Úvod do umělé inteligence –
T1: umělá inteligence jako vědní disciplína
ELECTROLUX ESI 6221 K Myčka v novém Alpha 1 designu s Fuzzy logic technologií
Úvod do umělé inteligence –
T1: umělá inteligence jako vědní disciplína
www.sony.cz
Umělá inteligence = = „umělá“ + „inteligence“ První generace robota AIBO: krok směrem k umělé inteligenci
CleanMate 365
Umělé = člověkem vytvořený artefakt (umělá hmota, umělý sníh, umělý kloub…)
CleanMate 365 je inteligentní robotický vysavač, který za Vás doma perfektně vysaje a zamete.
• existuje nějaká přirozená věc, kterou je možno duplikovat • existuje záměr člověka vytvořit duplikát oné přirozené věci • došlo k provedení záměru
ACECAD Enterprises DigiMemo A502 digitální poznámkový blok
ACECAD MyScript Notes Handwriting Recognition - Praktický program pro převod ručně psaného textu do editovatelné podoby určený pro ACECAD DigiMemo A502.
More interactions, alliances and realistic artificial intelligence responses put players in the middle of negotiations, trade systems and diplomatic actions. (www.civ3.com)
P. Berka, 2007
1/20
Úvod do umělé inteligence –
T1: umělá inteligence jako vědní disciplína
P. Berka, 2007
2/20
Úvod do umělé inteligence –
Inteligence
T1: umělá inteligence jako vědní disciplína
Druhy inteligence
• Inteligence je všeobecná schopnost individua vědomě orientovat vlastní myšlení na nové požadavky, je to všeobecná duchovní schopnost přizpůsobit se novým životním úkolům a podmínkám. (W. Stern) • Inteligence je vnitřně členitá a zároveň globální schopnost individua účelně jednat, rozumně myslet a efektivně se vyrovnávat se svým okolím. (D. Wechsler) • Inteligence je schopnost zpracovávat informace. Informacemi je třeba chápat všechny dojmy, které člověk vnímá. (J. P. Guilford)
• Abstraktní inteligence - schopnost řešit dobře definované akademické problémy s jednoznačnou odpovědí. Dobře koreluje s úspěšností v akademickém životě. • Praktická inteligence - schopností řešit problémy každodenního života. V těchto případech řešení není jednoznačné a zpravidla existuje několik alternativních způsobů. Nejasná je často i formulace úkolu. • Sociální inteligence - schopnost pohybovat se v sociálním prostředí, tj. umět jednat s lidmi. • Emoční inteligence - ovlivňuje úspěšnost jedince v rodině, na pracovišti, v sociálních a intimních vztazích.
Inteligence je to, co dokáží lidé a ne stroje. (odpůrci AI) P. Berka, 2007
3/20
P. Berka, 2007
4/20
Úvod do umělé inteligence –
T1: umělá inteligence jako vědní disciplína
Umělá inteligence (AI) Umělá inteligence je věda o vytváření strojů nebo systémů, které budou při řešení určitého úkolu užívat takového postupu, který - kdyby ho dělal člověk - bychom považovali za projev jeho inteligence. (Minsky, 1967) Umělá inteligence se zabývá tím, jak počítačově řešit úlohy, které dnes zatím zvládají lidé lépe. (Rich, 1991) . . . Umělá inteligence je označení uměle vytvořeného jevu, který dostatečně přesvědčivě připomíná přirozený fenomén lidské inteligence.
Úvod do umělé inteligence –
T1: umělá inteligence jako vědní disciplína
Umělá inteligence se zabývá problematikou postupů zpracování poznatků - osvojováním a způsobem použití poznatků při řešení problémů. . . .
