ARTIKEL ILMIAH
PERENGKAHAN TERMAL (THERMAL CRACKING) CAMPURAN OLI BEKAS DAN MINYAK JELANTAH UNTUK MENGHASILKAN BAHAN BAKAR MINYAK
Oleh SHINTIA PUTRI AMALIA A1C112031
FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS JAMBI JULI 2017
PERENGKAHAN TERMAL (THERMAL CRACKING) CAMPURAN OLI BEKAS DAN MINYAK JELANTAH UNTUK MENGHASILKAN BAHAN BAKAR MINYAK
Shintia Putri Amalia1, Nazarudin2, Afrida2 1
2
Alumni Prodi Pendidikan Kimia, Jurusan PMIPA, FKIP Universitas Jambi Staf Pengajar Prodi Pendidikan Kimia, Jurusan PMIPA, FKIP Universitas Jambi
E-mail:
[email protected] ABSTRAK Oli bekas pada umumnya hanya digunakan untuk melumasi rantai motor dan tentu saja hal ini tidak efektif untuk memanfaatkan oli bekas. Adapun cara yang dilakukan dalam pemanfaatan oli bekas menjadi bahan bakar adalah dengan cara proses perengkahan (cracking). Akan tetapi, proses untuk perengkahan oli bekas sangat sulit, hal ini karena ikatan karbon dalam oli bekas yang panjang sehingga sulit dalam pemecahannya (cracking). Namun, bisa dilakukan dengan bahan bakar lain yang lebih encer seperti minyak tanah. Harga untuk membeli minyak tanah sendiri cukup mahal sehingga kurang efisien dalam pemanfaatannya. Untuk mengatasi hal ini diperlukan bahan bakar lain yang membantu dalam perengkahan oli bekas. Salah satu bahan bakar yang bisa dimanfaatkan adalah minyak jelantah. Penelitian ini bertujuan untuk mengetahui apakah perengkahan termal (thermal cracking) campuran oli bekas dan minyak jelantah dapat menghasilkan bahan bakar minyak (BBM). Penelitian ini dilakukan menggunakan reaktor semibatch dengan laju alir nitrogen yang dijaga konstan yaitu 5 mL/menit. Ada tiga rasio yang diterapkan dalam penelitian ini yaitu 0,5:1, 1:1, dan 1,5:1, dan tiga variasi suhu yaitu, 4000C, 4500C, dan 5000C. Dari hasil penelitian diperoleh data bahwa pada perengkahan termal pada rasio sampel 0,5:1 dengan suhu perengkahan 500oC dihasilkan cairan hasil perengkahan (CHP) lebih banyak yaitu sebesar 58,90% dibandingkan dengan rasio sampel yang lainnya. Sedangkan pada perengkahan katalitik didapat sebesar 34,2%. Berdasarkan analisa GC-MS produk perengkahan termal campuran oli bekas dan minyak jelantah yang dapat digolongkan kedalam fraksi bensin (C5-C10) sebanyak 5,84%. Untuk fraksi (C13-C17) yang merupakan minyak gas (diesel) sebanyak 0,23%. Sedangkan untuk fraksi minyak gas berat (C18-C25) sebanyak 1,72%. Dari hasil tersebut dapat disimpulkan bahwa perengkahan termal campuran oli bekas dan minyak jelantah dapat berpotensi menghasilkan bahan bakar minyak (BBM). Kata kunci: Perengkahan Termal, Oli Bekas Dan Minyak Jelantah, Bahan Bakar Minyak.
