom di hari ke-13 (27,538 : 1). Pada air media dengan zeocrete dengan pengkayaan P 0,02 ppm (ZK1) diperoleh kisaran rasio N/P sebesar 10,338-69,089 : 1. Kisaran tersebut menunjukkan rentang kisaran terbesar dibandingkan dengan perlakuan lainnya. Berbeda dengan zeocrete tanpa nutrien, pada zeocrete P 0,02 kisaran rasio N/P selama penelitian lebih dominan berada diatas kisaran yang optimum (10-30 : 1) bagi pertumbuhan diatom. Tercatat hanya terjadi sebanyak tiga kali yaitu hari ke-3, 5 dan 9 rasio N/P berada pada kisaran tersebut. Lonjakan nilai rasio tertinggi juga terlihat dari pengamatan pada perlakuan ini, yaitu pada hari ke-11 rasio N/P mencapai 69,089 : 1 yang pada pengamatan sebelumnya sebesar 19,645. Rasio N/P pada perlakuan zeocrete dengan P 0,2 (ZK2) menunjukkan pola fluktuasi yang cenderung lebih stabil dibandingkan dengan perlakuan lainnya.
26
Begitu pula dari nilai rasio N/P yang diperoleh, menunjukkan hasil yang lebih optimum dalam mendukung pertumbuhan diatom dibandingkan dengan perlakuan lainnya. Dari hari pertama pengamatan sampai pada hari ke-9 kisaran rasio berada pada kisaran yang cenderung stabil dan optimum bagi pertumbuhan diatom. Pada pengamatan hari ke-11 nilai rasio N/P mencapai puncaknya yakni sebesar 54,502 : 1. Nilai ini kemudian menurun di hari selanjutnya kembali pada kisaran rasio N/P optimum bagi diatom yaitu sebesar 24,104 : 1 di hari ke-13. Untuk perlakuan substrat zeocrete dengan pengkayaan P terbesar yakni 2 ppm (ZK3) ternyata memperlihatkan rasio N/P terbesar daripada perlakuan lainnya. Nilai rasio N/P pada substrat ZK3 berkisar antara 20,169-74,992 : 1. Perlakuan ini menunjukkan pola fluktuatif yang cenderung meningkat sampai akhir pengamatan. Pengamatan rasio N/P secara umum menunjukkan adanya potensi air media sebagai media tumbuh bagi alga. Kondisi tersebut dikarenakan kemampuan substrat zeocrete yang mengandung zeolit dapat mengontrol kandungan unsur hara pada air media. Nilai rasio N/P yang meningkat dan menurun secara dinamis sejalan dengan nilai konsentrasi unsur hara pembentuknya. Dinamika fluktuasi yang terjadi diduga sebagai bentuk aktivitas susbstrat dalam melepas dan menyerap kandungan unsur hara pada air media Besarnya lepasan dan penyerapan unsur hara di setiap periode pengamatan tidak menunjukkan pola yang sejalan antara peningkatan konsentrasi dengan lepasan. Semakin besar kandungan unsur hara yang diberikan pada substrat belum tentu menghasilkan lepasan unsur hara yang besar pada air media. Hal ini dimungkinkan karena faktor perbedaan besaran rongga akibat struktur terbentuknya zeolit. Besaran rongga mempengaruhi energi hidrasi dan mobilitas kation yang dipertukarkan (Suwardi, 2002).
27
C. Kondisi Lingkungan Penunjang Kondisi lingkungan media pada penelitian ini diupayakan pada kondisi yang tepat untuk dapat mendukung proses-proses penyediaan unsur hara sediaan biologis pada air media. Suhu, salinitas, pH, dan kandungan oksigen terlarut (DO) tidak dijadikan kajian utama pada penelitian ini. Objek pengkajian utama difokuskan pada konsentrasi dan komposisi unsur hara pada air media yang bersubstrat zeocrete baik yang diperkaya nutrien maupun tidak. Dengan demikian selama penelitian keempat parameter tersebut diusahakan tidak berfluktuasi secara signifikan. Selama pengamatan nilai suhu, salinitas, pH, dan oksigen terlarut relatif konstan dengan pola fluktuasi yang sangat kecil (Tabel 3).