Nejrůznější definice, které mohou být klasifikovány do čtyř skupin (Russell, Norvig, 2003):
…jako lidé …racionálně Myslet… Silná AI
Klasická AI
Jednat… Slabá AI
Nová AI
Umělá inteligence označuje tu oblast poznávání skutečnosti, která se zaobírá hledáním hranic a možností symbolické, znakové reprezentace poznatků a procesů jejich nabývání, udržování a využívání. P. Berka, 2007
Úvod do umělé inteligence –
5/20
T1: umělá inteligence jako vědní disciplína
Silná (strong) AI Povaha mysli je algoritmická, přičemž není podstatné, v jakém médiu (mozek, počítač, …) jsou algoritmy implementovány = v počítači lze replikovat lidskou mysl.
P. Berka, 2007
6/20
Úvod do umělé inteligence –
T1: umělá inteligence jako vědní disciplína
Tři pohledy na AI • Klasická AI chápe inteligenci jako atribut jedné mysli
• Distribuovaná AI chápe inteligenci jako produkt sociálních interakcí více myslí
Slabá (weak) AI Modelování dílčích projevů mysli (např. schopnosti usuzovat nebo řešit problémy).
Klasická AI Modelování mysli na logicko-symbolické úrovni.
• Nová AI vidí inteligenci jako emergentní výsledek činnosti primitivních entit
Nová AI K racionálnímu chování není třeba racionální usuzování.
P. Berka, 2007
7/20
P. Berka, 2007
8/20
Úvod do umělé inteligence –
T1: umělá inteligence jako vědní disciplína
Dva základní myšlenkové proudy • Logicko-symbolický (klasický) – modelování shora dolů • reprezentacionalizmus • deliberativnost
Úvod do umělé inteligence –
T1: umělá inteligence jako vědní disciplína
Začátky umělé inteligence 1950 Alan Turing: Computing Machinery and Intelligence. Mind 59, 1950, s.433-460 „Mohou stroje myslet?“ Turingův test: úkolem stroje je v komunikaci s experimentátorem předstírat, že je člověk.
• Konekcionistický, případně nová AI – modelování zdola nahoru
od roku 1991 Loebnerova cena pro program, který nejlépe uspěje v redukované podobě Turingova testu viz www.loebner.net/Prizef/loebner-prize.html
• emergentní funkcionalita • dekompozice na úrovni úloh • reaktivita
Hlavní námitka: test neměří myšlení ale chování J. Searle (1980): Čínská komnata P. Berka, 2007 P. Berka, 2007
Úvod do umělé inteligence –
10/20
9/20
T1: umělá inteligence jako vědní disciplína
Úvod do umělé inteligence –
Eliza (1965), J. Weizenbaum
T1: umělá inteligence jako vědní disciplína
Etapy výzkumu
pacient: Ahoj. Eliza: AHOJ, JAK SE CÍTÍŠ ? pacient: Cítím se strašně. Eliza: CO TÍM PŘESNĚ MYSLÍŠ ? pacient: Jsem v depresi. Eliza: PROČ SI MYSLÍŠ, ŽE JSI V DEPRESI. pacient: Protože je mi smutno. Eliza: ŽIJEŠ S RODINOU ? pacient: Ne. Eliza: MÁŠ PŘÁTELE ? pacient: Celkem ne. Eliza: PROČ ? pacient: Nevím. Eliza: OPRAVDU NEVÍŠ NEBO SE JEN VYHÝBÁŠ ODPOVĚDI ? pacient: Dřív jsem přátele měl. Eliza: KDY ? pacient: Než jsem se oženil. Eliza: NEŘEKL JSI MI, ŽE SES OŽENIL. pacient: Už jsem se zase rozvedl. Eliza: POVĚZ MI O SVÉM ROZVODU.