PENDAHULUAN Perengkahan hidrokarbon (cracking) adalah salah satu solusi dalam mendaur ulang limbah oli bekas dan minyak jelantah menjadi bahan bakar. Reaksi ini dapat dilakukan dengan menggunakan suhu tinggi (perengkahan termal). Proses perengkahan panas (thermal cracking process) adalah suatu proses pemecahan rantai hidrokarbon dari senyawa rantai panjang menjadi hidrokarbon dengan rantai yang lebih pendek dengan bantuan panas. Seluruh kendaraan baik itu mobil maupun motor menggunakan oli untuk pelumas mesin alat transportasi. Setelah oli dipakai, oli akan diganti secara berkala untuk mengurangi kerusakan komponen mesin. Oli bekas pada umumnya hanya digunakan untuk melumasi rantai motor dan tentu saja hal ini tidak efektif untuk memanfaatkan oli bekas yang memiliki kandungan hidrokarbon yang cukup tinggi (Raharjo, 2009). Namun sayangnya bila oli bekas dibuang sembarangan akan menimbulkan masalah lingkungan yang serius seperti pencemaran air, tanah, bahkan bisa menyebabkan penyakit ginjal, syaraf dan kanker bagi manusia. Oleh karena itu, solusi yang tepat untuk pemanfaatan limbah oli bekas adalah sebagai bahan bakar yang bernilai ekonomi tinggi. Adapun cara yang dilakukan dalam pemanfaatan oli bekas menjadi bahan bakar adalah dengan cara proses perengkahan (cracking). Akan tetapi, proses untuk perengkahan oli bekas sangat sulit, hal ini karena ikatan karbon dalam oli bekas yang panjang sehingga sulit dalam pemecahannya (cracking). Selain itu,
dalam oli bekas terdapat kontaminan baik secara fisik (logam dan abu) maupun secara kimiawi (pelarut dan air) (Prayitno, 1999). Untuk menggunakan oli bekas sebagai bahan bakar diperlukan perlakuan terlebih dahulu sehingga dapat diperoleh karakteristik bahan bakar yang baik terutama dalam kemudahan penyalaan dan temperatur pembakaran. Prayitno (1999) meneliti kemungkinan minyak pelumas bekas dapat digunakan sebagai minyak bakar dengan penambahan asam sulfat, tanah liat serta fuel oil, serta dengan mendestilasikannya hingga temperatur 200oC. Penambahan H2SO4 bertujuan untuk mengurangi kandungan senyawa olefin, aromatik maupun senyawa nonhidrokarbon yang terdapat dalam minyak pelumas bekas. Penambahan tanah liat bertujuan untuk mengendapkan kotoran, mengabsorb senyawa sulfur dan memperbaiki warna. Walaupun biayanya relatif murah namun proses pengolahan pelumas bekas dengan metode ini memiliki beberapa resiko. H2SO4 yang sudah tidak terpakai akan menimbulkan pencemaran baru apabila dibuang sembarangan, demikian pula tanah liat yang telah tercampur dengan kotoran dan senyawa sulfur. Raharjo (2009) menyebutkan bahwa ada cara lain yang dapat dilakukan untuk perengkahan oli bekas adalah mencampurkannya dengan bahan bakar lain yang lebih encer, seperti minyak tanah. Berdasarkan penelitian yang telah dilakukan Raharjo (2009) menunjukkan bahwa proses untuk perengkahan oli bekas sangat sulit, namun bisa dilakukan dengan bahan bakar lain yang lebih encer seperti minyak tanah. Akan tetapi, harga
untuk membeli minyak tanah sendiri cukup mahal sehingga kurang efisien dalam pemanfaatannya. Untuk mengatasi hal ini diperlukan bahan bakar lain yang membantu dalam perengkahan oli bekas. Salah satu bahan bakar yang bisa dimanfaatkan adalah minyak jelantah. Minyak jelantah merupakan minyak limbah proses penggorengan, diyakini sangat berbahaya bila terus digunakan atau dibuang tanpa pengolahan. Disisi lain, minyak jelantah memiliki potensi energi bakar yang cukup tinggi. Minyak jelantah sangat berbahaya jika digunakan dan dikonsumsi kembali. Sebab, minyak jelantah merupakan minyak goreng yang telah dipergunakan berulang kali dengan menggunakan suhu yang tinggi. Akibat penggunaaan suhu tinggi ini, secara kimia terjadi pemutusan ikatan rangkap pada asam lemak tak jenuh, sehingga asam lemak jenuh ini mudah teroksidasi. Asam lemak jenuh sangat beresiko menimbulkan penyakit kanker, penyumbatan pembuluh darah, dan kolestrol tinggi (Kadarwati, dkk, 2010). Walaupun minyak jelantah berbahaya bagi kesehatan, tetapi dapat dimanfaatkan menjadi bahan bakar alternatif, karena minyak jelantah memiliki rantai hidrokarbon panjang yang memungkinkan dapat dimanfaatkan sebagai bahan bakar sehingga minyak jelantah tidak hanya menjadi limbah dan dibuang. Gunawan (2010) meneliti pembuatan bio-oil dari minyak jelantah dengan merancang bangun unit pirolisis skala laboratorium, yang terdiri atas tangki umpan, reaktor, umpan N2, separator dan tangki penampung secara operasional mampu untuk membuat bio-oil dari minyak jelantah. Reaktor dirancang
dan dibuat dengan diameter 3 in, dan panjang 40 cm, bagian dalamnya diisi dengan bahan isian kuarsa, dilengkapi dengan pemanas, tanpa adanya oksigen (karena N2 sebagai blanketing) bisa menjalankan proses perengkahan termal terhadap minyak jelantah. Kondisi terbaik yang dicapai untuk memperoleh bio-oil yaitu pada suhu pirolisis 4000C, ketebalan bahan isian kuarsa 15 cm, dan ukuran partikel kuarsa -6+8 mesh. Bio-oil adalah bahan bakar cair yang dihasilkan melalui teknologi pirolisis atau pirolisis cepat. Pengembangan bio-oil dapat menggantikan posisi bahan bakar hidrokarbon dalam industri, seperti untuk mesin pembakaran, boiler, mesin diesel statis, dan heavy fuel oil, light fuel oil. Berdasarkan latar belakang tersebut, penulis tertarik untuk melakukan penelitian dengan judul Perengkahan Termal (Thermal Cracking) Campuran Oli Bekas Dan Minyak Jelantah Untuk Menghasilkan Bahan Bakar Minyak. METODOLOGI PENELITIAN Sampel yang digunakan adalah limbah oli bekas dari mobil Toyota Avanza dengan jarak tempuh 9.000 km dan limbah minyak jelantah dari hasil penggorengan ibu rumah tangga dengan pemakaian minyak 3x penggorengan. Alat yang digunakan dalam penelitian ini merupakan reaktor semi batch, sebagai wadah atau tempat berlangsungnya reaksi. Gambar rangkaian alat reaktor semibatch dapat dilihat pada gambar 1.