Tabel 3. Kisaran nilai suhu, pH, salinitas, dan DO air media selama penelitian Kisaran Nilai
Parameter
Satuan ZK0
ZK1
ZK2
ZK3
1
Suhu
ºC
21,8-23,2
21,7-23,5
20,9-23,2
21,4-23,6
2
pH
-
7,58-7,9
7,8-8,06
7,72-7,96
7,8-8,06
3
Salinitas
Ppt
26,8-30,4
27-30
27-29,8
26,8-29,6
4
DO
-
7,12-8,14
7,2-8,14
7,12- 8,34
7,22-8,3
No.
Nilai kisaran suhu selama pengamatan berkisar antara 20,9–23,6 °C, kisaran ini merupakan kisaran suhu yang optimum bagi proses nitrifikasi. Hal ini sesuai dengan pernyataan Effendi (2003) bahwa pada kisaran suhu 20-25 ºC proses nitrifikasi berjalan secara optimum. Salinitas air media selama pengamatan berkisar antara 26,8–30,4 ‰, nilai ini berada dalam kisaran yang cukup untuk mendukung aktivitas biologis, seperti pertumbuhan alga (Isnansetyo dan Kuniastuty,1995) dan klekap (Andarias, 1991). Selain itu salinitas mempengaruhi proses pembentukan amonium pada air media. Bower (1978) menyatakan bahwa peningkatan salinitas mengakibatkan penurunan laju pembentukan amonium.
28
Kandungan pH air media selama pengamatan relatif tidak berfluktuasi dengan kisaran 7,7-8,06. Kisaran ini mendukung jalannya proses nitrifikasi pada air media. Effendi (2003) menyatakan bahwa pada pH kurang dari 6 (asam) reaksi pada proses nitrifikasi berhenti. Selain itu kestabilan nilai pH juga berpangaruh terhadap proses hidrolisis pembentukan ortofosfat pada air media. Proses hidrolisis polifosfat membentuk ortofosfat semakin cepat dengan menurunnya pH. Kandungan oksigen terlarut (DO) pada air media seperti parameter terkontrol lainnya tidak mengalami fluktuasi yang bersifat ekstrim. Kisaran oksigen terlarut selama periode penga matan berkisar antara 7,12-8,34 mg/l, kisaran ini baik dalam mendukung proses nitrifikasi yang menghasilkan nitrat (Effendi, 2003). Berikut ini diuraikan mengenai hubungan antara kondisi air media dengan keberadaan unsur hara sediaan biologis. Sebagaimana dijelaskan sebelumnya bahwa kandungan unsur hara pada air media sangat dipengaruhi oleh parameter fisikakimia seperti suhu, pH, salinitas, dan oksigen terlarut (DO). Unsur hara yang tersedia pada air media memiliki sifat yang dinamis karena dapat berubah bentuk secara kimiawi. Proses kimiawi ini sangat dipengaruhi oleh nilai dari parameter fisika-kimia air media tersebut. Pengontrolan parameter fisika-kimia yang dilakukan selama periode pengamatan ternyata dapat mendukung penyediaan unsur hara sediaan biolgis pada air media. Kondisi demikian ditunjukkan dengan nilai kandungan unsur hara pada semua perlakuan berada pada kisaran yang optimum dalam mendukung keberadaan komponen biologis khususnya organisme alga. Ryding dan Rast (1989) menyatakan bahwa bentuk N dan P ya ng dipertimbangkan dalam mene ntukan unsur hara pembatas adalah bentuk N dan P yang diperlukan secara biologi, yaitu fosforus terlarut (ortofosfat) dan jumlah konsentrasi nitrogen (ammonium, nitrit dan nitrat). Untuk mengetahui potensi media tumbuh tidak saja melalui pendekatan konsentrasi masing- masing unsur hara (dalam hal ini N dan P) tetapi juga melalui rasio keduanya. Rasio N/P yang
29
diperoleh selama periode pengamatan menunjukkan pola fluktuasi yang berada pada kisaran yang memungkinkan untuk algae tumbuh. Seluruh perlakuan, termasuk pada substrat tanpa pengkayaan nutrien, menunjukkan nilai rasio yang berpotensi sebagai media sediaan biologis bagi algae. Susbstrat zeocrete dengan konsentrasi P 0,2 ppm (ZK2) ternyata menunjukkan pola fluktuasi yang cenderung stabil. Rasio pada perlakuan ini berada dalam kisaran nilai yang optimum dalam mendukung perumbuhan algae khususnya dari jenis diatom.