• 50.-60. léta: hledání univerzálního řešícího postupu • 70.-90. léta: otázka reprezentace znalostí • 90.- léta: učení a adaptace, komunikace
(D. Lodge, Svět je malý) P. Berka, 2007 P. Berka, 2007
11/20
12/20
Úvod do umělé inteligence –
T1: umělá inteligence jako vědní disciplína
Úvod do umělé inteligence –
Historie AI
1981
model neuronu McCulloch, Pitts 1943 1950 Turingův test Turing 1950 šachy jako prohledávání Shanon 1956 Dartmouthská konference (pojem Minsky, McCarthy, AI) Simon, Newell 1957 Perceptron Rosenblatt GPS (General Problem Solver) Newell, Simon, Shaw formální gramatiky Chomsky 1958 LISP McCarthy 1965 DENDRAL Feigenbaum, Buchanan fuzzy logika Zadeh rezoluční princip Robinson 1968 sémantické sítě Quillian SHRDLU Winograd Macsyma (symbolické Moses integrování) 1969 kniha Perceptrons Minsky, Papert robot Shakey SRI 1970 PROLOG Colmerauer, Roussell 1971 HEARSAY I Lesser 1973 MYCIN Shortliffe, Buchanan 1975 rámce Minsky 1976 Dempster-Shaferova teorie Dempster, Shafer PROSPECTOR Duda, Hart 1977 OPS Forgy 1978 R1/XCON McDermott 1979 ReTe algoritmus Forgy
1982 1983 1984 1987
P. Berka, 2007
13/20
Úvod do umělé inteligence –
T1: umělá inteligence jako vědní disciplína
1989 1993 1995 1997 1998 2000 2004 2006
japonský projekt počítačů páté generace connection machine Hopfieldova neuronová síť intervalová aritmetika CyC kniha Society of Mind reaktivní agenti ALVINN (autonomous land vehicle in a neural network) humanoidní robot Cog robotické auto Deep Blue RoboCup (fotbal) semantický web „sociální“ robot Kismet web ontology language OWL OpenCyC
Hillis Hopfield Allen Lenat Minski Brooks Pomerleau Brooks Dickmanns IBM Berners-Lee Breazeal
P. Berka, 2007
14/20
Úvod do umělé inteligence –
Oblasti (technologicky)
T1: umělá inteligence jako vědní disciplína
Oblasti (oborově)
1. Řešení úloh a. Prohledávání b. Plánování 2. Reprezentování znalostí 3. Usuzování 4. Zpracování neurčitosti 5. Učení 6. Adaptace 7. Komunikace 8. Reaktivita 9. Vnímání
P. Berka, 2007
T1: umělá inteligence jako vědní disciplína
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
15/20
Hraní her Dokazování teorémů Rozpoznávání obrazů Zpracování přirozeného jazyka Expertní systémy Robotika Strojové učení Dobývání znalostí z databází Neuronové sítě Počítačové vidění Multiagentní systémy Umělý život
P. Berka, 2007
16/20
Úvod do umělé inteligence –
T1: umělá inteligence jako vědní disciplína
Part III Knowledge and Reasoning 7 Logical Agents 8 First-Order Logic 9 Inference in First-Order Logic 10 Knowledge Representation Part IV Planning 11 Planning 12 Planning and Acting in the Real World Part V Uncertain Knowledge and Reasoning 13 Uncertainty 14 Probabilistic Reasoning 15 Probabilistic Reasoning Over Time 16 Making Simple Decisions 17 Making Complex Decisions Part VI Learning 18 Learning from Observations 19 Knowledge in Learning 20 Statistical Learning Methods 21 Reinforcement Learning Part VII Communicating, Perceiving, and Acting 22 Communication 23 Probabilistic Language Processing 24 Perception 25 Robotics Part VIII Conclusions 26 Philosophical Foundations 27 AI: Present and Future
S. Russell, P. Norvig: Artificial Intelligence: A Modern Approach Prentice Hall, 2002
Part I Artificial Intelligence 1 Introduction 2 Intelligent Agents Part II Problem Solving 3 Solving Problems by Searching 4 Informed Search and Exploration 5 Constraint Satisfaction Problems 6 Adversarial Search