tiap 5 menit hingga selesai sampai 30 menit. Desain penelitian sebagai berikut:
Gambar 1. Rangkaian alat reaktor semibatch
Keterangan: a.Termocouple b.Gas nitrogen c.Thermocontrol d.Flowmeter e.Reaktor semibatch f.Furnace g.Wadah cairan hasil perengkahan h.Kondensor Prosedur penelitian ini dimulai dari memasukkan sampel kedalam reactor rengkah kemudian setelah suhu perengkahan tercapai dialiri gas nitrogen. Sampel oli bekas yang telah disiapkan dicampurkan dengan sampel minyak jelantah yang telah disiapkan. Variasi perbandingan minyak jelantah dengan oli bekas adalah (0,5:1), (1:1), (1,5:1). Kemudian kedua sampel bersama direngkah dengan reaktor rengkah. Setelah itu diberi panas hingga diperoleh suhu perengkahan. Suhu perengkahan yang digunakan adalah 400oC, 450 oC, 500oC. Setelah suhu perengkahan tercapai kemudian dialiri dengan gas nitrogen yang laju alirannya dijaga tetap pada 5 mL/menit. Cairan hasil perengkahan (CHP) yang dihasilkan ditampung pada penampung CHP. Cairan hasil perengkahan diamati dan ditimbang
adalah
Tabel 1. Desain Penelitian perengkahan termal campuran minyak jelantah dan oli bekas (Gasperz, 1995) Kondisi reaksi X1 X2 ke 1 -1 -1 2 -1 1 3 1 -1 4 1 1 5 0 0 6 0 0 7
0
0
Keterangan : X1 : Rasio sampel X2 : Temperatur Berdasarkan tabel diatas untuk lebih jelas variasi temperatur dan rasio perengkahan termal campuran minyak jelantah dan oli bekas dapat dilihat pada tabel 2. Tabel 2. Variasi rasio massa sampel dan temperatur perengkahan termal campuran minyak jelantah dan oli bekas Kondisi reaksi ke1 2 3 4 5 6 7
keterangan :
Rasio 0,5:1 0,5:1 1,5:1 1,5:1 1:1 1:1 1:1
Temperatur (oC) 400 500 400 500 450 450 450
1 = 10 gram 0,5 = 5 gram 1,5 = 15 gram
Analisa yang digunakan dalam penelitian ini adalah menggunakan analisa gravimetri dan GC-MS.
(Gas Chromatography-Mass Spectrometry). Analisa kromatografi gas ditujukan untuk mengetahui komponen yang paling besar persentasenya, serta dapat mengetahui range jumlah atom karbon dari cairan hasil perengkahan. Untuk analisa GC-MS dilakukan di Laboratorium Kimia Organik Fakultas MIPA Universitas Gadjah Mada.
Analisa Gravimetri Nazarudin (2007) menyatakan bahwa analisa gravimetri digunakan untuk menentukan persen cairan hasil perengkahan (CHP), dan padatan dari perengkahan termal terhadap sampel. Perhitungan untuk mencari presentase-presentase tersebut adalah: a. % CHP = (
πππππ‘ πΆπ»π πππππ‘ π πππππ ππ’ππβππ’ππ πππππ‘ πππππ‘ππ
b. % Padatan = (
) π₯ 100 %
πππππ‘ π πππππ ππ’ππβππ’ππ
) π₯ 100 %
Analisa Metode Permukaan Respon Analisa metode permukaan respon dengan aplikasi komputer matlab digunakan untuk melihat pengaruh variabel bebas X (rasio sampel dan temperatur) terhadap variabel tak bebas (variabel terikat) Y (hasil perengkahan).
