A Szekszárdi I. Béla Gimnázium Helyi Tanterve
Négy évfolyamos gimnázium Fizika
Készítette: a gimnázium természettudományi munkaközössége
2015.
Tartalomjegyzék
1. Alap szintű helyi tanterv Bevezetés 9. évfolyam 10. évfolyam 11. évfolyam
2. Emelt szintű helyi tanterv Bevezetés 9. évfolyam emelt óraszámú 10. évfolyam emelt óraszámú 11. évfolyam emelt szintű 12. évfolyam emelt szintű
3. oldal 4. oldal 7. oldal 15. oldal 25. oldal
40- oldal 41. oldal 44. oldal 53. oldal 64. oldal 77. oldal
Az I. Béla Gimnázium helyi tanterve Fizika tantárgyból alap óraszámú képzés 9-11 évfolyam (2+2+2)
2015
Készítette az iskola természettudományi szakmai munkaközössége
FIZIKA B változat Gimnázium (2+2+2 óra) Az alábbi helyi tanterv a kerettantervek kiadásának és jogállásának rendjéről szóló 51/2012. (XII. 21.) számú EMMI rendelet Kerettanterv a gimnáziumok 9-12. évfolyama számára című 3. mellékletében megjelent, a fizika tantárgyra vonatkozóan akkreditált kerettantervi ajánlás alapján készült. A tantárgy sajátosságai, feladatok, alapelvek: A természettudományos kompetencia középpontjában a természetet és a természet működését megismerni igyekvő ember áll. A fizika tantárgy a természet működésének a tudomány által feltárt alapvető törvényszerűségeit igyekszik megismertetni a diákokkal. A törvények harmóniáját és alkalmazhatóságuk hihetetlen széles skálatartományát megcsodáltatva, bemutatja, hogyan segíti a tudományos módszer a természet erőinek és javainak az ember szolgálatába állítását. Olyan ismeretek megszerzésére ösztönözzük a fiatalokat, amelyekkel az egész életpályájukon hozzájárulnak majd a társadalom és a természeti környezet összhangjának fenntartásához, a tartós fejlődéshez, és ahhoz, hogy a körülöttünk levő természetnek minél kevésbé okozzunk sérülést. Nem kevésbé fontos, hogy elhelyezzük az embert kozmikus környezetünkben. A természettudomány és a fizika ismerete segítséget nyújt az ember világban elfoglalt helyének megértésére, a világ jelenségeinek a természettudományos módszerrel történő rendszerbe foglalására. A természet törvényeinek az embert szolgáló sikeres alkalmazása gazdasági előnyöket jelent, de ezen túl szellemi, esztétikai örömöt és harmóniát is kínál. A tantárgy tanulása során a tanulók megismerik az alapvető fizikai jelenségeket és az azokat értelmező modellek és elméletek történeti fejlődését, érvényességi határait, a hozzájuk vezető megismerési módszereket. A fizika tanítása során azt is be kell mutatnunk, hogy a felfedezések és az azok révén megfogalmazott fizikai törvények nemcsak egy-egy kiemelkedő szellemóriás munkáját, hanem sok tudós századokat átfogó munkájának koherens egymásra épülő tudásszövetét jelenítik meg. A törvények folyamatosan bővültek, és a modern tudományos módszer kialakulása óta nem kizárják, hanem kiegészítik egymást. Az egyre nagyobb teljesítőképességű modellekből számos alapvető, letisztult törvény nőtt ki, amelyeket a tanulmányok egymást követő szakaszai a tanulók kognitív képességeinek megfelelő gondolati és formai szinten mutatnak be, azzal a célkitűzéssel, hogy a szakirányú felsőfokú képzés során eljussanak a választott terület tudományos kutatásának frontvonalába. A tantárgy tanulása során a tanulók megismerkedhetnek a természet tervszerű megfigyelésével, a kísérletezéssel, a megfigyelési és a kísérleti eredmények számszerű megjelenítésével, grafikus ábrázolásával, a kvalitatív összefüggések matematikai alakú megfogalmazásával. Ez utóbbi nélkülözhetetlen vonása a fizika tanításának, hiszen e tudomány fél évezred óta tartó „diadalmenetének” ez a titka. Fontos, hogy a tanulók a jelenségekből és a köztük feltárt kapcsolatokból leszűrt törvényeket a természetben újabb és újabb jelenségekre alkalmazva ellenőrizzék, megtanulják igazolásuk vagy cáfolatuk módját. A tanulók ismerkedjenek meg a tudományos tényeken alapuló érveléssel, amelynek része a megismert természeti törvények egy-egy tudománytörténeti fordulóponton feltárt érvényességi korlátainak megvilágítása. A fizikában használatos modellek alkotásában és fejlesztésében való részvételről kapjanak vonzó élményeket és ismerkedjenek meg a fizika módszerének a fizikán túlmutató jelentőségével is. A tanulóknak fel kell ismerniük, hogy a műszaki-természettudományi mellett az
egészségügyi, az agrárgazdasági és a közgazdasági szakmai tudás szilárd megalapozásában sem nélkülözhető a fizika jelenségkörének megismerése. A gazdasági élet folyamatos fejlődése érdekében létfontosságú a fizika tantárgy korszerű és további érdeklődést kiváltó tanítása. A tantárgy tanításának elő kell segítenie a közvetített tudás társadalmi hasznosságának megértését és technikai alkalmazásának jelentőségét. Nem szabad megfeledkeznünk arról, hogy a fizika eszközeinek elsajátítása nagy szellemi erőfeszítést, rendszeres munkát igénylő tanulási folyamat. A Nemzeti alaptanterv természetismeret kompetenciában megfogalmazott fizikai ismereteket nem lehet egyenlő mélységben elsajátítatni. Így a tanárnak dönteni kell, hogy mi az, amit csak megismertet a fiatalokkal, és mi az, amit mélyebben feldolgoz. Az „Alkalmazások” és a „Jelenségek” címszavak alatt felsorolt témák olyanok, amelyekről fontos, hogy halljanak a tanulók, de mindent egyenlő mélységben ebben az órakeretben nincs módunk tanítani. Ahhoz, hogy a fizika tantárgy tananyaga személyesen megérintsen egy fiatalt, a tanárnak a tanítás módszereit a tanulók, tanulócsoportok igényeihez, életkori sajátosságaihoz, képességeik kifejlődéséhez és gondolkodásuk sokféleségéhez kell igazítani. A jól megtervezett megismerési folyamat segíti a tanulói érdeklődés felkeltését, a tanulási célok elfogadását és a tanulók aktív szerepvállalását is. A fizika tantárgy tanításakor a tanulási környezetet úgy kell tehát tervezni, hogy az támogassa a különböző aktív tanulási formákat, technikákat, a tanulócsoport összetétele, mérete, az iskolákban rendelkezésre álló feltételek függvényében. Így lehet reményünk arra, hogy a megfelelő kompetenciák és készségek kialakulnak a fiatalokban. A NAT-kapcsolatok és a kompetenciafejlesztés lehetőségei a következők: Természettudományos kompetencia: A természettudományos törvények és módszerek hatékonyságának ismerete az ember világbeli helye megtalálásának, a világban való tájékozódásának az elősegítésére. A tudományos elméletek társadalmi folyamatokban játszott szerepének ismerete, megértése; a fontosabb technikai vívmányok ismerete; ezek előnyeinek, korlátainak és társadalmi kockázatainak ismerete; az emberi tevékenység természetre gyakorolt hatásának ismerete. Szociális és állampolgári kompetencia: a helyi és a tágabb közösséget érintő problémák megoldása iránti szolidaritás és érdeklődés; kompromisszumra való törekvés; a fenntartható fejlődés támogatása; a társadalmi-gazdasági fejlődés iránti érdeklődés. Anyanyelvi kommunikáció: hallott és olvasott szöveg értése, szövegalkotás a témával kapcsolatban mind írásban a különböző gyűjtőmunkák esetében, mind pedig szóban a prezentációk alkalmával. Matematikai kompetencia: alapvető matematikai elvek alkalmazása az ismeretszerzésben és a problémák megoldásában, ami a 7–8. osztályban csak a négy alapműveletre és a különböző grafikonok rajzolására és elemzésére korlátozódik. Digitális kompetencia: információkeresés a témával kapcsolatban, adatok gyűjtése, feldolgozása, rendszerezése, a kapott adatok kritikus alkalmazása, felhasználása, grafikonok készítése. Hatékony, önálló tanulás: új ismeretek felkutatása, értő elsajátítása, feldolgozása és beépítése; munkavégzés másokkal együttműködve, a tudás megosztása; a korábban tanult ismeretek, a saját és mások élettapasztalatainak felhasználása. Kezdeményezőképesség és vállalkozói kompetencia: az új iránti nyitottság, elemzési képesség, különböző szempontú megközelítési lehetőségek számbavétele. Esztétikai-művészeti tudatosság és kifejezőképesség: a saját prezentáció, gyűjtőmunka esztétikus kivitelezése, a közösség számára érthető tolmácsolása. A fiatalok döntő részének 14-18 éves korban még nincs kialakult érdeklődése, egyformán nyitott és befogadó a legkülönbözőbb műveltségi területek iránt. Ez igaz a kimagasló értelmi képességekkel rendelkező gyerekekre és az átlagos adottságúakra egyaránt.
A fiatal személyes érdeke és a társadalom érdeke egyaránt azt kívánja, hogy a specializálódás vonatkozásában a döntés későbbre tolódjon. A négyosztályos gimnáziumban akkor is biztosítani kell az alapokat a reál irányú későbbi továbbtanulásra, ha a képzés központjában a humán vagy az emelt szintű nyelvi képzés áll. Társadalmilag kívánatos, hogy a fiatalok jelentős része a reál alapozást kívánó életpályákon (kutató, mérnök, orvos, üzemmérnök, technikus, valamint felsőfokú szakképzés kínálta műszaki szakmák) találja meg helyét a társadalomban. Az ilyen diákok számára a rendelkezésre álló szűkebb órakeretben kell olyan fizikaoktatást nyújtani (megfelelő matematikai leírással), ami biztos alapot ad arra, hogy reál irányú hivatás választása esetén eredményesen folytassák tanulmányaikat. A hagyományos fakultációs órakeret felhasználásával, és az ehhez kapcsolódó tanulói többletmunkával az is elérhető, hogy az általános középiskolai oktatási programot elvégző fiatal megállja a helyét az egyetemek által elvárt szakirányú felkészültséget tanúsító érettségi vizsgán és az egyetemi életben. A fizika tantárgy hagyományos tematikus felépítésű helyitanterve hangsúlyozottan kísérleti alapozású, kiemelt hangsúlyt kap benne a gyakorlati alkalmazás, valamint a továbbtanulást megalapozó feladat- és problémamegoldás. A kognitív kompetenciafejlesztésben elegendő súlyt kap a természettudományokra jellemző rendszerező, elemző gondolkodás fejlesztése is. 9–10. évfolyam Az egyes témák feldolgozása minden esetben a korábbi ismeretek, hétköznapi tapasztalatok összegyűjtésével, a kísérletezéssel, méréssel indul, de az ismertszerzés fő módszere a tapasztalatokból szerzett információk rendszerezése, matematikai leírása, igazolása, ellenőrzése és az ezek alapján elsajátított ismeretanyag alkalmazása. A diákok természetes érdeklődést mutatnak a kísérletek, jelenségek és azok megértése iránt. A helyitantervi ciklus a klasszikus fizika jól kísérletezhető témaköreit dolgozza fel, a tananyagot a tanulók általános absztrakciós szintjéhez és az aktuális matematikai tudásszintjéhez igazítva. Ily módon sem a mechanika, sem az elektromágnesség témája nem zárul le a gimnáziumi képzés első ciklusában. A megismerés módszerei között fontos kiindulópont a gyakorlati tapasztalatszerzés, kísérlet, mérés, ehhez kapcsolódik a tapasztalatok összegzése, a törvények megfogalmazása szóban és egyszerű matematikai formulákkal. A fizikatanításban ma már nélkülözhetetlen segéd- és munkaeszköz a számítógép. Célunk a korszerű természettudományos világkép alapjainak és a mindennapi élet szempontjából fontos gyakorlati fizikai ismeretek kellő mértékű elsajátítása. A tanuló érezze, hogy a fizikából tanultak segítséget adnak számára, hogy biztonságosabban közlekedjen, hogy majd energiatudatosan éljen, olcsóbban éljen, hogy a természeti jelenségeket megfelelően értse és tudja magyarázni, az áltudományos reklámok ígéreteit helyesen tudja kezelni. A kerettanterv az új anyag feldolgozására ajánlott óraszámokat adja meg. Ezen felül 16 óra az ismétlésre és számonkérésre fenntartott keret, továbbá 14 óra a szabad tanári döntéssel felhasználható óra. Mindezek összegeként adódik ki a kétéves, 144 órás tantárgyi órakeret. Az integráltan oktatott SNI-tanulókról: Az SNI-tanulók oktatásával kapcsolatban a nemzeti köznevelésről szóló 2011. évi CXC. törvény, a Nat és a sajátos nevelési igényű tanulók iskolai oktatásának irányelve (a 32/2012. (X. 8.) EMMI rendelet 2. melléklete) szerint járunk el. Az etika tantárgyra
vonatkozóan követjük a határozatok előírásait (pl. többletidő biztosítása, írásbeli számonkérés helyett inkább a szóbeli számonkérés biztosítása stb.). 9. évfolyam Éves órakeret
72 óra
A mozgástan elemei 22 óra A newtoni mechanika elemei 28 óra Munka – energia – teljesítmény 10 óra Folyadékok és gázok mechanikája 12 óra
Tematikai egység
Előzetes tudás
Minden mozog, a mozgás relatív – a mozgástan elemei
Órakeret 22 óra
Hétköznapi mozgásokkal kapcsolatos gyakorlati ismeretek. A 7–8. évfolyamon tanult kinematikai alapfogalmak, az út- és időmérés alapvető módszerei, függvényfogalom, a grafikus ábrázolás elemei, egyenletrendezés.
A kinematikai alapfogalmak, mennyiségek kísérleti alapokon történő kialakítása, illetve bővítése, az összefüggések (grafikus) ábrázolása és matematikai leírása. A természettudományos megismerés Galilei-féle A tematikai egység módszerének bemutatása. A kísérletezési kompetencia fejlesztése a nevelési-fejlesztési legegyszerűbb kézi mérésektől a számítógépes méréstechnikáig. A problémamegoldó képesség fejlesztése a grafikus ábrázolás és ehhez céljai kapcsolódó egyszerű feladatok megoldása során (is). A tanult ismeretek gyakorlati alkalmazása hétköznapi jelenségekre, problémákra (pl. közlekedés, sport). Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
Kapcsolódási pontok
Alapfogalmak: A tanuló legyen képes a Matematika: függvény a köznapi testek mozgásformái: mozgásokról tanultak és a köznapi fogalma, grafikus haladó mozgás és forgás. jelenségek összekapcsolására, a ábrázolás, fizikai fogalmak helyes egyenletrendezés. Hely, hosszúság és idő mérése. használatára, egyszerű számítások Hosszúság, terület, térfogat, elvégzésére. Informatika: tömeg, sűrűség, idő, erő mérése. Ismerje a mérés lényegi jellemzőit, a függvényábrázolás Hétköznapi helymeghatározás, szabványos és a gyakorlati (táblázatkezelő úthálózat km-számítása. mértékegységeket. használata). GPS-rendszer. Legyen képes gyakorlatban alkalmazni a megismert mérési Testnevelés és sport: módszereket. érdekes sebességadatok, A mozgás viszonylagossága, a Tudatosítsa a viszonyítási rendszer érdekes sebességek, vonatkoztatási rendszer. alapvető szerepét, megválasztásának pályák technikai szabadságát és célszerűségét.