DAFTAR PUSTAKA Ahmad, T. 1998. Peubah Penting Mutu Air Tambak Udang. Dalam Seminar Budidaya Udang Intensif. Pattra Utama. Jakarta. 20 hal. Andarias, I. 1991. Pengaruh Pupuk UREA dan TSP Terhadap Produksi Klekap. Disertasi. Program Pascasarjana. IPB. APHA (American Public Health Association). 1989. Standard methods for the examination of water and wastewater. 17t h ed. APHA, AWWA (American Waste Water Association) and WPCF (Water Pollution Control Federation). Port. City Press. Baltimore. Maryland. Bower, J.E. 1978. Ionization of ammonia in Seawater. http//scholar.lib.vt.edu/theses/available/etd-83098-133919/unrestricted.ed/thesis.pdf
Boyd, C.E. 1990. Water Quality in Ponds for Aquaculture. Alabama Agricultural Experiment Station, Auburn University. Birmingham Publishing Co. Alabama. Effendi, H. 2003. Telaah Kualitas Air: Bagi Pengelolaan Sumberdaya dan Lingkungan Perairan. Penerbit Kanisius. Yogyakarta. Fogg, G. E. 1975. Algae Cultures and Phytoplankton Ecology. The University of Wisconsin Press, Ma dison, Milwaukee and London. Goldman, G. R dan A. J. Horne. 1983. Limnology. McGraw Hill Book Company. Isnansetyo, A. dan Kurniastuty. 1995. Teknik Kultur Phytoplankton dan Zooplankton. Pakan Alami untuk Pembenihan Organisme Laut. Penerbit Kanisius. Yogyakarta. Jeffries, M. B. dan Mills, D. 1996. Freshwater Ecology, Principles and Aplications. Jhon Willey and Sons. Chicester, UK. 285p. Klausmeier, C. 2004. Phytoplankton and Climate Change : Model shows longheld constant in Ocean Nutrient Ratio May Very as Ecological Conditions Changes. Georgia Institute of Technology, Atlanta, Georgia Krisanti, M. 2003. Peran Zeolit Sebagai Substrat dan Penyedia Unsur Hara Bagi Mikroalga. Tesis. IPB. Massenreng. 2002. Komposisi dan Kelimpahan Fitoplankton Crysophyta (Phaeodactylum sp., Chaetoceros sp., dan Pavlova sp.) Pada Berbagai Tingkat Kandungan Unsur Hara Nitrogen, Fosfor dan Silikat. Manajemen Sumberdaya Perairan. FPIK. IPB.