Untuk berat gas yang tidak terkondensasi tidak bisa ditimbang secara langsung karena gas yang dihasilkan tidak ditampung. Jadi, berat gas dihitung dengan rumus: Berat Gas = (berat sampel mula-mula) - (berat CHP total + berat padatan)
Sedangkan untuk mencari persentase gas yang tidak terkondensasi sebagai berikut: % Gas = (
πππππ‘ πππ πππππ‘ π πππππ ππ’ππβππ’ππ
) π₯ 100 %
HASIL DAN PEMBAHASAN
(Nazarudin, 2000).
Hasil perengkahan termal campuran oli bekas dan minyak jelantah berupa produk cair (cairan hasil perengkahan), kokas (padatan), dan uap yang tak dapat terkondensasi (gas). Hasil perengkahan termal campuran oli bekas dan minyak jelantah dapat dilihat dalam tabel 3.
Analisa GC-MS Cairan hasil perengkahan dianalisis menggunakan GC-MS. Untuk menganalisa cairan hasil perengkahan (CHP) digunakan alat kromatografi gas-spektrometer massa Minyak jelantah (g)
Tabel 3. Data perengkahan termal campuran oli bekas dan minyak jelantah. Oli Temperatur CHP CHP Padatan bekas (0C) (g) % Kokas Kokas Sisa Sisa (g) (g) (%) reaksi reaksi
Gas (g)
Gas (%)
-
-
(g) 9,82
% 64,8
4,14
27,3
5,02
10,14
400
1,2
7,9
5,003
10,492
500
9,127
58,9
0,165
1,1
-
-
6,203
40
15,097
10
400
4,747
18,9
-
-
9,744
38,8
10,606
42,3
15,093
10,383
500
6,878
27
0,043
0,2
-
-
18,555
72,8
10,089
9,933
450
6,769
33,8
0,894
4,5
-
-
12,359
61,7
10,058
10,255
450
7,917
39
0,185
0,9
-
-
12,211
60,1
10,09
9,915
450
8,144
40,7
0,24
1,2
-
-
11,621
58,1
Cairan Hasil Perengkahan atau yang disingkat dengan CHP merupakan
produk utama hasil penelitian ini. Cairan hasil perengkahan termal
campuran oli bekas dan minyak jelantah pada kondisi reaksi ke-2 secara umum menghasilkan konversi CHP yang lebih besar daripada konversi CHP hasil perengkahan lainnya. Fakta ini ditunjukkan oleh konversi tertinggi CHP hasil perengkahan termal campuran oli bekas dan minyak jelantah sebesar 58,9 %. Jika dilihat dari konversi CHP dengan perbandingan massa yang sama yaitu pada kondisi reaksi 1 dan 2 dengan suhu perengkahan 4000C dan 5000C selain itu juga kondisi reaksi 3 dan 4 dengan suhu perengkahan 4000C dan 5000C. Kedua perbandingan massa yang sama itu menunjukkan bahwa pada suhu 5000C dihasilkan konversi CHP lebih besar dari pada konversi CHP pada suhu 4000C. Sedangkan untuk kondisi reaksi 5, 6, dan 7 dengan perbandingan massa yang sama konversi CHP yang dihasilkan hampir mendekati persentase yang sama. Berdasarkan konversi di atas suhu sangat mempengaruhi reaksi perengkahan semakin tinggi suhu (batas optimum) maka konversi perengkahan akan semakin besar. Proses perengkahan termal campuran oli bekas dan minyak jelantah juga menghasilkan produk berupa padatan atau yang disebut sebagai kokas. Kokas hasil perengkahan termal campuran oli bekas dan minyak jelantah diperoleh pada kondisi reaksi kedua, keempat, kelima, keenam dan ketujuh. Sehingga, berdasarkan hasil penelitian ini dapat dikatakan bahwa perengkahan termal pada temperatur yang lebih tinggi dapat menghasilkan kokas. Kokas yang dihasilkan dari proses perengkahan termal campuran oli bekas dan minyak jelantah seperti serbuk arang berwarna hitam dan aspaltena berwarna hitam dan
lengket. Aspaltena merupakan senyawa kompleks yang paling sering ditemukan dan selalu ada dalam proses pengolahan minyak bumi (Iqbal, 2012). Sedangkan sisa reaksi merupakan reaktan yang tidak berubah, sehingga sisa reaksi yang tersisa didalam reaktor tidak semuanya terengkah dengan baik sehingga tidak semua sampel ikut bereaksi, oleh sebab itu sisa reaksi yang tersisa didalam reaktor berwarna hitam dan kental seperti bentuk oli. Berdasarkan hasil penelitian ini, sisa reaksi terjadi pada kondisi reaksi kesatu dan ketiga. Jadi, dapat disimpulkan bahwa pada temperatur yang lebih tinggi konversi padatan yang diperoleh akan lebih sedikit. Sedangkan pada temperatur yang lebih rendah jumlah padatan yang terbentuk lebih banyak. Hasil konversi padatan sedikit menandakan terjadinya reaksi perengkahan yang baik. Banyaknya