Galilei relativitási elve. Mindennapi tapasztalatok egyenletesen mozgó vonatkoztatási rendszerekben (autó, vonat). Alkalmazások: földrajzi koordináták; GPS; helymeghatározás, távolságmérés radarral. Egyenes vonalú egyenletes mozgás kísérleti vizsgálata. Grafikus leírás. Sebesség, átlagsebesség. Sebességrekordok a sportban, sebességek az élővilágban. Egyenes vonalú egyenletesen változó mozgás kísérleti vizsgálata.
környezete. Biológia-egészségtan: élőlények mozgása, sebességei, reakcióidő. Művészetek; magyar nyelv és irodalom: mozgások ábrázolása. Értelmezze az egyenes vonalú Technika, életvitel és egyenletes mozgás jellemző gyakorlat: járművek mennyiségeit, tudja azokat sebessége és fékútja, grafikusan ábrázolni és értelmezni. követési távolság, közlekedésbiztonsági eszközök, technikai Ismerje a változó mozgás általános eszközök (autók, fogalmát, értelmezze az átlag- és motorok). pillanatnyi sebességet. Ismerje a gyorsulás fogalmát, Történelem, társadalmi vektor-jellegét. és állampolgári Tudja ábrázolni az s-t, v-t, a-t ismeretek: Galilei grafikonokat. munkássága; a kerék Tudjon egyszerű feladatokat feltalálásának megoldani. jelentősége.
A szabadesés vizsgálata. A nehézségi gyorsulás meghatározása.
Ismerje Galilei modern tudományteremtő, történelmi módszerének lényegét: a jelenség megfigyelése, értelmező hipotézis felállítása, számítások elvégzése, – az eredmény ellenőrzése célzott kísérletekkel.
Összetett mozgások. Egymásra merőleges egyenletes mozgások összege. Vízszintes hajítás vizsgálata, értelmezése összetett mozgásként.
Ismerje a mozgások függetlenségének elvét és legyen képes azt egyszerű esetekre (folyón átkelő csónak, eldobott labda pályája, a locsolócsőből kilépő vízsugár pályája) alkalmazni.
Egyenletes körmozgás. A körmozgás, mint periodikus mozgás. A mozgás jellemzői (kerületi és szögjellemzők). A centripetális gyorsulás értelmezése.
Ismerje a körmozgást leíró kerületi és szögjellemzőket és tudja alkalmazni azokat. Tudja értelmezni a centripetális gyorsulást. Mutasson be egyszerű kísérleteket, méréseket. Tudjon alapszintű feladatokat megoldani.
A bolygók körmozgáshoz
A tanuló ismerje Kepler törvényeit,
Földrajz: a Naprendszer szerkezete, az égitestek mozgása, csillagképek, távcsövek.
hasonló centrális mozgása, tudja azokat alkalmazni a Kepler törvényei. Kopernikuszi Naprendszer bolygóira és világkép alapjai. mesterséges holdakra. Ismerje a geocentrikus és heliocentrikus világkép kultúrtörténeti dilemmáját és konfliktusát. Kulcsfogalmak/ Sebesség, átlagsebesség, pillanatnyi sebesség, gyorsulás, vektorjelleg, mozgások összegződése, periódusidő, szögsebesség, centripetális fogalmak gyorsulás.
Okok és okozatok (Arisztotelésztől Newtonig) A newtoni mechanika elemei
Tematikai egység Előzetes tudás
Órakeret 28 óra
Erő, az erő mértékegysége, erőmérő, gyorsulás, tömeg.
Az ösztönös arisztotelészi mozgásszemlélet tudatos lecserélése a A tematikai egység newtoni dinamikus szemléletre. Az új szemléletű gondolkodásmód nevelési-fejlesztési kiépítése. Az általános iskolában megismert sztatikus erőfogalom felcserélése a dinamikai szemléletűvel, rámutatva a két szemlélet céljai összhangjára. Problémák, jelenségek, gyakorlati alkalmazások, ismeretek A tehetetlenség törvénye (Newton I. axiómája). Mindennapos közlekedési tapasztalatok hirtelen fékezésnél, a biztonsági öv szerepe. Az űrben, űrhajóban szabadon mozgó testek.
Az erő fogalma. Az erő alak- és mozgásállapot-változtató hatása. Erőmérés rugós erőmérővel. Az erő mozgásállapotváltoztató (gyorsító) hatása – Newton II. axiómája.
Követelmények
Kapcsolódási pontok
Legyen képes a tanuló az arisztotelészi mozgásértelmezés elvetésére. Ismerje a tehetetlenség fogalmát és legyen képes az ezzel kapcsolatos hétköznapi jelenségek értelmezésére. Ismerje az inercia(tehetetlenségi) rendszer fogalmát.
Matematika: a függvény fogalma, grafikus ábrázolás, egyenletrendezés.
Technika, életvitel és gyakorlat: Takarékosság; légszennyezés, zajszennyezés; közlekedésbiztonsági eszközök, közlekedési szabályok. A tanuló ismerje az erő alak- és Biztonsági öv, ütközéses mozgásállapot-változtató hatását, balesetek, a gépkocsi az erő mérését, mértékegységét, biztonsági felszerelése, a vektor-jellegét. Legyen képes biztonságos fékezés. erőt mérni rugós erőmérővel. Biológia-egészségtan: Tudja Newton II. törvényét, lássa reakcióidő, az állatok kapcsolatát az erő szabványos mozgása (pl. medúza). mértékegységével. Ismerje a tehetetlen tömeg
A tömeg, mint a tehetetlenség mértéke, a tömegközéppont fogalma.
fogalmát. Értse a tömegközéppont szerepét a valóságos testek mozgásának értelmezése során.
Erőtörvények, a dinamika alapegyenlete. A rugó erőtörvénye. A nehézségi erő és hatása. Tapadási és csúszási súrlódás. Alkalmazások: A súrlódás szerepe az autó gyorsításában, fékezésében. Szabadon eső testek súlytalansága.
Ismerje, és tudja alkalmazni a tanult egyszerű erőtörvényeket. Legyen képes egyszerű feladatok megoldására, néhány egyszerű esetben: állandó erővel húzott test; mozgás lejtőn, a súrlódás szerepe egyszerű mozgások esetén.
Az egyenletes körmozgás dinamikája. Jelenségek, gyakorlati alkalmazások: vezetés kanyarban, út megdöntése kanyarban, hullámvasút; függőleges síkban átforduló kocsi; műrepülés, körhinta, centrifuga.
Értse, hogy az egyenletes körmozgást végző test gyorsulását (a centripetális gyorsulást) a testre ható erők eredője adja, ami mindig a kör középpontjába mutat.
Newton gravitációs törvénye. Jelenségek, gyakorlati alkalmazások: A nehézségi gyorsulás változása a Földön. Az árapály-jelenség kvalitatív magyarázata. A mesterséges holdak mozgása és a szabadesés. A súlytalanság értelmezése az űrállomáson. Geostacionárius műholdak, hírközlési műholdak.
Ismerje Newton gravitációs törvényét. Tudja, hogy a gravitációs kölcsönhatás a négy alapvető fizikai kölcsönhatás egyike, meghatározó jelentőségű az égi mechanikában.
A kölcsönhatás törvénye (Newton III. axiómája).
Ismerje Newton III. axiómáját és egyszerű példákkal tudja azt illusztrálni. Értse, hogy az erő két test közötti kölcsönhatás. Legyen képes az erő és ellenerő világos megkülönböztetésére.
Legyen képes a gravitációs erőtörvényt alkalmazni egyszerű esetekre. Értse a gravitáció szerepét az űrkutatással, űrhajózással kapcsolatos közismert jelenségekben.
Földrajz: a Naprendszer szerkezete, az égitestek mozgása, csillagképek, távcsövek.
A lendületváltozás és az erőhatás kapcsolata. Lendülettétel.
Ismerje a lendület fogalmát, vektor-jellegét, a lendületváltozás és az erőhatás kapcsolatát. Tudja a lendülettételt.
Lendületmegmaradás párkölcsönhatás (zárt rendszer) esetén. Jelenségek, gyakorlati alkalmazások: golyók, korongok ütközése. Ütközéses balesetek a közlekedésben. Miért veszélyes a koccanás? Az utas biztonságát védő technikai megoldások (biztonsági öv, légzsák, a gyűrődő karosszéria). A rakétameghajtás elve. Pontszerű test egyensúlya.
Ismerje a lendületmegmaradás törvényét párkölcsönhatás esetén. Tudjon értelmezni egyszerű köznapi jelenségeket a lendület megmaradásának törvényével. Legyen képes egyszerű számítások és mérési feladatok megoldására. Értse a rakétameghajtás lényegét.
A tanuló ismerje, és egyszerű esetekre tudja alkalmazni a pontszerű test egyensúlyi feltételét. Legyen képes erővektorok összegzésére.
A kiterjedt test egyensúlya. Ismerje a kiterjedt test és a tömegközéppont fogalmát, tudja A kierjedt test, mint a kiterjedt test egyensúlyának speciális pontrendszer, kettős feltételét. tömegközéppont. Ismerje az erő forgató hatását, a Forgatónyomaték. forgatónyomaték fogalmát. Legyen képes egyszerű Jelenségek, gyakorlati számítások, mérések, alkalmazások: szerkesztések elvégzésére. emelők, tartószerkezetek, építészeti érdekességek (pl. gótikus támpillérek, boltívek. Deformálható testek egyensúlyi állapota.
Ismerje Hooke törvényét, értse a rugalmas alakváltozás és a belső erők kapcsolatát.
Pontrendszerek mozgásának vizsgálata, dinamikai értelmezése.
Tudja, hogy az egymással kölcsönhatásban lévő testek mozgását az egyes testekre ható külső erők és a testek közötti kényszerkapcsolatok
figyelembevételével lehetséges értelmezni. Kulcsfogalmak/ Erő, párkölcsönhatás, lendület, lendületmegmaradás, erőtörvény, mozgásegyenlet, pontrendszer, rakétamozgás, ütközés. fogalmak Erőfeszítés és hasznosság Munka – Energia – Teljesítmény
Tematikai egység
Órakeret 10 óra
Előzetes tudás
A newtoni dinamika elemei, a fizikai munkavégzés tanult fogalma.
A tematikai egység nevelési-fejlesztési céljai
Az általános iskolában tanult munka- és mechanikai energiafogalom elmélyítése és bővítése, a mechanikai energiamegmaradás igazolása speciális esetekre és az energiamegmaradás törvényének általánosítása. Az elméleti megközelítés mellett a fizikai ismeretek mindennapi alkalmazásának bemutatása, gyakorlása.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Fizikai munka és teljesítmény.
Követelmények A tanuló értse a fizikai munkavégzés és a teljesítmény fogalmát, ismerje mértékegységeiket. Legyen képes egyszerű feladatok megoldására.
Kapcsolódási pontok Matematika: a függvény fogalma, grafikus ábrázolás, egyenletrendezés.
Testnevelés és sport: sportolók Munkatétel. Ismerje a munkatételt és tudja teljesítménye, azt egyszerű esetekre alkalmazni. sportoláshoz használt Mechanikai energiafajták Ismerje az alapvető mechanikai pályák energetikai (helyzeti energia, mozgási energiafajtákat, és tudja azokat a viszonyai és energia, rugalmas energia). gyakorlatban értelmezni. sporteszközök energetikája. A mechanikai Tudja egyszerű zárt rendszerek energiamegmaradás törvénye. példáin keresztül értelmezni a mechanikai energiamegmaradás Technika, életvitel és törvényét. gyakorlat: járművek Alkalmazások, jelenségek: a Tudja, hogy a mechanikai fogyasztása, fékút és a sebesség kapcsolata, a energiamegmaradás nem teljesül munkavégzése, követési távolság meghatározása. súrlódás, közegellenállás esetén, közlekedésbiztonsági mert a rendszer mechanikailag eszközök, technikai nem zárt. Ilyenkor a mechanikai eszközök (autók, energiaveszteség a súrlódási erő motorok). munkájával egyenlő. Biológia-egészségtan: Egyszerű gépek, hatásfok. Tudja a gyakorlatban használt élőlények mozgása, Érdekességek, alkalmazások. egyszerű gépek működését teljesítménye. Ókori gépezetek, mai értelmezni, ezzel kapcsolatban alkalmazások. Az egyszerű feladatokat megoldani. gépek elvének felismerése Értse, hogy az egyszerű gépekkel az élővilágban. Egyszerű munka nem takarítható meg. gépek az emberi
szervezetben. Energia és egyensúlyi állapot.
Ismerje a stabil, labilis és közömbös egyensúlyi állapot fogalmát és tudja alkalmazni egyszerű esetekben.
Kulcsfogalmak/ Munkavégzés, energia, helyzeti energia, mozgási energia, rugalmas energia, munkatétel, mechanikai energiamegmaradás. fogalmak Tematikai egység Előzetes tudás
A tematikai egység nevelési-fejlesztési céljai
Folyadékok és gázok mechanikája
Órakeret 12 óra
Hidrosztatikai és aerosztatikai alapismeretek, sűrűség, nyomás, légnyomás, felhajtóerő; kémia: anyagmegmaradás, halmazállapotok; földrajz: tengeri, légköri áramlások. A témakör jelentőségének bemutatása, mint a fizika egyik legrégebbi területe és egyúttal a legújabb kutatások színtere (pl. tengeri és légköri áramlások, a vízi- és szélenergia hasznosítása). A megismert fizikai törvények összekapcsolása a gyakorlati alkalmazásokkal. Önálló tanulói kísérletezéshez szükséges képességek fejlesztése, hétköznapi jelenségek fizikai értelmezésének gyakoroltatása.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
Légnyomás kimutatása és mérése. Jelenségek, gyakorlati alkalmazások: „Horror vacui” – mint egykori tudományos hipotézis. (Torricelli kísérlete vízzel, Guericke vákuumkísérletei, Goethe-barométer.) A légnyomás változásai. A légnyomás szerepe az időjárási jelenségekben, a barométer működése.
A tanuló ismerje a légnyomás fogalmát, mértékegységeit.
Alkalmazott hidrosztatika. Pascal törvénye, hidrosztatikai nyomás.
Tudja alkalmazni hidrosztatikai ismereteit köznapi jelenségek értelmezésére. A tanult ismeretek alapján legyen képes (pl. hidraulikus gépek alkalmazásainak bemutatása).
Hidraulikus gépek. Felhajtóerő nyugvó folyadékokban és gázokban. Búvárharang, tengeralattjáró. Léghajó, hőlégballon.
Ismerjen néhány, a levegő nyomásával kapcsolatos, gyakorlati szempontból is fontos jelenséget.
Legyen képes alkalmazni hidrosztatikai és aerosztatikai ismereteit köznapi jelenségek értelmezésére.
Kapcsolódási pontok Matematika: a függvény fogalma, grafikus ábrázolás, egyenletrendezés. Kémia: folyadékok, felületi feszültség, kolloid rendszerek, gázok, levegő, viszkozitás, alternatív energiaforrások. Történelem, társadalmi és állampolgári ismeretek: hajózás szerepe, légiközlekedés szerepe. Technika, életvitel és gyakorlat:
Molekuláris erők folyadékokban (kohézió és adhézió). Felületi feszültség. Jelenségek, gyakorlati alkalmazások: habok különleges tulajdonságai, mosószerek hatásmechanizmusa.
Ismerje a felületi feszültség fogalmát. Ismerje a határfelületeknek azt a tulajdonságát, hogy minimumra törekszenek. Legyen tisztában a felületi jelenségek fontos szerepével az élő és élettelen természetben.
Folyadékok és gázok áramlása. Jelenségek, gyakorlati alkalmazások: légköri áramlások, a szél értelmezése a nyomásviszonyok alapján, nagy tengeráramlásokat meghatározó környezeti hatások.
Tudja, hogy az áramlások oka a nyomáskülönbség. Legyen képes köznapi áramlási jelenségek kvalitatív fizikai értelmezésére.