30
Martsudarmo, B. 1989. Pengaruh substrat dan Pakan yang Berbeda Terhadap Pertumbuhan dan kelulusan Larva Udang Windu Produksi Pembenihan. Dirjen Perikanan Jakarta. 56hal. Musa, M. 1992. Komposisi, Biomassa, dan Produktivitas Fitoplankton serta Hubungannya Terhadap Faktor Fisika-Kimiawi Perairan Waduk Selorejo, Malang, Jawa Timur. Tesis. Pascasarjana. IPB. Nontji, A. 1984. Biomassa dan Produktivitas Fitoplankton di Perairan Teluk Jakarta serta Kaitannya dengan Faktor -faktor Lingkungan. Tesis. Pascasarjana. IPB. Bogor. Nybakken, J. W. 1992. Biologi Laut, suatu pendekatan ekologis. Alih bahasa H. M. Eidman, Koesoebiono, D. G. Bengen, M. Hutomo, S. Sukardjo, P. T. Gramedia. Jakarta. Novotny, V and Olem, H. 1994. Water Quality, Prevention, Identification, and Management of Diffuse Pollution. Van Nostrans Reinhold. New York 1054p Pescod, M. B. 1973. Investigation of Rational Effluent and Stream Standard for Tropical Countries. Bangkok : AIT. Pratiwi, N. T. M. 1997. Kepekaan Komunitas Fitoplankton Terhadap Perubahan Unsur Hara di Tambak Bersubstrat Pasir. Tesis. Pascasarjana IPB. Rachmawati, M. dan M. Sutarti. 1994. Zeolit. Pusat Dokumentasi dan Informasi Ilmiah. LIPI. Jakarta. Round, F.E. 1973. The Biology of Algae. 2nd Edition. Edward Arnold Ltd. New York. Ryding, S.O dan W. Rast. 1989. The Control of Eutrophication of lakes and Reservoir. The Partenon Publishing. London. 314pp. Sellers, B. H. dan H.R. Markland. 1987. Decaying Lakes : The Origin and Control of Eutrophication. Jhon Willey and Sons. Chicester: 244p. Sherman, J. D. 1978. Ion Exchange Separation With Molecular sieve zeolites. American Institute of Chemical Engineers Symposium Series. Suwardi. 2002. Pemanfaatan Zeolit untuk Meningkatkan Produksi Tanaman Pangan, Peternakan, dan Perikanan. Makalah Seminar Teknologi Aplikatif Pertanian. Fakultas Pertanian IPB. Bogor. Wetzel, R. G. 1975. Limnology. W.B. Sounders Co. Philadelphia, Pennsylvania. 743p
Lampiran
34
Lampiran 1. Perhitungan Pupuk
1. Pupuk TSP yang digunakan mengandung 32% P2O5 maka untuk 1000 mg TSP = 320 mg P2O5. Sehingga jika akan dibuat pupuk induk TSP dengan konsentrasi 1000 ppm P 2O 5 dibutuhkan pupuk TSP sebesar : 1000 mgP2 O5 x1000 mgTSP = 3125 mg TSP atau 3,125 gram TSP dalam 1 320 mgP2 O5 liter akuades.
2. Pupuk Urea yang digunakan mengandung 46% N maka untuk 10000 mg Urea = 4600 mg N. Sehingga jika akan dibuat pupuk induk Urea dengan konsentrasi 10000 ppm N dibutuhkan pupuk Urea sebesar : 10000 mgN x10000 mgUrea = 21739 mg Urea atau 21,739 gram Urea dalam 4600 mgN 1 liter akuades.
3. Pupuk Sodium Metasilika yang digunakan mengandung 34% Si(OH) 2 maka untuk 1000 mg Sodium Metasilika = 340 mg Si(OH) 2. Sehingga jika akan dibuat pupuk induk Sodium Metasilika dengan konsentrasi 1000 ppm Si(OH) 2 dibutuhkan pupuk Sodium Metasilika sebesar : 1000 mgSi(OH ) 2 x1000 mgSodiumMetasilika= 2941 mg Sodium Metasilika 340 mgSi(OH ) 2 atau 2,941 gram Sodium Metasilika dalam 1 liter akuades.