hasil konversi padatan hasil perengkahan menyatakan bahwa perengkahan kurang optimal. Perengkahan termal campuran oli bekas dan minyak jelantah juga menghasilkan produk berupa gas (uap yang tidak dapat terkondensasi). Namun gas tersebut tidak ditampung karena gas yang keluar cukup banyak. Sehingga untuk menghitung gas yang dihasilkan selama perengkahan dapat dilakukan dengan cara berat sampel mula-mula dikurang dengan jumlah berat chp total dan berat padatan yang dihasilkan. Secara umum konversi gas hasil perengkahan termal campuran oli bekas dan minyak jelantah cukup tinggi. Namun, pada kondisi reaksi ke-1 sangat rendah dari pada konversi gas hasil perengkahan pada kondisi reaksi yang lainnya. Fakta ini ditunjukkan oleh konversi
terendah gas hasil perengkahan termal campuran oli bekas dan minyak jelantah sebesar 27,3%. Selain perengkahan termal dilakukan juga perengkahan katalitik, Perengkahan katalitik di lakukan sebagai pembanding, perengkahan campuran minyak jelantah dan oli bekas juga dilakukan dengan menggunakan katalis atau biasa disebut dengan perengkahan katalitik. Perbandingan rasio sampel yang direngkah menggunakan katalitik yaitu dari hasil analisis gravimetri terbanyak yaitu pada perbandingan rasio sampel 0,5:1 dengan suhu perengkahan 5000C, CHP yang diperoleh sebanyak 58,9% . Katalis yang digunakan adalah katalis HUSY sebanyak 1 gram. Berat CHP yang didapat sebesar 5,555 gram dengan persentase 34,2%. CHP yang dihasilkan berwarna coklat kekuningan dan didasarnya seperti ada lapisan berwarna putih. Kokas yang dihasilkan menempel di bagian bawah reaktor bercampur dengan katalis dan berwarna coklat. Setelah reaksi perengkahan selesai, katalis yang semula berwarna putih berubah menjadi coklat. Berat kokas yang didapat yaitu sebesar 1,0892 gram dengan persentase sebesar 6,7%. Gas yang tidak dapat terkondensasi sebanyak 9,6 gram dengan persentase 59,1%. Persentase CHP pada perengkahan katalitik mengalami penurunan dibandingkan dengan perengkahan termal. Hal ini disebabkan karena fraksi ringan yang dihasilkan lebih banyak dari pada yang dihasilkan pada perengkahan termal. Fraksi ringan ini mempunyai rentang rantai karbon C1-C4. Pada rentang rantai karbon ini, hidrokarbon berwujud fasa gas dan bersifat tidak
dapat terkondensasi pada temperatur ruangan. Karena temperatur perengkahan katalitik yang digunakan sangat tinggi yaitu pada suhu 5000C akan memicu pemutusan ikatan atom karbon-karbon lanjut lebih banyak sehingga akan diperoleh komponen hidrokarbon ringan yang lebih tinggi sehingga produk cair yang dihasilkan diperkirakan akan semakin sedikit (Askaditya, 2010). Khowatimy,dkk (2014) menyatakan bahwa cairan hasil perengkahan pada perengkahan termal yang didapat lebih tinggi dibandingkan dengan perengkahan katalitik disebabkan karena oli bekas dan minyak jelantah terdiri dari molekul poliaromatik, sehingga jika mnggunakan suhu tinggi dalam perengkahan termal tidak cukup untuk memecahkan cincin aromatic pada oli bekas dan minyak jelantah. Namun, pada perengkahan katalitik cincin aromatic dapat diprotonasi oleh katalis. Fenomena ini menyebabkan terbentuknya fraksi yang lebih ringan dalam fase gas pada perengkahan katalitik dibandingkan pada perengkahan termal. Hal ini sejalan dengan hasil penelitian yang dilakukan oleh Lestary (2015) tentang perengkahan katalitik sampah plastik jenis polipropilen (PP) menggunakan katalis H-USY dan Cr-USY hasil regenerasi untuk menghasilkan bensin. Pada penelitian ini dilakukan perengkahan sampah plastik secara termal maupun katalitik. Adapun katalis yang digunakan adalah HUSY, Cr-USY 0,1%, dan Cr-USY 0,3% hasil regenerasi setelah dipakai sebelumnya untuk proses perengkahan dengan sampel yang sama. Perolehan konversi CHP terkecil adalah pada perengkahan menggunakan katalis H-USY yaitu
sebanyak 73,3% sedangkan konversi CHP pada perengkahan termal dan katalitik menggunakan Cr-USY 0,3% berturut-turut adalah 78,6% dan 77,8%.