Közegellenállás.
Ismerje a közegellenállás jelenségét, tudja, hogy a közegellenállási erő sebességfüggő. Legyen tisztában a vízi és szélenergia jelentőségével, hasznosításának múltbeli és korszerű lehetőségeivel. A megújuló energiaforrások aktuális hazai hasznosítása.
Az áramló közegek energiája, a szél- és a vízi energia hasznosítása.
Kulcsfogalmak/ fogalmak
Tudja értelmezni az áramlási sebesség változását a keresztmetszettel az anyagmegmaradás (kontinuitási egyenlet) alapján.
repülőgépek közlekedésbiztonsági eszközei, vízi és légi közlekedési szabályok. Biológia-egészségtan: Vízi élőlények, madarak mozgása, sebességei, reakcióidő. A nyomás és változásának hatása az emberi szervezetre (pl. súlyfürdő, keszonbetegség, hegyi betegség).
Hidrosztatikai nyomás, felhajtóerő, úszás, viszkozitás, felületi feszültség, légnyomás, légáramlás, áramlási sebesség, aerodinamikai felhajtóerő, közegellenállás, szél- és vízienergia, szélerőmű, vízerőmű.
Továbbhaladás feltételei A tanuló legyen képes megadott célú megfigyelések, egyszerű mérések (hosszúság, idő, tömeg, erő) önálló elvégzésére. Legyen képes a tapasztalatok, mérési adatok rögzítésére (vázlatos szövegben, táblázatban, grafikusan). Tudjon besorolni konkrét mozgásokat a tanult mozgástípusokba. Tudja alkalmazni az út-idő és sebesség-idő összefüggéseket az egyenes vonalú egyenletes és egyenletesen változó mozgásra és a körmozgásra egyszerű feladatok megoldásában is. Tudja értelmezni a Newton-törvényeket egyszerű esetekben, feladatok megoldásában is. Ismerje a súly és súlytalanság fogalmát, a bolygómozgás alaptörvényeit. Tudja megfogalmazni az egyensúly feltételeit konkrét esetekben merev testekre is. Ismerje fel a tanult energiafajtákat konkrét esetekben. Ismerje fel a tanult megmaradási törvények alkalmazhatóságát egyszerű esetekben. Tudja használni a teljesítmény és a hatásfok fogalmát. Ismerje a fel a folyadékok és gázok mechanikájával kapcsolatos jelenségeket, legyen képes értelmezni azokat egyszerű esetekben.
10. évfolyam Éves órakeret
72 óra
Elektromos töltés és erőtér Egyenáram Hőtani alapjelenségek, gáztörvények Molekuláris hőelmélet elemei Energia, hő és munka Halmazállapot-változások Mindennapok hőtana
9 óra 16 óra 10 óra 6 óra 17 óra 7 óra 7 óra
Tematikai egység Előzetes tudás A tematikai egység nevelési-fejlesztési céljai
Közel- és távolhatás – Elektromos töltés és erőtér
Órakeret 9 óra
Erő, munka, energia, elektromos töltés. Az elektrosztatikus mező fizikai valóságként való elfogadtatása. A mező jellemzése a térerősség, potenciál és erővonalak segítségével. A problémamegoldó képesség fejlesztése jelenségek, kísérletek, mindennapi alkalmazások értelmezésével.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
Elektrosztatikai alapjelenségek. Elektromos kölcsönhatás. Elektromos töltés.
A tanuló ismerje az elektrosztatikus alapjelenségeket, a pozitív és negatív töltést, tudjon egyszerű kísérleteket, jelenségeket értelmezni.
Coulomb törvénye. (A töltés mértékegysége.)
Ismerje a Coulomb-féle erőtörvényt.
Az elektromos erőtér (mező). Az elektromos mező, mint a kölcsönhatás közvetítője.
Ismerje a mező fogalmát, és létezését fogadja el anyagi objektumként. Tudja, hogy az elektromos mező forrása/i a töltés/töltések. Ismerje a mezőt jellemző térerősséget, értse az erővonalak jelentését. Ismerje a homogén elektromos mező fogalmát és jellemzését. Ismerje az elektromos feszültség fogalmát.
Az elektromos térerősség vektora, a tér szerkezetének szemléltetése erővonalakkal. A homogén elektromos mező. Az elektromos mező munkája homogén mezőben. Az elektromos feszültség
Kapcsolódási pontok Kémia: Elektron, proton, elektromos töltés, az atom felépítése, elektrosztatikus kölcsönhatások, kristályrácsok szerkezete. Kötés, polaritás, molekulák polaritása, fémes kötés, fémek elektromos vezetése. Matematika: alapműveletek, egyenletrendezés, számok normálalakja, vektorok, függvények.
fogalma.
Tudja, hogy a töltés mozgatása során végzett munka nem függ az úttól, csak a kezdeti és végállapotok helyzetétől. Legyen képes homogén elektromos térrel kapcsolatos elemi feladatok megoldására.
Töltés eloszlása fémes vezetőn. Jelenségek, gyakorlati alkalmazások: légköri elektromosság, csúcshatás, villámhárító, Faraday-kalitka, árnyékolás. Miért véd az autó karosszériája a villámtól? Elektromos koromleválasztó. A fénymásoló működése.
Tudja, hogy a fémre felvitt töltések a felületen helyezkednek el. Ismerje az elektromos megosztás, a csúcshatás jelenségét, a Faraday-kalitka és a villámhárító működését és gyakorlati jelentőségét.
Kapacitás fogalma.
Ismerje a kapacitás fogalmát, a síkkondenzátor terét.
A síkkondenzátor kapacitása. Kondenzátorok kapcsolása. A kondenzátor energiája. Az elektromos mező energiája.
Kulcsfogalmak/ fogalmak
Technika, életvitel és gyakorlat: balesetvédelem, földelés.
Tudja értelmezni kondenzátorok soros és párhuzamos kapcsolását. Egyszerű kísérletek alapján tudja értelmezni, hogy a feltöltött kondenzátornak, azaz a kondenzátor elektromos terének energiája van.
Töltés, elektromos erőtér, térerősség, erővonalrendszer, feszültség, potenciál, kondenzátor, az elektromos tér energiája.
Tematikai egység Előzetes tudás A tematikai egység nevelési-fejlesztési céljai
A mozgó töltések – az egyenáram
Órakeret 16 óra
Telep (áramforrás), áramkör, fogyasztó, áramerősség, feszültség. Az egyenáram értelmezése, mint a töltések áramlása. Az elektromos áram jellemzése hatásain keresztül (hőhatás, mágneses, vegyi és biológiai hatás). Az elméleten alapuló gyakorlati ismeretek kialakítása (egyszerű hálózatok ismerete, ezekkel kapcsolatos egyszerű számítások, telepek, akkumulátorok, elektromágnesek, motorok). Az energiatudatos magatartás fejlesztése.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Az elektromos áram fogalma, kapcsolata a fémes vezetőkben zajló töltésmozgással. A zárt áramkör.
Követelmények A tanuló ismerje az elektromos áram fogalmát, mértékegységét, mérését. Tudja, hogy az egyenáramú áramforrások
Kapcsolódási pontok Kémia: Elektromos áram, elektromos vezetés, rácstípusok tulajdonságai és azok
feszültségét, pólusainak Jelenségek, alkalmazások: Volta- polaritását nem elektromos oszlop, laposelem, rúdelem, jellegű belső folyamatok napelem. (gyakran töltésátrendeződéssel járó kémiai vagy más folyamatok) biztosítják. Ismerje az elektromos áramkör legfontosabb részeit, az áramkör ábrázolását kapcsolási rajzon. Ohm törvénye, áram- és feszültségmérés. Fogyasztók (vezetékek) ellenállása. Fajlagos ellenállás.
Ismerje az elektromos ellenállás, fajlagos ellenállás fogalmát, mértékegységét és mérésének módját.
Ohm törvénye teljes áramkörre. Elektromotoros erő, kapocsfeszültség, a belső ellenállás fogalma.
Tudja Ohm törvényét. Legyen képes egyszerű számításokat végezni Ohm törvénye alapján.
Az elektromos mező munkája az áramkörben. Az elektromos teljesítmény. Az elektromos áram hőhatása. Fogyasztók a háztartásban, fogyasztásmérés, az energiatakarékosság lehetőségei.
Ismerje a telepet jellemző elektromotoros erő és a belső ellenállás fogalmát, Ohm törvényét teljes áramkörre. Tudja értelmezni az elektromos áram teljesítményét, munkáját. Legyen képes egyszerű számítások elvégzésére. Tudja értelmezni a fogyasztókon feltüntetett teljesítményadatokat. Az energiatakarékosság fontosságának bemutatása.
Összetett hálózatok. Ellenállások kapcsolása. Az eredő ellenállás fogalma, számítása.
Tudja a hálózatok törvényeit alkalmazni ellenálláskapcsolások eredőjének számítása során.
Az áram vegyi hatása.
Tudja, hogy az elektrolitokban mozgó ionok jelentik az áramot. Ismerje az elektrolízis fogalmát, néhány gyakorlati alkalmazását. Értse, hogy az áram vegyi hatása és az élő szervezeteket gyógyító és károsító hatása között összefüggés van. Ismerje az alapvető elektromos érintésvédelmi szabályokat és azokat a gyakorlatban is tartsa be.
Az áram biológiai hatása.
Mágneses mező (permanens
Tudja bemutatni az áram
anyagszerkezeti magyarázata. Galvánelemek működése, elektromotoros erő. Ionos vegyületek elektromos vezetése olvadékban és oldatban, elektrolízis. Vas mágneses tulajdonsága. Matematika: alapműveletek, egyenletrendezés, számok normálalakja. Technika, életvitel és gyakorlat: Áram biológiai hatása, elektromos áram a háztartásban, biztosíték, fogyasztásmérők, balesetvédelem. A világítás fejlődése és a korszerű világítási eszközök. Korszerű elektromos háztartási készülékek, energiatakarékosság. Informatika: mikroelektronikai áramkörök, mágneses információrögzítés.
mágnesek). Permanens mágnesek kölcsönhatása, a mágnesek tere. Az egyenáram mágneses hatása. Áram és mágnes kölcsönhatása. Egyenes vezetőben folyó egyenáram mágneses terének vizsgálata. A mágneses mezőt jellemző indukcióvektor fogalma, mágneses indukcióvonalak. A vasmag (ferromágneses közeg) szerepe a mágneses hatás szempontjából. Az áramjárta vezetőre ható erő mágneses térben. Az elektromágnes és gyakorlati alkalmazásai.
mágneses terét egyszerű kísérlettel. Ismerje a tér jellemzésére alkalmas mágneses indukcióvektor fogalmát. Legyen képes a mágneses és az elektromos mező jellemzőinek összehasonlítására, a hasonlóságok és különbségek bemutatására. Tudja értelmezni az áramra ható erőt mágneses térben. Ismerje az egyenáramú motor működésének elvét.
Az elektromotor működése. Lorentz-erő – mágneses tér hatása mozgó szabad töltésekre.
Kulcsfogalmak/ fogalmak
Ismerje a Lorentz-erő fogalmát és tudja alkalmazni néhány jelenség értelmezésére (katódsugárcső, ciklotron).
Áramkör, ellenállás, fajlagos ellenállás, az egyenáram teljesítménye és munkája, elektromotoros erő, belső ellenállás, az áram hatásai (hő, kémiai, biológiai, mágneses), elektromágnes, Lorentz-erő, elektromotor.
Hőhatások és állapotváltozások – hőtani alapjelenségek, gáztörvények
Tematikai egység Előzetes tudás A tematikai egység nevelési-fejlesztési céljai
Órakeret 10 óra
Hőmérséklet, hőmérséklet mérése. A gázokról kémiából tanult ismeretek. A hőtágulás jelenségének tárgyalása, mint a hőmérséklet mérésének klasszikus alapjelensége. A gázok anyagi minőségtől független hőtágulásán alapuló Kelvin féle „abszolút” hőmérsékleti skála bevezetése. Gázok állapotjelzői közt fennálló összefüggések kísérleti és elméleti vizsgálata.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek A hőmérséklet, hőmérők, hőmérsékleti skálák.
Követelmények Ismerje a tanuló a hőmérsékletmérésre leginkább elterjedt Celsius-skálát, néhány gyakorlatban használt hőmérő működési elvét. Legyen
Kapcsolódási pontok Kémia: a gáz fogalma és az állapothatározók közötti összefüggések: Avogadro törvénye,
gyakorlata hőmérsékleti grafikonok olvasásában. Hőtágulás. Szilárd anyagok lineáris, felületi és térfogati hőtágulása. Folyadékok hőtágulása.
Gázok állapotjelzői, összefüggéseik. Boyle-Mariotte-törvény, Gay-Lussac-törvények. A Kelvin-féle gázhőmérsékleti skála.
Az ideális gáz állapotegyenlete.
Ismerje a hőtágulás jelenségét szilárd anyagok és folyadékok esetén. Tudja a hőtágulás jelentőségét a köznapi életben, ismerje a víz különleges hőtágulási sajátosságát.
moláris térfogat, abszolút, illetve relatív sűrűség.
Matematika: a függvény fogalma, grafikus ábrázolás, egyenletrendezés, exponenciális Ismerje a tanuló a gázok alapvető függvény. állapotjelzőit, az állapotjelzők közötti páronként kimérhető Testnevelés és sport: összefüggéseket. sport nagy magasságokban, Ismerje a Kelvin-féle sportolás a mélyben. hőmérsékleti skálát és legyen képes a két alapvető Biológia-egészségtan: hőmérsékleti skála közti keszonbetegség, hegyi átszámításokra. Tudja értelmezni betegség, madarak az abszolút nulla fok jelentését. repülése. Tudja, hogy a gázok döntő többsége átlagos körülmények Földrajz: között az anyagi minőségüktől széltérképek, függetlenül hasonló fizikai nyomástérképek, sajátságokat mutat. Ismerje az hőtérképek, ideális gázok állapotjelzői között áramlások. felírható összefüggést, az állapotegyenletet és tudjon ennek segítségével egyszerű feladatokat megoldani. Tudja a gázok állapotegyenletét mint az állapotjelzők közt fennálló összefüggést. Ismerje az izoterm, izochor és izobár, adiabatikus állapotváltozásokat.
Hőmérséklet, hőmérsékletmérés, hőmérsékleti skála, lineáris és térfogati Kulcsfogalmak/ hőtágulás, állapotegyenlet, egyesített gáztörvény, állapotváltozás, izochor, fogalmak izoterm, izobár változás, Kelvin-skála.
Tematikai egység
Részecskék rendezett és rendezetlen mozgása – A molekuláris hőelmélet elemei
Órakeret 6 óra
Előzetes tudás
Az anyag atomos szerkezete, az anyag golyómodellje, gázok nyomása, rugalmas ütközés, lendületváltozás, mozgási energia, kémiai részecskék tömege.
A tematikai egység nevelési-fejlesztési céljai
A gázok makroszkopikus jellemzőinek értelmezése a modell alapján, a nyomás, hőmérséklet – átlagos kinetikus energia, „belső energia”. A melegítés hatására fellépő hőmérséklet-növekedésnek és a belső energia változásának a modellre alapozott fogalmi összekapcsolása révén a hőtan főtételei megértésének előkészítése.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
Az ideális gáz kinetikus modellje.
A tanuló ismerje a gázok univerzális tulajdonságait magyarázó részecske-modellt.
A gáz nyomásának és hőmérsékletének értelmezése.
Értse a gáz nyomásának és hőmérsékletének a modellből kapott szemléletes magyarázatát.
Az ekvipartíció tétele, a részecskék szabadsági fokának fogalma. Gázok moláris és fajlagos hőkapacitása.