P. Berka, 2007
Úvod do umělé inteligence –
17/20
T1: umělá inteligence jako vědní disciplína
G. Luger: AI: Structures and Strategies for Complex Problem Solving Addison Wesley 2002
I ARTIFICIAL INTELLIGENCE: ITS ROOTS AND SCOPE 1 AI: HISTORY AND APPLICATIONS II ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH 2 THE PREDICATE CALCULUS 3 STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 4 HEURISTIC SEARCH 5 STOCHASTIC METHODS 6 CONTROL AND IMPLEMENTATION OF STATE SPACE SEARCH
P. Berka, 2007
III REPRESENTATION AND INTELLIGENCE: THE AI CHALLENGE 7 KNOWLEDGE REPRESENTATION 8 STRONG METHOD PROBLEM SOLVING 9 REASONING IN UNCERTAIN SITUATIONS IV MACHINE LEARNING 10 MACHINE LEARNING: SYMBOL-BASED 11 MACHINE LEARNING: CONNECTIONIST 12 MACHINE LEARNING: SOCIAL AND EMERGENT V ADVANCED TOPICS FOR AI PROBLEM SOLVING 13 AUTOMATED REASONING 14 UNDERSTANDING NATURAL LANGUAGE VI LANGUAGES AND PROGRAMMING TECHNIQUES FOR ARTIFICIAL INTELLIGENCE 15 AN INTRODUCTION TO PROLOG 16 AN INTRODUCTION TO LISP VII EPILOGUE 17 ARTIFICIAL INTELLIGENCE AS EMPIRICAL ENQUIRY
19/20
Úvod do umělé inteligence –
T1: umělá inteligence jako vědní disciplína
P.H.Winston: Artificial Intelligence, Addison-Wesley, 1992
I Representations and Methods 1 The Intelligent Computer 2 Semantic Nets and Description Matching 3 Generate and Test, Means-Ends Analysis, and Problem Reduction 4 Nets and Basic Search 5 Nets and Optimal Search 6 Trees and Adversarial Search P. Berka, 2007
Úvod do umělé inteligence –
Nils Nilsson: Artificial Intelligence, A New Synthesis Morgan Kaufman, 1998
7 Rules and Rule Chaining 8 Rules, Substrates, and Cognitive Modeling 9 Frames and Inheritance 10 Frames and Commonsense 11 Numeric Constraints and Propagation 12 Symbolic Constraints and Propagation 13 Logic and Resolution Proof 14 Backtracking and Truth Maintenance 15 Planning II Learning and Regularity Recognition 16 Analyzing Differences 17 Explaining Experience 18 Correcting Mistakes 19 Recording Cases 20 Managing Multiple Models 21 Building Identification Trees 22 Training Neural Nets 23 Training Perceptrons 24 Training Approximation Nets 25 Simulating Evolution III Vision and Language 26 Recognizing Objects 27 Describing Images 28 Expressing Language Constraints 29 Responding to Questions and Commands Appendix: Relational Databases
18/20
T1: umělá inteligence jako vědní disciplína II Search in State Spaces 7 Agents that Plan 8 Uninformed Search 9 Heuristic Search 10 Planning, Acting, and Learning 11 Alternative Search Formulations and Applications 12 Adversarial Search III Knowledge Representation and Reasoning 13 The Propositional Calculus 14 Resolution in The Propositional Calculus 15 The Predicate Calculus 16 Resolution in the Predicate Calculus 17 Knowledge-Based Systems 18 Representing Commonsense Knowledge 19 Reasoning with Uncertain Information 20 Learning and Acting with Bayes Nets
1 Introduction I Reactive Machines 2 Stimulus-Response Agents 3 Neural Network 4 Machine Evolution 5 State Machines 6 Robot Vision P. Berka, 2007
IV Planning Method Based on Logic 21 The Situation Calculus 22 Planning V Communication and Integration 23 Multiple Agents 24 Communication Among Agents 25 Agent Architectures
20/20