16.
Hasil analisa GC perengkahan termal campuran oli bekas dan minyak jelantah menunjukkan adanya 19 puncak.
21.
Gambar 2. Kromotogram GC perengkahan termal campuran oli bekas dan minyak jelantah
Dari hasil analisa MS terdapat 24 senyawa yang terkandung pada perengkahan termal campuran oli bekas dan minyak jelantah. Senyawa tersebut antara lain (tabel 4): Tabel 4.Senyawa yang terkandung pada perengkahan termal campuran oli bekas dan minyak jelantah. No Nama Rumus Berat Senyawa Molekul Molekul 1. Oxalid acid C2H2O4 90 2. Carbamic acid CH3NO2 61 3. Furan,2C5H6O 82 methyl 4. Acetic Acid C2H4O2 60 5. 2-Propanone, C3H6O2 74 1-hydroxy 6. Acetaldehyde C2H4O 44 7. 2-Propenoic C3H4O2 72 Acid 8. 1,2C5H8O 84 butadiene,3methoxy 9. 2,5C6H10O2 114 Hexanedione 10. 2-Pentanone, C6H12O 100 3-methyl 11. Heneicosane C21H44 296 12. Pentacosane C25H52 352 13. Docosane C22H46 310 14. Tricosane C23H48 324 15. Eicosane C20H42 282
17. 18. 19. 20.
22. 23. 24.
Octadecane, 2methyl triacontane Germacrane Tridecanol Cyclopentane heneicosyl Docosanoic Acid 1-Hexacosanol 9-octadecenal Di βn-octyl phthalate
C19H40
268
C30H62 C15H30 C13H28O C26H52
422 210 200 364
C22H44O2
340
C26H54O C18H34O C24H38O4
382 266 390
Berdasarkan produk perengkahan termal campuran oli bekas dan minyak jelantah yang termasuk bahan bakar minyak adalah senyawa Furan,2-methyl (C5H6O), 1,2-butadiene,3-methoxy (C5H8O), dan 2-Pentanone, 3-methyl (C6H12O) yang dapat digolongkan kedalam fraksi bensin (C5-C10) sebanyak 5,84%. Untuk fraksi (C13-C17) yang merupakan minyak gas (diesel) sebanyak 0,23% dan senyawa yang termasuk fraksi minyak gas (diesel) adalah senyawa Germacrane (C15H30). Sedangkan untuk fraksi minyak gas berat (C18-C25) sebanyak 1,72% dan senyawa yang tergolong kedalam senyawa tersebut adalah senyawa Heneicosane (C21H44), Pentacosane (C25H52), Docosane (C22H46), Tricosane (C23H48), Eicosane (C20H42), dan Octadecane, 2-methyl (C19H40). Hasil GC perengkahan katalitik campuran oli bekas dan minyak jelantah menunjukkan adanya 9 puncak.
Gambar 3. Kromotogram GC perengkahan katalitik campuran oli bekas dan minyak jelantah
Sedangkan berdasarkan hasil MS terdapat 10 senyawa yang terkandung pada perengkahan katalitik campuran oli bekas dan minyak jelantah. Senyawa tersebut antara lain carbamic acid (CH3NO2), Aceton (C3H6O), Formic acid (C4H6O2), Acetic Acid (C2H4O2), 2Propanone, 1-hydroxy (C3H6O2), 2Propenoic Acid (C3H4O2), 2-methyl2,3-epoxy-1-propanol (C4H8O2), 1propene,1-propoxy-,(Z) (C6H12O), Cyclopentanone (C5H8O) dan 2Cyclopentenone (C5H6O). Analisa Permukaan Respon Terhadap Data Perengkahan Termal Campuran Oli Bekas Dan Minyak Jelantah. Analisa Terhadap Konversi Cairan Hasil Perengkahan Analisis statistika menggunakan metode permukaan respon. Konversi cairan hasil perengkahan dijadikan sebagai variabel terikat sedangkan temperatur dan rasio massa sampel dijadikan sebagai variabel bebas. Analisis menggunakan permukaan respon menghasilkan suatu model matematika sebagai berikut: Y= 32,57 - 5,5X1 + 15X2
kepercayaan 1% (18) maka korelasi masing-masing variabel bebas terhadap variabel terikat juga kurang. Dari persamaan (1.1) terlihat bahwa koefisien regresi variabel bebas X2 lebih tinggi dari koefisien regresi variabel bebas X1, sehingga dapat disimpulkan bahwa variabel temperatur (X2) lebih berpengaruh terhadap variabel terikat Y (konversi, hasil (yield)) daripada variabel rasio massa oli bekas dengan minyak jelantah. Analisa regresi linear menunjukkan bahwa grafik yang diperoleh berbentuk garis lurus yang mendaki. Hal ini menunjukkan bahwa pada penelitian ini belum berhasil ditemukannya kondisi optimum untuk perengkahan campuran oli bekas dengan minyak jelantah. Namun hasil ini sangat bermanfaat sebagai data awal atau landasan untuk penelitian lanjutan dalam rangka mencari titik optimum. Gambar grafik tiga dimensi untuk satu variabel Y dan dua variabel X dapat dilihat pada gambar 4.