Ismerje az ekvipartíció-tételt, a gázrészecskék átlagos kinetikus energiája és a hőmérséklet közti kapcsolatot. Lássa, hogy a gázok melegítése során a gáz energiája nő, a melegítés lényege energiaátadás.
Kulcsfogalmak/ fogalmak
Kapcsolódási pontok Kémia: gázok tulajdonságai, ideális gáz.
Modellalkotás, kinetikus gázmodell, nyomás, hőmérséklet, ekvipartíció.
Tematikai egység Előzetes tudás
A tematikai egység nevelési-fejlesztési céljai
Energia, hő és munka – a hőtan főtételei
Órakeret 17 óra
Munka, kinetikus energia, energiamegmaradás, hőmérséklet, melegítés. A hőtan főtételeinek tárgyalása során annak megértetése, hogy a természetben lejátszódó folyamatokat általános törvények írják le. Az energiafogalom általánosítása, az energiamegmaradás törvényének kiterjesztése. A termodinamikai gépek működésének értelmezése, a termodinamikai hatásfok korlátos voltának megértetése. Annak elfogadtatása, hogy energia befektetése nélkül nem működik egyetlen gép, berendezés sem, örökmozgók nem léteznek. A hőtani főtételek univerzális (a természettudományokban általánosan érvényes) tartalmának bemutatása.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Melegítés munkavégzéssel. (Az ősember tűzgyújtása.) A belső energia fogalmának kialakítása. A belső energia megváltoztatása.
A termodinamika I. főtétele. Alkalmazások konkrét fizikai, kémiai, biológiai példákon. Egyszerű számítások.
Hőerőgép. Gázzal végzett körfolyamatok. A hőerőgépek hatásfoka. Az élő szervezet hőerőgépszerű működése.
Az „örökmozgó” lehetetlensége.
A természeti folyamatok iránya.
Követelmények Tudja a tanuló, hogy a melegítés lényege energiaátadás, „hőanyag” nincs!
Kapcsolódási pontok
Kémia: Exoterm és endoterm folyamatok, termokémia, Hesstétel, kötési energia, Ismerje a tanuló a belső energia reakcióhő, égéshő, fogalmát, mint a gázrészecskék elektrolízis. energiájának összegét. Tudja, Gyors és lassú égés, hogy a belső energia melegítéssel tápanyag, és/vagy munkavégzéssel energiatartalom változtatható. (ATP), a kémiai reakciók iránya, Ismerje a termodinamika I. megfordítható főtételét mint az folyamatok, kémiai energiamegmaradás általánosított egyensúlyok, megfogalmazását. stacionárius állapot, Az I. főtétel alapján tudja élelmiszerkémia. energetikai szempontból értelmezni a gázok korábban Technika, életvitel és tanult speciális gyakorlat: állapotváltozásait. Kvalitatív Folyamatos példák alapján fogadja el, hogy technológiai az I. főtétel általános természeti fejlesztések, törvény, ami fizikai, kémiai, innováció. biológiai, geológiai folyamatokra egyaránt érvényes. Földrajz: Gázok körfolyamatainak elméleti környezetvédelem, a vizsgálata alapján értse meg a megújuló és nem hőerőgép, hűtőgép, hőszivattyú megújuló energia működésének alapelvét. Tudja, fogalma. hogy a hőerőgépek hatásfoka lényegesen kisebb, mint 100%. Biológia-egészségtan: Tudja kvalitatív szinten az „éltető Nap”, alkalmazni a főtételt a hőháztartás, gyakorlatban használt öltözködés. hőerőgépek, működő modellek energetikai magyarázatára. Magyar nyelv és Energetikai szempontból lássa a irodalom: Madách lényegi hasonlóságot a Imre. hőerőgépek és az élő szervezetek működése között. Történelem, társadalmi és Tudja, hogy „örökmozgó” állampolgári (energiabetáplálás nélküli ismeretek; vizuális hőerőgép) nem létezhet! kultúra: A Nap Ismerje a reverzibilis és kitüntetett szerepe a irreverzibilis változások
A spontán termikus folyamatok iránya, a folyamatok megfordításának lehetősége.
A termodinamika II. főtétele.
Kulcsfogalmak/ fogalmak
fogalmát. Tudja, hogy a természetben az irreverzibilitás a meghatározó. Kísérleti tapasztalatok alapján lássa, hogy a különböző hőmérsékletű testek közti termikus kölcsönhatás iránya meghatározott: a magasabb hőmérsékletű test energiát ad át az alacsonyabb hőmérsékletűnek; a folyamat addig tart, amíg a hőmérsékletek kiegyenlítődnek. A spontán folyamat iránya csak energiabefektetés árán változtatható meg.
mitológiában és a művészetekben. A beruházás megtérülése, megtérülési idő, takarékosság. Filozófia; magyar nyelv és irodalom: Madách: Az ember tragédiája, eszkimó szín.
Ismerje a hőtan II. főtételét és tudja, hogy kimondása tapasztalati alapon történik. Tudja, hogy a hőtan II. főtétele általános természettörvény, a fizikán túl minden természettudomány és a műszaki tudományok is alapvetőnek tekintik.
Főtétel, hőerőgép, reverzibilitás, irreverzibilitás, örökmozgó.
Hőfelvétel hőmérsékletváltozás nélkül – halmazállapot-változások
Tematikai egység Előzetes tudás A tematikai egység nevelési-fejlesztési céljai
Órakeret 7óra
Halmazállapotok szerkezeti jellemzői (kémia), a hőtan főtételei. A halmazállapotok jellemző tulajdonságainak és a halmazállapotváltozások energetikai hátterének tárgyalása, bemutatása. A halmazállapot-változásokkal kapcsolatos mindennapi jelenségek értelmezése a fizikában és a társ-természettudományok területén is.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek A halmazállapotok makroszkopikus jellemzése, energetikai és mikroszerkezeti értelmezése.
Követelmények A tanuló tudja az anyag különböző halmazállapotait (szilárd, folyadék- és gázállapot) makroszkopikus fizikai tulajdonságaik alapján jellemezni. Lássa, hogy ugyanazon anyag különböző halmazállapotai esetén a belsőenergia-értékek
Kapcsolódási pontok Matematika: a függvény fogalma, grafikus ábrázolás, egyenletrendezés. Kémia: halmazállapotok és halmazállapotváltozások, exoterm
különböznek, a halmazállapot megváltozása energiaközlést (elvonást) igényel. Az olvadás és a fagyás jellemzői. A halmazállapot-változás energetikai értelmezése. Jelenségek, alkalmazások: A hűtés mértéke és a hűtési sebesség meghatározza a megszilárduló anyag mikroszerkezetét és ezen keresztül sok tulajdonságát. Fontos a kohászatban, mirelit-iparban. Ha a hűlés túl gyors, nincs kristályosodás – az olvadék üvegként szilárdul meg. Párolgás és lecsapódás (forrás). A párolgás (forrás), lecsapódás jellemzői. Halmazállapotváltozások a természetben. A halmazállapot-változás energetikai értelmezése. Jelenségek, alkalmazások: a „kuktafazék” működése (a forráspont nyomásfüggése), a párolgás hűtő hatása, szublimáció, desztilláció, szárítás, csapadékformák.
Ismerje az olvadás, fagyás fogalmát, jellemző paramétereit (olvadáspont, olvadáshő). Legyen képes egyszerű kalorikus feladatok megoldására. Ismerje a fagyás és olvadás szerepét a mindennapi életben.
Ismerje a párolgás, forrás, lecsapódás jelenségét, mennyiségi jellemzőit. Legyen képes egyszerű számítások elvégzésére, a jelenségek felismerésére a hétköznapi életben (időjárás). Ismerje a forráspont nyomásfüggésének gyakorlati jelentőségét és annak alkalmazását. Legyen képes egyszerű kalorikus feladatok megoldására számítással.
és endoterm folyamatok, kötési energia, képződéshő, reakcióhő, üzemanyagok égése, elektrolízis. Biológia-egészségtan: a táplálkozás alapvető biológiai folyamatai, ökológia, az „éltető Nap”, hőháztartás, öltözködés. Technika, életvitel és gyakorlat: folyamatos technológiai fejlesztések, innováció. Földrajz: környezetvédelem, a megújuló és nem megújuló energia fogalma.
Kulcsfogalmak/ Halmazállapot (gáz, folyadék, szilárd), halmazállapot-változás (olvadás, fagyás, párolgás, lecsapódás, forrás). fogalmak
Tematikai egység
Mindennapok hőtana
Órakeret 7 óra
Előzetes tudás A tematikai egység nevelési-fejlesztési céljai
A fizika és a mindennapi jelenségek kapcsolatának, a fizikai ismeretek hasznosságának tudatosítása. Kiscsoportos projektmunka otthoni, internetes és könyvtári témakutatással, adatgyűjtéssel, kísérletezés tanári irányítással. A csoportok eredményeinek bemutatása, megvitatása, értékelése.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Feldolgozásra ajánlott témák:
Fejlesztési követelmények Kísérleti munka tervezése
Kapcsolódási pontok Technika, életvitel és
Halmazállapot-változások a természetben. Korszerű fűtés, hőszigetelés a lakásban. Hőkamerás felvételek. Hogyan készít meleg vizet a napkollektor. Hőtan a konyhában. Naperőmű. A vízerőmű és a hőerőmű összehasonlító vizsgálata. Az élő szervezet mint termodinamikai gép. Az UV- és az IR-sugárzás egészségügyi hatása. Látszólagos „örökmozgók” működésének vizsgálata.
csoportmunkában, a feladatok felosztása. A kísérletek megtervezése, a mérések elvégzése, az eredmények rögzítése. Az eredmények nyilvános bemutatása kiselőadások, kísérleti bemutató formájában.
gyakorlat: takarékosság, az autók hűtési rendszerének téli védelme. Történelem, társadalmi és állampolgári ismeretek: beruházás megtérülése, megtérülési idő. Biológia-egészségtan: táplálkozás, ökológiai problémák. A hajszálcsövesség szerepe növényeknél, a levegő páratartalmának hatása az élőlényekre, fagykár a gyümölcsösökben, üvegházhatás, a vérnyomásra ható tényezők. Magyar nyelv és irodalom: Madách: Az ember tragédiája (eszkimó szín).
A hőtani tematikai egységek kulcsfogalmai. Kulcsfogalmak/ fogalmak A kísérletezési, mérési kompetencia, a megfigyelő, rendszerező készség fejlődése. A mozgástani alapfogalmak ismerete, grafikus feladatmegoldás. A newtoni mechanika szemléleti lényegének elsajátítása: az erő nem a mozgás fenntartásához, hanem a mozgásállapot megváltoztatásához A fejlesztés várt szükséges. eredményei a két Egyszerű kinematikai és dinamikai feladatok megoldása. évfolyamos ciklus A kinematika és dinamika mindennapi alkalmazása. Folyadékok és gázok sztatikájának és áramlásának alapjelenségei és ezek végén felismerése a gyakorlati életben. Az elektrosztatika alapjelenségei és fogalmai, az elektromos és a mágneses mező fizikai objektumként való elfogadása. Az áramokkal kapcsolatos alapismeretek és azok gyakorlati alkalmazásai, egyszerű feladatok megoldása. A gázok makroszkopikus állapotjelzői és összefüggéseik, az ideális gáz
golyómodellje, a nyomás és a hőmérséklet kinetikus értelmezése golyómodellel. Hőtani alapfogalmak, a hőtan főtételei, hőerőgépek. Annak ismerete, hogy gépeink működtetése, az élő szervezetek működése csak energia befektetése árán valósítható meg, a befektetett energia jelentős része elvész, a működésben nem hasznosul, „örökmozgó” létezése elvileg kizárt. Mindennapi környezetünk hőtani vonatkozásainak ismerete. Az energiatudatosság fejlődése.
Továbbhaladás feltételei
A tanuló legyen képes megadott célú megfigyelések, egyszerű mérések (hőmérséklet, áramerősség, feszültség) önálló elvégzésére, egyszerű áramkört kapcsolási rajz alapján összeállítani. Legyen képes a tapasztalatok, mérési adatok rögzítésére (vázlatos szövegben, táblázatban, grafikusan). Legyen képes a tanult jelenségeket természeti jelenségekben, gyakorlati alkalmazásokban vagy leírás, ábra, kép, grafikon stb. alapján felismerni (hőtágulási jelenségek, gázok állapotváltozásai, halmazállapot-változások, elektromos és mágneses kölcsönhatás, áram, indukciós jelenségek). Tudjon egyszerű szemléltető ábrákat készíteni (mezők ábrázolása erő-, illetve indukcióvonalakkal, kapcsolási rajzok stb.) Tudja alkalmazni a tanult alapvető összefüggéseket egyszerű számításos feladatokban (gáztörvények, kalorimetriai számítások, I. főtétel alkalmazása, Ohm-törvény, elektromos fogyasztók teljesítménye és munkája – váltakozó áramra is effektív értékekkel). Tudja értelmezni kvalitatív módon a gázok nyomását és hőmérsékletét a kinetikus gázmodell alapján; a hőerőgépek működését az I. főtétel alapján; tudja kimondani és értelmezni az I. főtételt mint az energiamegmaradás törvényét; értse az indukciós jelenségek lényegét. Sematikus ábra vagy modell segítségével tudja magyarázni legalább egy konkrét hőerőgép, illetve elektromágneses indukción alapuló eszköz működését. Tudjon konkrét példákat mondani a tanultakkal kapcsolatban energiagazdálkodási és környezetvédelmi problémákra, ismerjen megoldási módokat. Ismerje és tartsa be az elektromos balesetvédelmi szabályokat.
11. évfolyam
Éves órakeret
72 óra
Mechanikai rezgések, hullámok Mágnesség és elektromosság Elektromágneses rezgések, hullámok Hullám- és sugároptika Az atomok szerkezete A magfizika eleme Csillagászat és asztrofizika elemei
13 óra 13 óra 6 óra 14 óra 8 óra 8 órai 10 óra
A képzés második szakasza a matematikailag igényesebb mechanikai és elektrodinamikai tartalmakat (rezgések, indukció, elektromágneses rezgések, hullámok), az optikát és a modern fizika két nagy témakörét: a héj- és magfizikát, valamint a csillagászat-asztrofizikát dolgozza fel. A mechanika, az elektrodinamika és az optika esetén a jelenségek és a törvények megismerésén az érdekességek és a gyakorlati alkalmazásokon túl fontos az alapszintű feladat- és problémamegoldás. A modern fizikában a hangsúly a jelenségeken, a gyakorlati vonatkozásokon van. Az atommodellek fejlődésének bemutatása jó lehetőséget ad a fizikai törvények feltárásában alapvető modellezés lényegének koncentrált bemutatására. Az atomszerkezetek megismerésén keresztül jól kapcsolható a fizikai és a kémiai ismeretanyag, illetve megtárgyalható a kémiai kötésekkel összetartott kristályos és cseppfolyós anyagok mikroszerkezete és fizikai sajátságai közti kapcsolat. Ez utóbbi témának fontos része a félvezetők tárgyalása. A magfizika tárgyalása az elméleti alapozáson túl magába foglalja a nukleáris technika kérdéskörét, annak kockázati tényezőit is. A Csillagászat és asztrofizika fejezet a klasszikus csillagászati ismeretek rendszerezése után a magfizikához jól kapcsolódó csillagszerkezeti és kozmológiai kérdésekkel folytatódik. A fizika tematikus tanulásának záró éve döntően az ismeretek bővítését és rendszerezését szolgálja, bemutatva a fizika szerepét a mindennapi jelenségek és a korszerű technika értelmezésében, és hangsúlyozva a felelősséget környezetünk megóvásáért. A heti két órában tanult fizika alapot ad, de önmagában nem elegendő a fizika érettségi vizsga letételéhez, illetve a szakirányú (természettudományos és műszaki) felsőoktatásba történő bekapcsolódáshoz.