35
Lampiran 2. Kandungan unsur hara pada air media sebelum diberi perlakuan (H0)
Ulangan 1 Ulangan 2 Rata -rata
Nitrat 0.4880 0.3920 0.4400
Amonia 0.6230 0.6200 0.6215
Orto-P 0.0340 0.0340 0.0340
36
Lampiran 3. Konsentrasi rata-rata unsur hara pada air media selama penelitian (H1-H15)
Hari 1 3 5 7 9 11 13 15
Amonia (mg/l) ZK0 ZK1 ZK2 0.2471 0.2279 0.1880 0.1936 0.1076 0.1542 0.0951 0.0902 0.1128 0.0951 0.4447 0.3392 0.1831 0.2294 0.1678 0.4350 0.6275 0.5404 0.2572 0.2525 0.2418 0.5843 0.6851 0.7164
ZK3 0.2156 0.0802 0.1140 0.3933 0.2896 0.7599 0.3847 0.6730
Hari 1 3 5 7 9 11 13 15
ZK0 0.4298 0.4342 0.3750 0.8935 0.8415 0.8498 0.6226 0.6317
Nitrat (mg/l) ZK1 ZK2 0.3750 0.3304 0.2804 0.4444 0.3070 0.3494 0.7362 0.8188 0.6967 0.5906 0.6988 0.5509 0.9053 0.3887 0.6391 0.7922
ZK3 0.4138 0.9217 0.3354 0.7739 0.6114 0.2746 0.4821 0.6784
Hari 1 3 5 7 9 11 13 15
Ortofosfat (mg/l) ZK0 ZK1 ZK2 0.0066 0.0076 0.0094 0.0129 0.0137 0.0145 0.0079 0.0054 0.0077 0.0148 0.0126 0.0143 0.0186 0.0168 0.0169 0.0108 0.0101 0.0107 0.0127 0.0111 0.0119 0.0134 0.0119 0.0140
ZK3 0.0104 0.0123 0.0076 0.0116 0.0108 0.0095 0.0110 0.0122
Hari 1 3 5 7 9 11 13 15
ZK0 24.0640 26.9134 9.6640 28.7428 31.0414 39.9366 62.7026 39.0004
Silika (mg/l) ZK1 ZK2 10.2342 8.6212 24.5474 26.5120 7.8080 8.2900 23.9536 26.1118 25.1566 25.1400 31.9546 40.4492 58.1676 55.3594 26.2756 29.3922
ZK3 23.3304 24.8358 6.9660 22.1816 21.3676 25.5300 54.2636 25.7730
37
Lampiran 4. Nilai rata-rata beberapa parameter fisika-kimia selama penelitian
Hari 1 3 5 7 9 11 13 15
ZK0 7.8 7.72 7.8 7.74 7.9 7.7 7.78 7.58
pH ZK1 7.84 7.8 7.8 7.84 8.06 7.9 7.9 7.875
ZK2 7.82 7.78 7.8 7.76 7.96 7.78 7.74 7.72
ZK3 7.88 7.8 7.86 7.9 8.06 7.98 7.98 7.9
Hari 1 3 5 7 9 11 13 15
ZK0 8.14 7.92 7.5 7.12 7.52 7.34 7.22 7.26
DO (mg/l) ZK1 8.14 7.46 7.3 7.38 7.34 7.16 7.2 7.26
ZK2 8.34 7.46 7.24 7.2 7.12 7.5 7.36 7.28
ZK3 8.3 7.46 7.4 7.32 7.22 7.28 7.24 7.24
Hari 1 3 5 7 9 11 13 15
ZK0 27 26.8 27.6 28 28.8 27.6 28.8 30.4
Salinitas (Ppt) ZK1 ZK2 27 27 27.4 27.8 28.4 27.6 28.6 28.4 28.6 28.8 27.4 27.8 27.6 27.8 30 29.8
ZK3 27 26.8 28.4 29 28.8 27.2 28.4 29.6
Hari 1 3 5 7 9 11 13 15
ZK0 21.8 21.8 22.3 22.4 22.7 22.4 23.2 23.2
Suhu (ºC) ZK1 22.7 21.7 21.8 22.6 22.4 23 23.5 23.4
ZK2 21.9 20.9 22.2 22.2 22. 4 22.8 23.1 23.2
ZK3 21.9 21.4 22.8 22.4 22.6 23.4 23.6 23.5
38
Lampiran 5. Tabel rasio N/P pada air media selama penelitian Hari 0 1 3 5 7 9 11 13 15
ZK0 16,52279 44.92244 19.97039 19.47924 18.69327 17.92681 52.52902 27.53863 48.6635
ZK1 16,52279 35.63735 10.33861 24.55498 43.57487 19.64503 69.08964 36.86099 61.71558
ZK2 16,52279 23.94413 14.98196 21.2232 32.91014 15.19026 54.50233 24.10486 57.12486
ZK3 16,52279 25.41264 21.52031 20.61987 43.52243 33.54352 74.99224 38.74483 59. 95676