(1.1)
Dari persamaan (1.1) menunjukkan bahwa nilai koefisien determinasi (R2) adalah (0,6057), nilai R2 ini dapat menunjukkan bahwa secara umum antara variabel Y (konversi, hasil (yield)) dengan variabel X (temperatur dan rasio sampel) mempunyai korelasi yang rendah. Selain itu, dengan analisa permukaan respon dapat diketahui bahwa F hitung untuk regresi (3,072) ternyata lebih kecil daripada nilai F tabel baik untuk selang kepercayaan 5% (6,94) maupun untuk selang
X2: Temperatur
Temperatur
X1: Rasio massa sampel oli bekas dan minyak jelantah
Gambar 4. Grafik konversi CHP terhadap rasio massa sampel dan temperatur
Analisa Terhadap Konversi Gas Apabila konversi gas dijadikan sebagai variabel terikat sedangkan temperatur dan rasio massa sampel dijadikan variabel bebas. Maka dari hasil analisa permukaan respon akan
menghasilkan suatu matematika sebagai berikut: Y = 51,8 + 12X1 + 10,8X2
model
Analisa Terhadap Konversi Padatan (Kokas dan Sisa Reaksi) Analisa permukaan respon untuk konversi padatan menghasilkan suatu model matematika sebagai berikut:
(1.2)
Dari persamaan (1.2) menunjukkan bahwa nilai koefisien determinasi (R2) adalah (0,7018), nilai R2 ini dapat menunjukkan bahwa secara umum antara variabel Y (konversi, hasil (yield)) dengan variabel X (temperatur dan rasio sampel) mempunyai korelasi yang rendah. Selain itu, dengan analisa permukaan respon dapat diketahui bahwa F hitung untuk regresi (4,7061) ternyata lebih kecil daripada nilai F tabel baik untuk selang kepercayaan 5% (6,94) maupun untuk selang kepercayaan 1% (18) maka korelasi masing-masing variabel bebas terhadap variabel terikat juga kurang. Dari persamaan (1.2) terlihat bahwa koefisien regresi variabel bebas X1 lebih tinggi dari koefisien regresi variabel bebas X2, sehingga dapat disimpulkan bahwa variabel rasio massa oli bekas dan minyak jelantah lebih berpengaruh terhadap variabel terikat Y (konversi, hasil (yield)) daripada variabel temperatur. Gambar grafik tiga dimensi untuk satu variabel Y dan dua variabel X dapat dilihat pada gambar 5.
Y = 15 - 6,7X1 β 25,57X2
(1.3)
Dari persamaan (1.3) menunjukkan bahwa nilai koefisien determinasi (R2) adalah (0,7078), nilai R2 ini menunjukkan bahwa secara umum antara variabel Y (konversi, hasil (yield)) dengan variabel X ( temperatur dan variasi rasio sampel) mempunyai korelasi yang rendah. Selain itu, dengan analisa permukaan respon dapat diketahui bahwa F hitung untuk regresi (4,8438) ternyata lebih kecil daripada nilai F tabel baik untuk selang kepercayaan 5% (6,94) maupun untuk selang kepercayaan 1% (18) maka korelasi masingmasing variabel bebas terhadap variabel terikat juga kurang. Dari persamaan (1.3) terlihat bahwa koefisien regresi variabel bebas X2 lebih tinggi dari koefisien regresi variabel bebas X1, sehingga dapat disimpulkan bahwa variabel temperatur (X2) lebih berpengaruh terhadap variabel terikat Y (konversi, hasil (yield)) daripada variabel rasio massa oli bekas dengan minyak jelantah. Gambar grafik tiga dimensi untuk satu variabel Y dan dua variabel X dapat dilihat pada gambar 6. 50
40
Konversi kokas (%)
40
X2: Temperatur
Temperatur
X1: Rasio massa sampel oli bekas dan minyak jelantah
Gambar 5. Grafik konversi gas terhadap rasio massa sampel dan temperatur
30
30 20
20
10 10
0 -10
0 -20 1 0 X2,Temperatur (Celcius)
X2: Temperatur
Temperatur
-1
-1
-0.5
0
0.5
1
-10
X1,Minyak Jelantah:Oli)