Tematikai egység Előzetes tudás
A tematikai egység nevelési-fejlesztési céljai
Mechanikai rezgések, hullámok
Órakeret 13 óra
A forgásszögek szögfüggvényei. A dinamika alapegyenlete, a rugó erőtörvénye, kinetikus energia, rugóenergia, sebesség, hangtani jelenségek, alapismeretek. A mechanikai rezgések tárgyalásával a váltakozó áramok és az elektromágneses rezgések megértésének előkészítése. A rezgések szerepének bemutatása a mindennapi életben. A mechanikai hullámok tárgyalása. A rezgésállapot terjedésének és a hullám időbeli és térbeli periodicitásának leírásával az elektromágneses hullámok megértését alapozza meg. Hangtan tárgyalása a fizikai fogalmak és a köznapi jelenségek összekapcsolásával.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek A rugóra akasztott rezgő test kinematikai vizsgálata. A rezgésidő meghatározása.
Követelmények A tanuló ismerje a rezgő test jellemző paramétereit (amplitúdó, rezgésidő, frekvencia). Ismerje és tudja grafikusan ábrázolni a mozgás kitérés-idő, sebesség-idő, gyorsulás-idő függvényeit. Tudja, hogy a rezgésidőt a test tömege és a rugóállandó határozza meg.
A rezgés dinamikai vizsgálata.
Tudja, hogy a harmonikus rezgés dinamikai feltétele a lineáris erőtörvény. Legyen képes felírni a rugón rezgő test mozgásegyenletét.
A rezgőmozgás energetikai vizsgálata. A mechanikai energiamegmaradás harmonikus rezgés esetén.
Legyen képes az energiaviszonyok kvalitatív értelmezésére a rezgés során. Tudja, hogy a feszülő rugó energiája a test mozgási energiájává alakul, majd újból rugóenergiává. Ha a csillapító hatások elhanyagolhatók, a rezgésre érvényes a mechanikai energia megmaradása. Tudja, hogy a környezeti hatások (súrlódás, közegellenállás) miatt a rezgés csillapodik. Ismerje a rezonancia jelenségét és ennek gyakorlati jelentőségét.
Kapcsolódási pontok Matematika: periodikus függvények. Filozófia: az idő filozófiai kérdései. Informatika: az informatikai eszközök működésének alapja, az órajel.
A hullám fogalma, jellemzői.
A tanuló tudja, hogy a mechanikai hullám a rezgésállapot terjedése valamely közegben, miközben anyagi részecskék nem haladnak a hullámmal, a hullámban energia terjed.
Hullámterjedés egy dimenzióban, Kötélhullámok esetén értelmezze kötélhullámok. a jellemző mennyiségeket (hullámhossz, periódusidő). Ismerje a terjedési sebesség, a hullámhossz és a periódusidő kapcsolatát. Ismerje a longitudinális és transzverzális hullámok fogalmát. Felületi hullámok. Hullámok visszaverődése, törése. Hullámok találkozása, állóhullámok. Hullámok interferenciája, az erősítés és a gyengítés feltételei.
Hullámkádas kísérletek alapján értelmezze a hullámok visszaverődését, törését. Tudja, hogy a hullámok akadálytalanul áthaladhatnak egymáson. Értse az interferencia jelenségét és értelmezze az erősítés és gyengítés (kioltás) feltételeit.
Térbeli hullámok. Jelenségek: földrengéshullámok, lemeztektonika.
Tudja, hogy alkalmas frekvenciájú rezgés állandósult hullámállapotot (állóhullám) eredményezhet.
A hang mint a térben terjedő hullám.
Tudja, hogy a hang mechanikai rezgés, ami a levegőben longitudinális hullámként terjed. Ismerje a hangmagasság, a hangerősség, a terjedési sebesség fogalmát. Legyen képes legalább egy hangszer működésének magyarázatára. Ismerje az ultrahang és az infrahang fogalmát, gyakorlati alkalmazását. Ismerje a hallás fizikai alapjait, a hallásküszöb és a zajszennyezés fogalmát.
A hang fizikai jellemzői. Alkalmazások: hallásvizsgálat. Hangszerek, a zenei hang jellemzői. Ultrahang és infrahang. Zajszennyeződés fogalma.
Harmonikus rezgés, lineáris erőtörvény, rezgésidő, hullám, hullámhossz, Kulcsfogalmak/ periódusidő, transzverzális hullám, longitudinális hullám, hullámtörés, fogalmak interferencia, állóhullám, hanghullám, hangsebesség, hangmagasság,
hangerő, rezonancia.
Tematikai egység
Mágnesség és elektromosság – Elektromágneses indukció, váltóáramú hálózatok
Előzetes tudás
Mágneses tér, az áram mágneses hatása, feszültség, áram.
A tematikai egység nevelési-fejlesztési céljai
Órakeret 13 óra
Az indukált elektromos mező és a nyugvó töltések által keltett erőtér közötti lényeges szerkezeti különbség kiemelése. Az elektromágneses indukció gyakorlati jelentőségének bemutatása. Energia hálózatok ismerete és az energiatakarékosság fogalmának kialakítása a fiatalokban.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
Kapcsolódási pontok
Az elektromágneses indukció jelensége.
A tanuló ismerje a mozgási indukció alapjelenségét, és tudja azt a Lorentz-erő segítségével értelmezni.
Kémia: elektromos áram, elektromos vezetés.
A mozgási indukció.
Ismerje a nyugalmi indukció jelenségét.
A nyugalmi indukció.
Tudja értelmezni Lenz törvényét az indukció jelenségeire.
Matematika: trigonometrikus függvények, függvény transzformáció.
Váltakozó feszültség keltése, a váltóáramú generátor elve (mozgási indukció mágneses térben forgatott tekercsben).
Értelmezze a váltakozó feszültség keletkezését mozgásindukcióval. Ismerje a szinuszosan váltakozó feszültséget és áramot leíró függvényt, tudja értelmezni a benne szereplő mennyiségeket.
Lenz törvénye. A váltakozó feszültség és áram jellemző paraméterei.
Technika, életvitel és gyakorlat: Az áram biológiai hatása, balesetvédelem, elektromos áram a háztartásban, biztosíték, fogyasztásmérők. Ismerje Lenz törvényét. Korszerű elektromos Ismerje a váltakozó áram effektív háztartási készülékek, hatását leíró mennyiségeket energiatakarékosság. (effektív feszültség, áram, teljesítmény).
Ohm törvénye váltóáramú hálózatban.
Értse, hogy a tekercs és a kondenzátor ellenállásként viselkedik a váltakozó áramú hálózatban.
Transzformátor. Gyakorlati alkalmazások.
Értelmezze a transzformátor működését az indukciótörvény alapján. Tudjon példákat a transzformátorok gyakorlati alkalmazására.
Az önindukció jelensége.
Ismerje az önindukció jelenségét és szerepét a gyakorlatban.
Az elektromos energiahálózat. A háromfázisú energiahálózat jellemzői. Az energia szállítása az erőműtől a fogyasztóig. Távvezeték, transzformátorok.
Ismerje a hálózati elektromos energia előállításának gyakorlati megvalósítását, az elektromos energiahálózat felépítését és működésének alapjait.
Az elektromos energiafogyasztás mérése. Az energiatakarékosság lehetőségei.
Ismerje az elektromos energiafogyasztás mérésének fizikai alapjait, az energiatakarékosság gyakorlati lehetőségeit a köznapi életben.
Tudomány- és technikatörténet. Jedlik Ányos, Siemens szerepe. Ganz, Diesel mozdonya. A transzformátor magyar feltalálói. Kulcsfogalmak/ Mozgási indukció, nyugalmi indukció, önindukció, váltóáramú generátor, váltóáramú elektromos hálózat. fogalmak
Rádió, televízió, mobiltelefon – Elektromágneses rezgések, hullámok
Tematikai egység Előzetes tudás A tematikai egység nevelési-fejlesztési céljai
Órakeret 6 óra
Elektromágneses indukció, önindukció, kondenzátor, kapacitás, váltakozó áram. Az elektromágneses sugárzások fizikai hátterének bemutatása. Az elektromágneses hullámok spektrumának bemutatása, érzékszerveinkkel, illetve műszereinkkel érzékelt egyes spektrumtartományai jellemzőinek kiemelése. Az információ elektromágneses úton történő továbbításának elméleti és kísérleti megalapozása.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
Az elektromágneses rezgőkör, elektromágneses rezgések.
A tanuló ismerje az elektromágneses rezgőkör felépítését és működését.
Elektromágneses hullám, hullámjelenségek.
Ismerje az elektromágneses hullám fogalmát, tudja, hogy az elektromágneses hullámok fénysebességgel terjednek, a terjedéshez nincs szükség közegre. Távoli, rezonanciára hangolt rezgőkörök között az elektromágneses hullámok révén
Jelenségek, gyakorlati alkalmazások: információtovábbítás elektromágneses hullámokkal.
Kapcsolódási pontok Technika, életvitel és gyakorlat: kommunikációs eszközök, információtovábbítás üvegszálas kábelen, levegőben, az információ tárolásának lehetőségei.
energiaátvitel lehetséges fémes összeköttetés nélkül. Az információtovábbítás új útjai. Az elektromágneses spektrum. Jelenségek, gyakorlati alkalmazások: hőfénykép, röntgenteleszkóp, rádiótávcső.
Ismerje az elektromágneses hullámok frekvenciatartományokra osztható spektrumát és az egyes tartományok jellemzőit.
Az elektromágneses hullámok gyakorlati alkalmazása. Jelenségek, gyakorlati alkalmazások: a rádiózás fizikai alapjai. A tévéadás és -vétel elvi alapjai. A GPS műholdas helymeghatározás. A mobiltelefon. A mikrohullámú sütő.
Tudja, hogy az elektromágneses hullámban energia terjed. Legyen képes példákon bemutatni az elektromágneses hullámok gyakorlati alkalmazását.
Biológia-egészségtan: élettani hatások, a képalkotó diagnosztikai eljárások, a megelőzés szerepe. Informatika: információtovábbítás jogi szabályozása, internetjogok és -szabályok. Vizuális kultúra: Képalkotó eljárások alkalmazása a digitális művészetekben, művészi reprodukciók. A média szerepe.
Kulcsfogalmak/ Elektromágneses rezgőkör, rezgés, rezonancia, elektromágneses hullám, elektromágneses spektrum. fogalmak
Tematikai egység Előzetes tudás A tematikai egység nevelési-fejlesztési céljai
Órakeret 14 óra
Hullám- és sugároptika Korábbi geometriai optikai ismeretek, hullámtulajdonságok, elektromágneses spektrum.
A fény és a fényjelenségek tárgyalása az elektromágneses hullámokról tanultak alapján. A fény gyakorlati szempontból kiemelt szerepének tudatosítása, hétköznapi fényjelenségek és optikai eszközök működésének értelmezése.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
A fény mint elektromágneses hullám. Jelenségek, gyakorlati alkalmazások: a lézer mint fényforrás, a lézer sokirányú alkalmazása.
Tudja a tanuló, hogy a fény elektromágneses hullám, az elektromágneses spektrum egy meghatározott frekvenciatartományához tartozik.
A fény terjedése, a vákuumbeli fénysebesség. A történelmi kísérletek a fény terjedési sebességének
Tudja a vákuumbeli fénysebesség értékét és azt, hogy mai tudásunk szerint ennél nagyobb sebesség nem létezhet
Kapcsolódási pontok Biológia-egészségtan: A szem és a látás, a szem egészsége. Látáshibák és korrekciójuk. Az energiaátadás szerepe a gyógyászati alkalmazásoknál, a fény élettani hatása napozásnál. A fény szerepe a
meghatározására.
(határsebesség).
A fény visszaverődése, törése új közeg határán (tükör, prizma).
Ismerje a fény terjedésével kapcsolatos geometriai optikai alapjelenségeket (visszaverődés, törés)
Interferencia, polarizáció (optikai rés, optikai rács).
Ismerje a fény hullámtermészetét bizonyító legfontosabb kísérleti jelenségeket (interferencia, polarizáció), és értelmezze azokat.
A fehér fény színekre bontása.
Tudja értelmezni a fehér fény összetett voltát.
Prizma és rács színkép. A fény kettős természete. Fényelektromos hatás – Einsteinféle foton elmélete. Gázok vonalas színképe.
A geometriai optika alkalmazása. Képalkotás. Jelenségek, gyakorlati alkalmazások: a látás fizikája, a szivárvány. Optikai kábel, spektroszkóp. A hagyományos és a digitális fényképezőgép működése. A lézer mint a digitális technika eszköze (CD-írás, -olvasás, lézernyomtató). A 3D-s filmek titka. Légköroptikai jelenségek (szivárvány, lemenő nap vörös színe). Kulcsfogalmak/ fogalmak
gyógyászatban és a megfigyelésben. Magyar nyelv és irodalom; mozgóképkultúra és médiaismeret: A fény szerepe. Az Univerzum megismerésének irodalmi és művészeti vonatkozásai, színek a művészetben.
Vizuális kultúra: a Ismerje a fény fényképezés mint részecsketulajdonságára utaló művészet. fényelektromos kísérletet, a foton fogalmát, energiáját. Legyen képes egyszerű számításokra a foton energiájának felhasználásával. Ismerje a geometriai optika legfontosabb alkalmazásait. Értse a leképezés fogalmát, tükrök, lencsék képalkotását. Legyen képes egyszerű képszerkesztésekre és tudja alkalmazni a leképezési törvényt egyszerű számításos feladatokban. Ismerje és értse a gyakorlatban fontos optikai eszközök (egyszerű nagyító, mikroszkóp, távcső), szemüveg, működését. Legyen képes egyszerű optikai kísérletek elvégzésére.
A fény mint elektromágneses hullám, fénytörés, visszaverődés, elhajlás, interferencia, polarizáció, diszperzió, spektroszkópia, képalkotás.
Tematikai egység Előzetes tudás
A tematikai egység nevelési-fejlesztési céljai
Az atomok szerkezete
Órakeret 8 óra
Az anyag atomos szerkezete. Az atomfizika tárgyalásának összekapcsolása a kémiai tapasztalatokon (súlyviszonytörvények) alapuló atomelmélettel. A fizikában alapvető modellalkotás folyamatának bemutatása az atommodellek változásain keresztül. A kvantummechanikai atommodell egyszerűsített, képszerű bemutatása. A műszaki-technikai szempontból alapvető félvezetők sávszerkezetének, kvalitatív, kvantummechanikai szemléletű megalapozása.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
Az anyag atomos felépítése felismerésének történelmi folyamata.
Ismerje a tanuló az atomok létezésére utaló korai természettudományos tapasztalatokat, tudjon meggyőzően érvelni az atomok létezése mellett.
A modern atomelméletet megalapozó felfedezések. A korai atommodellek. Az elektron felfedezése: Thomson-modell. Az atommag felfedezése: Rutherford-modell.
Értse az atomról alkotott elképzelések (atommodellek) fejlődését: a modell mindig kísérleteken, méréseken alapul, azok eredményeit magyarázza; új, a modellel már nem értelmezhető, azzal ellentmondásban álló kísérleti tapasztalatok esetén új modell megalkotására van szükség. Mutassa be a modellalkotás lényegét Thomson és Rutherford modelljén, a modellt megalapozó és megdöntő kísérletek, jelenségek alapján.
Bohr-féle atommodell.
Ismerje a Bohr-féle atommodell kísérleti alapjait (spektroszkópia, Rutherford-kísérlet). Legyen képes összefoglalni a modell lényegét és bemutatni, mennyire alkalmas az a gázok vonalas színképének értelmezésére és a kémiai kötések magyarázatára.
Az elektron kettős természete, de Broglie-hullámhossz.
Ismerje az elektron hullámtermészetét igazoló
Kapcsolódási pontok Kémia: az anyag szerkezetéről alkotott elképzelések, a változásukat előidéző kísérleti tények és a belőlük levont következtetések, a periódusos rendszer elektronszerkezeti értelmezése. Matematika: folytonos és diszkrét változó. Filozófia: ókori görög bölcselet; az anyag mélyebb megismerésének hatása a gondolkodásra, a tudomány felelősségének kérdései, a megismerhetőség határai és korlátai.
elektroninterferencia-kísérletet. Értse, hogy az elektron hullámtermészetének ténye új alapot ad a mikrofizikai jelenségek megértéséhez.
Alkalmazás: az elektronmikroszkóp.
A kvantummechanikai atommodell.
Tudja, hogy a kvantummechanikai atommodell az elektronokat hullámként írja le. Tudja, hogy az elektronok impulzusa és helye egyszerre nem mondható meg pontosan.
Fémek elektromos vezetése. Jelenség: szupravezetés.
Legyen kvalitatív képe a fémek elektromos ellenállásának klasszikus értelmezéséről.
Félvezetők szerkezete és vezetési tulajdonságai.
A kovalens kötésű kristályok szerkezete alapján értelmezze a szabad töltéshordozók keltését tiszta félvezetőkben. Ismerje a szennyezett félvezetők elektromos tulajdonságait. Tudja magyarázni a p-n átmenetet.
Mikroelektronikai alkalmazások: dióda, tranzisztor, LED, fényelem stb.
Kulcsfogalmak/ fogalmak
Atom, atommodell, elektronhéj, energiaszint, kettős természet, Bohrmodell, Heisenberg-féle határozatlansági reláció, félvezetők.
Tematikai egység
Az atommag is részekre bontható – a magfizika elemei
Órakeret 8 óra
Előzetes tudás
Atommodellek, Rutherford-kísérlet, rendszám, tömegszám, izotópok.
A tematikai egység nevelési-fejlesztési céljai
A magfizika alapismereteinek bemutatása a XX. századi történelmi események, a nukleáris energiatermelés, a mindennapi életben történő széleskörű alkalmazás és az ezekhez kapcsolódó nukleáris kockázat kérdéseinek szempontjából. Az ismereteken alapuló energiatudatos szemlélet kialakítása. A betegség felismerése és a terápia során fellépő reális kockázatok felelős vállalásának megértése.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
Az atommag alkotórészei, tömegszám, rendszám, neutronszám.
A tanuló ismerje az atommag jellemzőit (tömegszám, rendszám) és a mag alkotórészeit.
Az erős kölcsönhatás. Stabil atommagok létezésének magyarázata.
Ismerje az atommagot összetartó magerők, az ún. „erős kölcsönhatás” tulajdonságait.
Kapcsolódási pontok Kémia: Atommag, proton, neutron, rendszám, tömegszám, izotóp, radioaktív izotópok és alkalmazásuk, radioaktív bomlás.
Tudja kvalitatív szinten értelmezni a mag kötési energiáját, értse a neutronok szerepét a mag stabilizálásában. Ismerje a tömegdefektus jelenségét és kapcsolatát a kötési energiával. Magreakciók.
Tudja értelmezni a fajlagos kötési energia-tömegszám grafikont, és ehhez kapcsolódva tudja értelmezni a lehetséges magreakciókat.
A radioaktív bomlás.
Ismerje a radioaktív bomlás típusait, a radioaktív sugárzás fajtáit és megkülönböztetésük kísérleti módszereit. Tudja, hogy a radioaktív sugárzás intenzitása mérhető. Ismerje a felezési idő fogalmát és ehhez kapcsolódóan tudjon egyszerű feladatokat megoldani.
A természetes radioaktivitás.
Mesterséges radioaktív izotópok előállítása és alkalmazása.
Maghasadás. Tömegdefektus, tömeg-energia egyenértékűség.
Hidrogén, hélium, magfúzió. Biológia-egészségtan: a sugárzások biológiai hatásai; a sugárzás szerepe az evolúcióban, a fajtanemesítésben a mutációk előidézése révén; a radioaktív sugárzások hatása. Földrajz: energiaforrások, az atomenergia szerepe a világ energiatermelésében.
Történelem, társadalmi és állampolgári Legyen tájékozott a természetben ismeretek: a Hirosimára és előforduló radioaktivitásról, a Nagaszakira ledobott radioaktív izotópok bomlásával két atombomba kapcsolatos bomlási sorokról. története, politikai Ismerje a radioaktív háttere, későbbi kormeghatározási módszer következményei. lényegét. Einstein; Szilárd Leó, Legyen fogalma a radioaktív Teller Ede és Wigner izotópok mesterséges Jenő, a előállításának lehetőségéről és világtörténelmet tudjon példákat a mesterséges formáló magyar radioaktivitás néhány gyakorlati tudósok. alkalmazására a gyógyászatban és a műszaki gyakorlatban. Filozófia; etika: a tudomány Ismerje az urán–235 izotóp spontán hasadásának jelenségét. felelősségének kérdései. Tudja értelmezni a hasadással
Az atombomba.
járó energia-felszabadulást. Értse a láncreakció lehetőségét és Matematika: valószínűséglétrejöttének feltételeit. számítás. Értse az atombomba működésének fizikai alapjait és ismerje egy esetleges nukleáris háború globális pusztításának veszélyeit.
Az atomreaktor és az
Ismerje az ellenőrzött
A láncreakció fogalma, létrejöttének feltételei.
atomerőmű.
láncreakció fogalmát, tudja, hogy az atomreaktorban ellenőrzött láncreakciót valósítanak meg és használnak energiatermelésre. Értse az atomenergia szerepét az emberiség növekvő energiafelhasználásában, ismerje előnyeit és hátrányait.
Magfúzió.
Legyen tájékozott arról, hogy a csillagokban magfúziós folyamatok zajlanak, ismerje a Nap energiatermelését biztosító fúziós folyamat lényegét. Tudja, hogy a H-bomba pusztító hatását mesterséges magfúzió során felszabaduló energiája biztosítja. Tudja, hogy a békés energiatermelésre használható, ellenőrzött magfúziót még nem sikerült megvalósítani, de ez lehet a jövő perspektivikus energiaforrása.
A radioaktivitás kockázatainak leíró bemutatása.
Ismerje a kockázat fogalmát, számszerűsítésének módját és annak valószínűségi tartalmát. Ismerje a sugárvédelem fontosságát és a sugárterhelés jelentőségét.
Sugárterhelés, sugárvédelem.
Kulcsfogalmak/ Magerő, kötési energia, tömegdefektus, maghasadás, radioaktivitás, magfúzió, láncreakció, atomreaktor, fúziós reaktor. fogalmak
Tematikai egység Előzetes tudás
A tematikai egység nevelési-fejlesztési céljai
A földrajzból tanult csillagászati alapismeretek, a bolygómozgás törvényei, a gravitációs erőtörvény. Annak bemutatása, hogy a csillagászat, a megfigyelési módszerek gyors fejlődése révén, a XXI. század vezető tudományává vált. A világegyetemről szerzett új ismeretek segítenek, hogy az emberiség felismerje a helyét a kozmoszban, miközben minden eddiginél magasabb szinten meggyőzően igazolják az égi és földi jelenségek törvényeinek azonosságát.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Leíró csillagászat.
Órakeret 10 óra
Csillagászat és asztrofizika elemei
Követelmények A tanuló legyen képes
Kapcsolódási pontok Történelem,
Problémák: a csillagászat kultúrtörténete. Geocentrikus és heliocentrikus világkép. Asztronómia és asztrológia. Alkalmazások: hagyományos és új csillagászati műszerek. Űrtávcsövek. Rádiócsillagászat.
Égitestek.
tájékozódni a csillagos égbolton. Ismerje a csillagászati helymeghatározás alapjait. Ismerjen néhány csillagképet és legyen képes azokat megtalálni az égbolton. Ismerje a Nap és a Hold égi mozgásának jellemzőit, értse a Hold fázisainak változását, tudja értelmezni a hold- és napfogyatkozásokat. Tájékozottság szintjén ismerje a csillagászat megfigyelési módszereit az egyszerű távcsöves megfigyelésektől az űrtávcsöveken át a rádióteleszkópokig. Ismerje a legfontosabb égitesteket (bolygók, holdak, üstökösök, kisbolygók és aszteroidák, csillagok és csillagrendszerek, galaxisok, galaxishalmazok) és azok legfontosabb jellemzőit. Legyenek ismeretei a mesterséges égitestekről és azok gyakorlati jelentőségéről a tudományban és a technikában.
A Naprendszer és a Nap.
Csillagrendszerek, Tejútrendszer és galaxisok. A csillagfejlődés: a csillagok szerkezete, energiamérlege és keletkezése.
Ismerje a Naprendszer jellemzőit, a keletkezésére vonatkozó tudományos elképzeléseket. Tudja, hogy a Nap csak egy az átlagos csillagok közül, miközben a földi élet szempontjából meghatározó jelentőségű. Ismerje a Nap legfontosabb jellemzőit: a Nap szerkezeti felépítését, belső, energiatermelő folyamatait és sugárzását, a Napból a Földre érkező energia mennyiségét (napállandó). Legyen tájékozott a csillagokkal kapcsolatos legfontosabb tudományos ismeretekről. Ismerje a gravitáció és az energiatermelő nukleáris folyamatok meghatározó
társadalmi és állampolgári ismeretek: Kopernikusz, Kepler, Newton munkássága. A napfogyatkozások szerepe az emberi kultúrában, a Hold „képének” értelmezése a múltban. Földrajz: a Föld forgása és keringése, a Föld forgásának következményei (nyugati szelek öve), a Föld belső szerkezete, földtörténeti katasztrófák, kráterbecsapódás keltette felszíni alakzatok. Biológia-egészségtan: a Hold és az ember biológiai ciklusai, az élet feltételei. Kémia: a periódusos rendszer, a kémiai elemek keletkezése. Magyar nyelv és irodalom; mozgóképkultúra és médiaismeret: „a csillagos ég alatt”. Filozófia: a kozmológia kérdései.
Kvazárok, pulzárok; fekete lyukak.
szerepét a csillagok kialakulásában, „életében” és megszűnésében.
A kozmológia alapjai. Problémák, jelenségek: a kémiai anyag (atommagok) kialakulása. Perdület a Naprendszerben. Nóvák és szupernóvák. A földihez hasonló élet, kultúra esélye és keresése, exobolygók kutatása. Gyakorlati alkalmazások: műholdak, hírközlés és meteorológia, GPS, űrállomás, holdexpediciók, bolygók kutatása.
Legyenek alapvető ismeretei az Univerzumra vonatkozó aktuális tudományos elképzelésekről. Ismerje az ősrobbanásra és a Világegyetem tágulására utaló csillagászati méréseket. Ismerje az Univerzum korára és kiterjedésére vonatkozó becsléseket, tudja, hogy az Univerzum gyorsuló ütemben tágul.
Kulcsfogalmak/ Égitest, csillagfejlődés, csillagrendszer, ősrobbanás, táguló világegyetem, Naprendszer, űrkutatás. fogalmak
A mechanikai fogalmak bővítése a rezgések és hullámok témakörével, valamint a forgómozgás és a síkmozgás gyakorlatban is fontos ismereteivel. Az elektromágneses indukcióra épülő mindennapi alkalmazások fizikai alapjainak ismerete: elektromos energiahálózat, elektromágneses hullámok. Az optikai jelenségek értelmezése hármas modellezéssel (geometriai A fejlesztés várt optika, hullámoptika, fotonoptika). Hétköznapi optikai jelenségek eredményei a két értelmezése. évfolyamos ciklus A modellalkotás jellemzőinek bemutatása az atommodellek fejlődésén. Alapvető ismeretek a kondenzált anyagok szerkezeti és fizikai végén tulajdonságainak összefüggéseiről. A magfizika elméleti ismeretei alapján a korszerű nukleáris technikai alkalmazások értelmezése. A kockázat ismerete és reális értékelése. A csillagászati alapismeretek felhasználásával Földünk elhelyezése az Univerzumban, szemléletes kép az Univerzum térbeli, időbeli méreteiről. A csillagászat és az űrkutatás fontosságának ismerete és megértése. Képesség önálló ismeretszerzésre, forráskeresésre, azok szelektálására és feldolgozására.
Továbbhaladás feltételei Legyen képes felismerni a rezgéseket és hullámokat a természet jelenségeiben. Tudja jellemezni a hangot fizikai tulajdonságai alapján. Ismerje fel az indukció jelentőségét a váltakozó elektromos áram előállításában. Tudja értelmezni a rezgőkörben zajló elektromágneses rezgés során történő energiaátalakulásokat. Tudja felsorolni az elektromágneses spektrum tartományait frekvencia vagy hullámhossz szerinti sorrendben, minden típus esetén tudjon konkrét példát mondani előfordulásra, élettani, környezeti hatásra, gyakorlati-technikai felhasználásra.