X1: Rasio massa sampel oli bekas dan minyak jelantah
Gambar 6. Grafik konversi padatan terhadap rasio massa sampel dan temperatur
KESIMPULAN DAN SARAN Dari uraian di atas dapat disimpulkan sebagai berikut: 1. Perengkahan termal campuran oli bekas dan minyak jelantah dapat berpotensi menghasilkan bahan bakar minyak (BBM). Berdasarkan analisa GC-MS produk perengkahan termal campuran oli bekas dan minyak jelantah yang dapat digolongkan kedalam fraksi bensin (C5-C10) sebanyak 5,84%. Untuk fraksi (C13-C17) yang merupakan minyak gas (diesel) sebanyak 0,23%. Sedangkan untuk fraksi minyak gas berat (C18-C25) sebanyak 1,72% 2. Variasi kadar campuran minyak jelantah pada oli bekas dan temperatur tidak mempunyai korelasi yang signifikan terhadap cairan hasil perengkahan (CHP), ditunjukkan dengan rendahnya nilai koefisien determinasi (R2) yakni 0,6057 3. Dari analisa gravimetri untuk perbandingan rasio sampel dan temperatur yang optimal untuk perengkahan pencampuran oli bekas dan minyak jelantah terhadap cairan hasil perengkahan (CHP) yaitu pada kondisi reaksi ke 2, dengan rasio sampel perbandingan 0,5: 1 atau 5 gram minyak jelantah dan 10 gram oli bekas dengan suhu perengkahan 5000C Berdasarkan hasil penelitian dan kesimpulan yang diperoleh, penulis menyarankan bagi penelitian selanjutnya, dari data yang didapat bisa dijadikan data awal atau landasan untuk penelitian lanjutan pada perengkahan campuran oli bekas dan minyak jelantah untuk menghasilkan bahan bakar minyak.
DAFTAR RUJUKAN Askaditya, G, 2010, Studi Eksperimental Pirolisis Minyak Pelumas Bekas Menggunakan Katalis Zeolit, Skripsi, Universitas Sebelas Maret, Surakarta. Gaspersz, V., 1995. Teknik Analisis Dalam Penelitian Percobaan. Bandung:Tarsito. Gunawan, Edi, 2010. Rancang Bangun Unit Pirolisis untuk Pembuatan Bio-Oil Dari Minyak Jelantah Skala Laboratorium, Lembaran Publikasi LEMIGAS, 44 (1): 78-86. Iqbal, Ahmad. Diakses tanggal 3 agustus 2016. Minyak Bumi. http://ahmadiqbal32.blogspot.c o.id/2012/02/minyakbumi.html Kadarwati, Sri., Susatyo, Eko Budi., dan Ekowati, Dhian., 2010. Aktivitas Katalis Cr/Zeolit Alam Pada Reaksi Konversi Minyak Jelantah Menjadi Bahan Bakar Cair, 8 (1). Khowatimy, Fathonatu Anisa., Priastomo, Yoga., Febriyati, Erna., Riyantoko, Harkam., dan Trisunaryanti, Wega, 2014, Study of waste lubricant hydrocracking inti fuel fraction over the combination of YZeolite and ZnO catalyst dalam Sustain, Science Direct, hal. 225-234, Elsevier B.V, Jepang. Lestary, E.W., 2015. Perengkahan Katalitik Sampah Plastik Jenis Polipropilen (PP) Menggunakan Katalis H-Usy
Dan Cr-Usy Hasil Regenerasi Untuk Menghasilkan Bensin, Skripsi, Universitas Jambi, Jambi. Nazarudin, 2000. Optimasi Kondisi Reaksi Perengkahan Katalitik Fraksi Berat Minyak Bumi dengan Katalis Cr-Zeolit Alam dan Ni-Zeolit Alam, Tesis, Universitas Gadjah Mada, Yogyakarta. Nazarudin, 2007. Optimasi Dengan Response Surface Methodology pada Kondisi Reaksi Perengkahan Crude Palm Oil (CPO) Menggunakan Katalis
Cr-Carbon. J.Sains MIPA, 13 (2): 127-133. Prayitno, 1999. Studi Pemanfaatan Minyak Pelumas Bekas sebagai Minyak Bakar. Prosiding Seminar Nasional Dasar-dasar dan Aplikasi Perpindahan Panas dan Massa, ISBN 97995620-0-7: 159-162 Raharjo, Wahyu Purwo, 2009. Pemanfaatan Oli Bekas Dengan Pencampuran Minyak Tanah Sebagai Bahan Bakar Pada Atomizing Burner. Jurnal Penelitian Sains Dan Teknologi, 10 (2): 156-168.