Az I. Béla Gimnázium helyi tanterve Fizika tantárgyból 9. és 10. évfolyamon emelt óraszámú, 11. és 12. évfolyamon emelt szintű képzés 9-12 évfolyam (2+1, 2+1, 2+2, 2+2)
2015
Készítette az iskola természettudományi szakmai munkaközössége
FIZIKA B változat Az alábbi helyi tanterv a kerettantervek kiadásának és jogállásának rendjéről szóló 51/2012. (XII. 21.) számú EMMI rendelet Kerettanterv a gimnáziumok 9-12. évfolyama számára című 3. mellékletében megjelent, a fizika tantárgyra vonatkozóan akkreditált kerettantervi ajánlás alapján készült. A tantárgy sajátosságai, feladatok, alapelvek: A természettudományos kompetencia középpontjában a természetet és a természet működését megismerni igyekvő ember áll. A fizika tantárgy a természet működésének a tudomány által feltárt alapvető törvényszerűségeit igyekszik megismertetni a diákokkal. A törvények harmóniáját és alkalmazhatóságuk hihetetlen széles skálatartományát megcsodáltatva, bemutatja, hogyan segíti a tudományos módszer a természet erőinek és javainak az ember szolgálatába állítását. Olyan ismeretek megszerzésére ösztönözzük a fiatalokat, amelyekkel az egész életpályájukon hozzájárulnak majd a társadalom és a természeti környezet összhangjának fenntartásához, a tartós fejlődéshez, és ahhoz, hogy a körülöttünk levő természetnek minél kevésbé okozzunk sérülést. Nem kevésbé fontos, hogy elhelyezzük az embert kozmikus környezetünkben. A természettudomány és a fizika ismerete segítséget nyújt az ember világban elfoglalt helyének megértésére, a világ jelenségeinek a természettudományos módszerrel történő rendszerbe foglalására. A természet törvényeinek az embert szolgáló sikeres alkalmazása gazdasági előnyöket jelent, de ezen túl szellemi, esztétikai örömöt és harmóniát is kínál. A tantárgy tanulása során a tanulók megismerik az alapvető fizikai jelenségeket és az azokat értelmező modellek és elméletek történeti fejlődését, érvényességi határait, a hozzájuk vezető megismerési módszereket. A fizika tanítása során azt is be kell mutatnunk, hogy a felfedezések és az azok révén megfogalmazott fizikai törvények nemcsak egy-egy kiemelkedő szellemóriás munkáját, hanem sok tudós századokat átfogó munkájának koherens egymásra épülő tudásszövetét jelenítik meg. A törvények folyamatosan bővültek, és a modern tudományos módszer kialakulása óta nem kizárják, hanem kiegészítik egymást. Az egyre nagyobb teljesítőképességű modellekből számos alapvető, letisztult törvény nőtt ki, amelyeket a tanulmányok egymást követő szakaszai a tanulók kognitív képességeinek megfelelő gondolati és formai szinten mutatnak be, azzal a célkitűzéssel, hogy a szakirányú felsőfokú képzés során eljussanak a választott terület tudományos kutatásának frontvonalába. A tantárgy tanulása során a tanulók megismerkedhetnek a természet tervszerű megfigyelésével, a kísérletezéssel, a megfigyelési és a kísérleti eredmények számszerű megjelenítésével, grafikus ábrázolásával, a kvalitatív összefüggések matematikai alakú megfogalmazásával. Ez utóbbi nélkülözhetetlen vonása a fizika tanításának, hiszen e tudomány fél évezred óta tartó „diadalmenetének” ez a titka. Fontos, hogy a tanulók a jelenségekből és a köztük feltárt kapcsolatokból leszűrt törvényeket a természetben újabb és újabb jelenségekre alkalmazva ellenőrizzék, megtanulják igazolásuk vagy cáfolatuk módját. A tanulók ismerkedjenek meg a tudományos tényeken alapuló érveléssel, amelynek része a megismert természeti törvények egy-egy tudománytörténeti fordulóponton feltárt érvényességi korlátainak megvilágítása. A fizikában használatos modellek alkotásában és fejlesztésében való részvételről kapjanak vonzó élményeket és ismerkedjenek meg a fizika módszerének a fizikán túlmutató jelentőségével is. A tanulóknak fel kell ismerniük, hogy a műszaki-természettudományi mellett az
egészségügyi, az agrárgazdasági és a közgazdasági szakmai tudás szilárd megalapozásában sem nélkülözhető a fizika jelenségkörének megismerése. A gazdasági élet folyamatos fejlődése érdekében létfontosságú a fizika tantárgy korszerű és további érdeklődést kiváltó tanítása. A tantárgy tanításának elő kell segítenie a közvetített tudás társadalmi hasznosságának megértését és technikai alkalmazásának jelentőségét. Nem szabad megfeledkeznünk arról, hogy a fizika eszközeinek elsajátítása nagy szellemi erőfeszítést, rendszeres munkát igénylő tanulási folyamat. A Nemzeti alaptanterv természetismeret kompetenciában megfogalmazott fizikai ismereteket nem lehet egyenlő mélységben elsajátítatni. Így a tanárnak dönteni kell, hogy mi az, amit csak megismertet a fiatalokkal, és mi az, amit mélyebben feldolgoz. Az „Alkalmazások” és a „Jelenségek” címszavak alatt felsorolt témák olyanok, amelyekről fontos, hogy halljanak a tanulók, de mindent egyenlő mélységben ebben az órakeretben nincs módunk tanítani. Ahhoz, hogy a fizika tantárgy tananyaga személyesen megérintsen egy fiatalt, a tanárnak a tanítás módszereit a tanulók, tanulócsoportok igényeihez, életkori sajátosságaihoz, képességeik kifejlődéséhez és gondolkodásuk sokféleségéhez kell igazítani. A jól megtervezett megismerési folyamat segíti a tanulói érdeklődés felkeltését, a tanulási célok elfogadását és a tanulók aktív szerepvállalását is. A fizika tantárgy tanításakor a tanulási környezetet úgy kell tehát tervezni, hogy az támogassa a különböző aktív tanulási formákat, technikákat, a tanulócsoport összetétele, mérete, az iskolákban rendelkezésre álló feltételek függvényében. Így lehet reményünk arra, hogy a megfelelő kompetenciák és készségek kialakulnak a fiatalokban. A NAT-kapcsolatok és a kompetenciafejlesztés lehetőségei a következők: Természettudományos kompetencia: A természettudományos törvények és módszerek hatékonyságának ismerete az ember világbeli helye megtalálásának, a világban való tájékozódásának az elősegítésére. A tudományos elméletek társadalmi folyamatokban játszott szerepének ismerete, megértése; a fontosabb technikai vívmányok ismerete; ezek előnyeinek, korlátainak és társadalmi kockázatainak ismerete; az emberi tevékenység természetre gyakorolt hatásának ismerete. Szociális és állampolgári kompetencia: a helyi és a tágabb közösséget érintő problémák megoldása iránti szolidaritás és érdeklődés; kompromisszumra való törekvés; a fenntartható fejlődés támogatása; a társadalmi-gazdasági fejlődés iránti érdeklődés. Anyanyelvi kommunikáció: hallott és olvasott szöveg értése, szövegalkotás a témával kapcsolatban mind írásban a különböző gyűjtőmunkák esetében, mind pedig szóban a prezentációk alkalmával. Matematikai kompetencia: alapvető matematikai elvek alkalmazása az ismeretszerzésben és a problémák megoldásában, ami a 7–8. osztályban csak a négy alapműveletre és a különböző grafikonok rajzolására és elemzésére korlátozódik. Digitális kompetencia: információkeresés a témával kapcsolatban, adatok gyűjtése, feldolgozása, rendszerezése, a kapott adatok kritikus alkalmazása, felhasználása, grafikonok készítése. Hatékony, önálló tanulás: új ismeretek felkutatása, értő elsajátítása, feldolgozása és beépítése; munkavégzés másokkal együttműködve, a tudás megosztása; a korábban tanult ismeretek, a saját és mások élettapasztalatainak felhasználása. Kezdeményezőképesség és vállalkozói kompetencia: az új iránti nyitottság, elemzési képesség, különböző szempontú megközelítési lehetőségek számbavétele. Esztétikai-művészeti tudatosság és kifejezőképesség: a saját prezentáció, gyűjtőmunka esztétikus kivitelezése, a közösség számára érthető tolmácsolása. A fiatalok döntő részének 14-18 éves korban még nincs kialakult érdeklődése, egyformán nyitott és befogadó a legkülönbözőbb műveltségi területek iránt. Ez igaz a kimagasló értelmi képességekkel rendelkező gyerekekre és az átlagos adottságúakra egyaránt.
A fiatal személyes érdeke és a társadalom érdeke egyaránt azt kívánja, hogy a specializálódás vonatkozásában a döntés későbbre tolódjon. A négyosztályos gimnáziumban akkor is biztosítani kell az alapokat a reál irányú későbbi továbbtanulásra, ha a képzés központjában a humán vagy az emelt szintű nyelvi képzés áll. Társadalmilag kívánatos, hogy a fiatalok jelentős része a reál alapozást kívánó életpályákon (kutató, mérnök, orvos, üzemmérnök, technikus, valamint felsőfokú szakképzés kínálta műszaki szakmák) találja meg helyét a társadalomban. Az ilyen diákok számára a rendelkezésre álló szűkebb órakeretben kell olyan fizikaoktatást nyújtani (megfelelő matematikai leírással), ami biztos alapot ad arra, hogy reál irányú hivatás választása esetén eredményesen folytassák tanulmányaikat. A hagyományos fakultációs órakeret felhasználásával, és az ehhez kapcsolódó tanulói többletmunkával az is elérhető, hogy az általános középiskolai oktatási programot elvégző fiatal megállja a helyét az egyetemek által elvárt szakirányú felkészültséget tanúsító érettségi vizsgán és az egyetemi életben. A fizika tantárgy hagyományos tematikus felépítésű helyitanterve hangsúlyozottan kísérleti alapozású, kiemelt hangsúlyt kap benne a gyakorlati alkalmazás, valamint a továbbtanulást megalapozó feladat- és problémamegoldás. A kognitív kompetenciafejlesztésben elegendő súlyt kap a természettudományokra jellemző rendszerező, elemző gondolkodás fejlesztése is. Az integráltan oktatott SNI-tanulókról: Az SNI-tanulók oktatásával kapcsolatban a nemzeti köznevelésről szóló 2011. évi CXC. törvény, a Nat és a sajátos nevelési igényű tanulók iskolai oktatásának irányelve (a 32/2012. (X. 8.) EMMI rendelet 2. melléklete) szerint járunk el. Az etika tantárgyra vonatkozóan követjük a határozatok előírásait (pl. többletidő biztosítása, írásbeli számonkérés helyett inkább a szóbeli számonkérés biztosítása stb.).
9. évfolyam Az egyes témák feldolgozása minden esetben a korábbi ismeretek, hétköznapi tapasztalatok összegyűjtésével, a kísérletezéssel, méréssel indul, de az ismertszerzés fő módszere a tapasztalatokból szerzett információk rendszerezése, matematikai leírása, igazolása, ellenőrzése és az ezek alapján elsajátított ismeretanyag alkalmazása. A diákok természetes érdeklődést mutatnak a kísérletek, jelenségek és azok megértése iránt. A kerettantervi ciklus a klasszikus fizika jól kísérletezhető témaköreit dolgozza fel, a tananyagot a tanulók általános absztrakciós szintjéhez és az aktuális matematikai tudásszintjéhez igazítva. Ily módon sem a mechanika, sem az elektromágnesség témája nem zárul le a gimnáziumi képzés első ciklusában. A megismerés módszerei között fontos kiindulópont a gyakorlati tapasztalatszerzés, kísérlet, mérés, ehhez kapcsolódik a tapasztalatok összegzése, a törvények megfogalmazása szóban és egyszerű matematikai formulákkal. A fizikatanításban ma már nélkülözhetetlen segéd- és munkaeszköz a számítógép. Célunk a korszerű természettudományos világkép alapjainak és a mindennapi élet szempontjából fontos gyakorlati fizikai ismeretek kellő mértékű elsajátítása. A tanuló érezze, hogy a fizikából tanultak segítséget adnak számára, hogy biztonságosabban közlekedjen, hogy majd energiatudatosan éljen, olcsóbban éljen, hogy a természeti jelenségeket megfelelően értse és tudja magyarázni, az áltudományos reklámok ígéreteit helyesen tudja kezelni.
A kerettanterv az új anyag feldolgozására ajánlott óraszámokat adja meg. 9. évfolyam Éves órakeret
108 óra
A mozgástan elemei 36 óra A newtoni mechanika elemei 42 óra Munka – energia – teljesítmény 14 óra Folyadékok és gázok mechanikája 16 óra
Tematikai egység
Előzetes tudás
Minden mozog, a mozgás relatív – a mozgástan elemei
Órakeret 36 óra
Hétköznapi mozgásokkal kapcsolatos gyakorlati ismeretek. A 7–8. évfolyamon tanult kinematikai alapfogalmak, az út- és időmérés alapvető módszerei, függvényfogalom, a grafikus ábrázolás elemei, egyenletrendezés.
A kinematikai alapfogalmak, mennyiségek kísérleti alapokon történő kialakítása, illetve bővítése, az összefüggések (grafikus) ábrázolása és matematikai leírása. A természettudományos megismerés Galilei-féle A tematikai egység módszerének bemutatása. A kísérletezési kompetencia fejlesztése a nevelési-fejlesztési legegyszerűbb kézi mérésektől a számítógépes méréstechnikáig. A problémamegoldó képesség fejlesztése a grafikus ábrázolás és ehhez céljai kapcsolódó egyszerű feladatok megoldása során (is). A tanult ismeretek gyakorlati alkalmazása hétköznapi jelenségekre, problémákra (pl. közlekedés, sport). Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Alapfogalmak: a köznapi testek mozgásformái: haladó mozgás és forgás. Hely, hosszúság és idő mérése. Hosszúság, terület, térfogat, tömeg, sűrűség, idő, erő mérése. Hétköznapi helymeghatározás, úthálózat km-számítása. GPS-rendszer.
A mozgás viszonylagossága, a vonatkoztatási rendszer. Galilei relativitási elve.
Követelmények
Kapcsolódási pontok
A tanuló legyen képes a Matematika: függvény mozgásokról tanultak és a köznapi fogalma, grafikus jelenségek összekapcsolására, a ábrázolás, fizikai fogalmak helyes egyenletrendezés. használatára, egyszerű számítások elvégzésére. Informatika: Ismerje a mérés lényegi függvényábrázolás jellemzőit, a szabványos és a (táblázatkezelő gyakorlati mértékegységeket. használata). Legyen képes gyakorlatban alkalmazni a megismert mérési Testnevelés és sport: módszereket. érdekes sebességadatok, érdekes sebességek, Tudatosítsa a viszonyítási pályák technikai rendszer alapvető szerepét, környezete. megválasztásának szabadságát és célszerűségét.
Biológia-egészségtan: élőlények mozgása, sebességei, reakcióidő.
Mindennapi tapasztalatok egyenletesen mozgó vonatkoztatási rendszerekben (autó, vonat). Alkalmazások: földrajzi koordináták; GPS; helymeghatározás, távolságmérés radarral.
Művészetek; magyar nyelv és irodalom: mozgások ábrázolása. Technika, életvitel és gyakorlat: járművek sebessége és fékútja, követési távolság, közlekedésbiztonsági eszközök, technikai eszközök (autók, motorok).
Egyenes vonalú egyenletes mozgás kísérleti vizsgálata. Grafikus leírás. Sebesség, átlagsebesség. Sebességrekordok a sportban, sebességek az élővilágban.
Értelmezze az egyenes vonalú egyenletes mozgás jellemző mennyiségeit, tudja azokat grafikusan ábrázolni és értelmezni.
Egyenes vonalú egyenletesen változó mozgás kísérleti vizsgálata.
Ismerje a változó mozgás általános fogalmát, értelmezze az átlag- és pillanatnyi sebességet. Ismerje a gyorsulás fogalmát, vektor-jellegét. Tudja ábrázolni az s-t, v-t, a-t grafikonokat. Tudjon egyszerű feladatokat megoldani.
A szabadesés vizsgálata. A nehézségi gyorsulás meghatározása.
Földrajz: a Naprendszer Ismerje Galilei modern szerkezete, az égitestek tudományteremtő, történelmi mozgása, csillagképek, módszerének lényegét: távcsövek. a jelenség megfigyelése, értelmező hipotézis felállítása, számítások elvégzése, – az eredmény ellenőrzése célzott kísérletekkel.
Összetett mozgások. Egymásra merőleges egyenletes mozgások összege. Vízszintes hajítás vizsgálata, értelmezése összetett mozgásként.
Ismerje a mozgások függetlenségének elvét és legyen képes azt egyszerű esetekre (folyón átkelő csónak, eldobott labda pályája, a locsolócsőből kilépő vízsugár pályája) alkalmazni.
Egyenletes körmozgás. A körmozgás, mint periodikus mozgás. A mozgás jellemzői (kerületi és szögjellemzők). A centripetális gyorsulás értelmezése.
Ismerje a körmozgást leíró kerületi és szögjellemzőket és tudja alkalmazni azokat. Tudja értelmezni a centripetális gyorsulást. Mutasson be egyszerű kísérleteket, méréseket. Tudjon alapszintű feladatokat megoldani.
A bolygók körmozgáshoz hasonló A tanuló ismerje Kepler
Történelem, társadalmi és állampolgári ismeretek: Galilei munkássága; a kerék feltalálásának jelentősége.
centrális mozgása, Kepler törvényeit, tudja azokat törvényei. Kopernikuszi világkép alkalmazni a Naprendszer alapjai. bolygóira és mesterséges holdakra. Ismerje a geocentrikus és heliocentrikus világkép kultúrtörténeti dilemmáját és konfliktusát. Kulcsfogalmak/ Sebesség, átlagsebesség, pillanatnyi sebesség, gyorsulás, vektorjelleg, mozgások összegződése, periódusidő, szögsebesség, centripetális fogalmak gyorsulás.
Tematikai egység Előzetes tudás A tematikai egység nevelési-fejlesztési céljai
Okok és okozatok (Arisztotelésztől Newtonig) A newtoni mechanika elemei
Órakeret 42 óra
Erő, az erő mértékegysége, erőmérő, gyorsulás, tömeg. Az ösztönös arisztotelészi mozgásszemlélet tudatos lecserélése a newtoni dinamikus szemléletre. Az új szemléletű gondolkodásmód kiépítése. Az általános iskolában megismert sztatikus erőfogalom felcserélése a dinamikai szemléletűvel, rámutatva a két szemlélet összhangjára.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
A tehetetlenség törvénye (Newton I. axiómája). Mindennapos közlekedési tapasztalatok hirtelen fékezésnél, a biztonsági öv szerepe. Az űrben, űrhajóban szabadon mozgó testek.
Legyen képes a tanuló az arisztotelészi mozgásértelmezés elvetésére. Ismerje a tehetetlenség fogalmát és legyen képes az ezzel kapcsolatos hétköznapi jelenségek értelmezésére. Ismerje az inercia(tehetetlenségi) rendszer fogalmát.
Az erő fogalma. Az erő alak- és mozgásállapot-változtató hatása. Erőmérés rugós erőmérővel.
A tanuló ismerje az erő alak- és mozgásállapot-változtató hatását, az erő mérését, mértékegységét, vektor-jellegét. Legyen képes erőt mérni rugós erőmérővel.
Az erő mozgásállapotváltoztató (gyorsító) hatása – Newton II. axiómája.
Tudja Newton II. törvényét, lássa kapcsolatát az erő szabványos mértékegységével. Ismerje a tehetetlen tömeg fogalmát. Értse a tömegközéppont szerepét a valóságos testek mozgásának értelmezése során.
A tömeg, mint a tehetetlenség mértéke, a tömegközéppont fogalma. Erőtörvények, a dinamika alapegyenlete. A rugó erőtörvénye. A nehézségi erő és hatása. Tapadási és csúszási súrlódás. Alkalmazások: A súrlódás szerepe az autó gyorsításában, fékezésében. Szabadon eső testek súlytalansága.
Ismerje, és tudja alkalmazni a tanult egyszerű erőtörvényeket. Legyen képes egyszerű feladatok megoldására, néhány egyszerű esetben: állandó erővel húzott test; mozgás lejtőn, a súrlódás szerepe egyszerű mozgások esetén.
Az egyenletes körmozgás dinamikája. Jelenségek, gyakorlati alkalmazások: vezetés kanyarban, út megdöntése kanyarban, hullámvasút; függőleges síkban átforduló kocsi; műrepülés, körhinta, centrifuga.
Értse, hogy az egyenletes körmozgást végző test gyorsulását (a centripetális gyorsulást) a testre ható erők eredője adja, ami mindig a kör középpontjába mutat.
Newton gravitációs törvénye. Ismerje Newton gravitációs
Kapcsolódási pontok Matematika: a függvény fogalma, grafikus ábrázolás, egyenletrendezés. Technika, életvitel és gyakorlat: Takarékosság; légszennyezés, zajszennyezés; közlekedésbiztonsági eszközök, közlekedési szabályok. Biztonsági öv, ütközéses balesetek, a gépkocsi biztonsági felszerelése, a biztonságos fékezés. Biológia-egészségtan: reakcióidő, az állatok mozgása (pl. medúza). Földrajz: a Naprendszer szerkezete, az égitestek mozgása, csillagképek, távcsövek.
Jelenségek, gyakorlati alkalmazások: A nehézségi gyorsulás változása a Földön. Az árapály-jelenség kvalitatív magyarázata. A mesterséges holdak mozgása és a szabadesés. A súlytalanság értelmezése az űrállomáson. Geostacionárius műholdak, hírközlési műholdak.
törvényét. Tudja, hogy a gravitációs kölcsönhatás a négy alapvető fizikai kölcsönhatás egyike, meghatározó jelentőségű az égi mechanikában.
A kölcsönhatás törvénye (Newton III. axiómája).
Ismerje Newton III. axiómáját és egyszerű példákkal tudja azt illusztrálni. Értse, hogy az erő két test közötti kölcsönhatás. Legyen képes az erő és ellenerő világos megkülönböztetésére.
A lendületváltozás és az erőhatás kapcsolata. Lendülettétel.
Ismerje a lendület fogalmát, vektor-jellegét, a lendületváltozás és az erőhatás kapcsolatát.
Legyen képes a gravitációs erőtörvényt alkalmazni egyszerű esetekre. Értse a gravitáció szerepét az űrkutatással, űrhajózással kapcsolatos közismert jelenségekben.
Tudja a lendülettételt. Lendületmegmaradás párkölcsönhatás (zárt rendszer) esetén. Jelenségek, gyakorlati alkalmazások: golyók, korongok ütközése. Ütközéses balesetek a közlekedésben. Miért veszélyes a koccanás? Az utas biztonságát védő technikai megoldások (biztonsági öv, légzsák, a gyűrődő karosszéria). A rakétameghajtás elve. Pontszerű test egyensúlya.
A kiterjedt test egyensúlya.
Ismerje a lendületmegmaradás törvényét párkölcsönhatás esetén. Tudjon értelmezni egyszerű köznapi jelenségeket a lendület megmaradásának törvényével. Legyen képes egyszerű számítások és mérési feladatok megoldására. Értse a rakétameghajtás lényegét.
A tanuló ismerje, és egyszerű esetekre tudja alkalmazni a pontszerű test egyensúlyi feltételét. Legyen képes erővektorok összegzésére.
Ismerje a kiterjedt test és a tömegközéppont fogalmát, tudja A kierjedt test, mint speciális a kiterjedt test egyensúlyának
pontrendszer, tömegközéppont. Forgatónyomaték. Jelenségek, gyakorlati alkalmazások: emelők, tartószerkezetek, építészeti érdekességek (pl. gótikus támpillérek, boltívek.
kettős feltételét. Ismerje az erő forgató hatását, a forgatónyomaték fogalmát. Legyen képes egyszerű számítások, mérések, szerkesztések elvégzésére.
Deformálható testek egyensúlyi állapota.
Ismerje Hooke törvényét, értse a rugalmas alakváltozás és a belső erők kapcsolatát.
Pontrendszerek mozgásának vizsgálata, dinamikai értelmezése.
Tudja, hogy az egymással kölcsönhatásban lévő testek mozgását az egyes testekre ható külső erők és a testek közötti kényszerkapcsolatok figyelembevételével lehetséges értelmezni.
Kulcsfogalmak/ Erő, párkölcsönhatás, lendület, lendületmegmaradás, erőtörvény, mozgásegyenlet, pontrendszer, rakétamozgás, ütközés. fogalmak
Erőfeszítés és hasznosság Munka – Energia – Teljesítmény
Tematikai egység
Órakeret 14 óra
Előzetes tudás
A newtoni dinamika elemei, a fizikai munkavégzés tanult fogalma.
A tematikai egység nevelési-fejlesztési céljai
Az általános iskolában tanult munka- és mechanikai energiafogalom elmélyítése és bővítése, a mechanikai energiamegmaradás igazolása speciális esetekre és az energiamegmaradás törvényének általánosítása. Az elméleti megközelítés mellett a fizikai ismeretek mindennapi alkalmazásának bemutatása, gyakorlása.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Fizikai munka és teljesítmény.
Munkatétel. Mechanikai energiafajták (helyzeti energia, mozgási
Követelmények A tanuló értse a fizikai munkavégzés és a teljesítmény fogalmát, ismerje mértékegységeiket. Legyen képes egyszerű feladatok megoldására.
Kapcsolódási pontok Matematika: a függvény fogalma, grafikus ábrázolás, egyenletrendezés.
Testnevelés és sport: sportolók Ismerje a munkatételt és tudja azt teljesítménye, egyszerű esetekre alkalmazni. sportoláshoz használt Ismerje az alapvető mechanikai pályák energetikai energiafajtákat, és tudja azokat a
energia, rugalmas energia).
gyakorlatban értelmezni.
A mechanikai energiamegmaradás törvénye.
Tudja egyszerű zárt rendszerek példáin keresztül értelmezni a mechanikai energiamegmaradás törvényét.
Alkalmazások, jelenségek: a Tudja, hogy a mechanikai fékút és a sebesség kapcsolata, a energiamegmaradás nem teljesül követési távolság meghatározása. súrlódás, közegellenállás esetén, mert a rendszer mechanikailag nem zárt. Ilyenkor a mechanikai energiaveszteség a súrlódási erő munkájával egyenlő.
viszonyai és sporteszközök energetikája. Technika, életvitel és gyakorlat: járművek fogyasztása, munkavégzése, közlekedésbiztonsági eszközök, technikai eszközök (autók, motorok).
Egyszerű gépek, hatásfok. Érdekességek, alkalmazások. Ókori gépezetek, mai alkalmazások. Az egyszerű gépek elvének felismerése az élővilágban. Egyszerű gépek az emberi szervezetben.
Tudja a gyakorlatban használt Biológia-egészségtan: egyszerű gépek működését élőlények mozgása, értelmezni, ezzel kapcsolatban teljesítménye. feladatokat megoldani. Értse, hogy az egyszerű gépekkel munka nem takarítható meg.
Energia és egyensúlyi állapot.
Ismerje a stabil, labilis és közömbös egyensúlyi állapot fogalmát és tudja alkalmazni egyszerű esetekben.
Kulcsfogalmak/ Munkavégzés, energia, helyzeti energia, mozgási energia, rugalmas energia, munkatétel, mechanikai energiamegmaradás. fogalmak
Folyadékok és gázok mechanikája
Tematikai egység Előzetes tudás
A tematikai egység nevelési-fejlesztési céljai
Órakeret 16 óra
Hidrosztatikai és aerosztatikai alapismeretek, sűrűség, nyomás, légnyomás, felhajtóerő; kémia: anyagmegmaradás, halmazállapotok; földrajz: tengeri, légköri áramlások. A témakör jelentőségének bemutatása, mint a fizika egyik legrégebbi területe és egyúttal a legújabb kutatások színtere (pl. tengeri és légköri áramlások, a vízi- és szélenergia hasznosítása). A megismert fizikai törvények összekapcsolása a gyakorlati alkalmazásokkal. Önálló tanulói kísérletezéshez szükséges képességek fejlesztése, hétköznapi jelenségek fizikai értelmezésének gyakoroltatása.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Légnyomás kimutatása és mérése. Jelenségek, gyakorlati
Követelmények A tanuló ismerje a légnyomás fogalmát, mértékegységeit.
Kapcsolódási pontok Matematika: a függvény fogalma, grafikus ábrázolás,
alkalmazások: „Horror vacui” – mint egykori tudományos hipotézis. (Torricelli kísérlete vízzel, Guericke vákuumkísérletei, Goethe-barométer.) A légnyomás változásai. A légnyomás szerepe az időjárási jelenségekben, a barométer működése.
Ismerjen néhány, a levegő nyomásával kapcsolatos, gyakorlati szempontból is fontos jelenséget.
Alkalmazott hidrosztatika. Pascal törvénye, hidrosztatikai nyomás.
Tudja alkalmazni hidrosztatikai ismereteit köznapi jelenségek értelmezésére. A tanult ismeretek alapján legyen képes (pl. hidraulikus gépek alkalmazásainak bemutatása).
Hidraulikus gépek. Felhajtóerő nyugvó folyadékokban és gázokban. Búvárharang, tengeralattjáró. Léghajó, hőlégballon.
Legyen képes alkalmazni hidrosztatikai és aerosztatikai ismereteit köznapi jelenségek értelmezésére.
Molekuláris erők folyadékokban (kohézió és adhézió).
Ismerje a felületi feszültség fogalmát. Ismerje a határfelületeknek azt a tulajdonságát, hogy minimumra törekszenek. Legyen tisztában a felületi jelenségek fontos szerepével az élő és élettelen természetben.
Felületi feszültség. Jelenségek, gyakorlati alkalmazások: habok különleges tulajdonságai, mosószerek hatásmechanizmusa. Folyadékok és gázok áramlása. Jelenségek, gyakorlati alkalmazások: légköri áramlások, a szél értelmezése a nyomásviszonyok alapján, nagy tengeráramlásokat meghatározó környezeti hatások.
Tudja, hogy az áramlások oka a nyomáskülönbség. Legyen képes köznapi áramlási jelenségek kvalitatív fizikai értelmezésére.
Közegellenállás.
Ismerje a közegellenállás jelenségét, tudja, hogy a közegellenállási erő sebességfüggő. Legyen tisztában a vízi és szélenergia jelentőségével, hasznosításának múltbeli és korszerű lehetőségeivel. A megújuló energiaforrások aktuális hazai hasznosítása.
Az áramló közegek energiája, a szél- és a vízi energia hasznosítása.
Tudja értelmezni az áramlási sebesség változását a keresztmetszettel az anyagmegmaradás (kontinuitási egyenlet) alapján.
egyenletrendezés. Kémia: folyadékok, felületi feszültség, kolloid rendszerek, gázok, levegő, viszkozitás, alternatív energiaforrások. Történelem, társadalmi és állampolgári ismeretek: hajózás szerepe, légiközlekedés szerepe. Technika, életvitel és gyakorlat: repülőgépek közlekedésbiztonsági eszközei, vízi és légi közlekedési szabályok. Biológia-egészségtan: Vízi élőlények, madarak mozgása, sebességei, reakcióidő. A nyomás és változásának hatása az emberi szervezetre (pl. súlyfürdő, keszonbetegség, hegyi betegség).
Kulcsfogalmak/ fogalmak
Hidrosztatikai nyomás, felhajtóerő, úszás, viszkozitás, felületi feszültség, légnyomás, légáramlás, áramlási sebesség, aerodinamikai felhajtóerő, közegellenállás, szél- és vízienergia, szélerőmű, vízerőmű.
Továbbhaladás feltételei A tanuló legyen képes megadott célú megfigyelések, egyszerű mérések (hosszúság, idő, tömeg, erő) önálló elvégzésére. Legyen képes a tapasztalatok, mérési adatok rögzítésére (vázlatos szövegben, táblázatban, grafikusan). Tudjon besorolni konkrét mozgásokat a tanult mozgástípusokba. Tudja alkalmazni az út-idő és sebesség-idő összefüggéseket az egyenes vonalú egyenletes és egyenletesen változó mozgásra és a körmozgásra egyszerű feladatok megoldásában is. Tudja értelmezni a Newton-törvényeket egyszerű esetekben, feladatok megoldásában is. Ismerje a súly és súlytalanság fogalmát, a bolygómozgás alaptörvényeit. Tudja megfogalmazni az egyensúly feltételeit konkrét esetekben merev testekre is. Ismerje fel a tanult energiafajtákat konkrét esetekben. Ismerje fel a tanult megmaradási törvények alkalmazhatóságát egyszerű esetekben. Tudja használni a teljesítmény és a hatásfok fogalmát.
10. évfolyam 108 óra
Éves órakeret Elektromos töltés és erőtér Egyenáram Hőtani alapjelenségek, gáztörvények Molekuláris hőelmélet elemei Energia, hő és munka Halmazállapot-változások Mindennapok hőtana
Tematikai egység Előzetes tudás A tematikai egység nevelési-fejlesztési céljai
12 óra 24 óra 18 óra 10 óra 25 óra 10 óra 9 óra
Közel- és távolhatás – Elektromos töltés és erőtér
Órakeret 12 óra
Erő, munka, energia, elektromos töltés. Az elektrosztatikus mező fizikai valóságként való elfogadtatása. A mező jellemzése a térerősség, potenciál és erővonalak segítségével. A problémamegoldó képesség fejlesztése jelenségek, kísérletek, mindennapi alkalmazások értelmezésével.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
Elektrosztatikai alapjelenségek. Elektromos kölcsönhatás. Elektromos töltés.
A tanuló ismerje az elektrosztatikus alapjelenségeket, a pozitív és negatív töltést, tudjon egyszerű kísérleteket, jelenségeket értelmezni.
Coulomb törvénye. (A töltés mértékegysége.)
Ismerje a Coulomb-féle erőtörvényt.
Az elektromos erőtér (mező). Az elektromos mező, mint a kölcsönhatás közvetítője.
Ismerje a mező fogalmát, és létezését fogadja el anyagi objektumként. Tudja, hogy az elektromos mező forrása/i a töltés/töltések. Ismerje a mezőt jellemző térerősséget, értse az erővonalak jelentését. Ismerje a homogén elektromos mező fogalmát és jellemzését. Ismerje az elektromos feszültség fogalmát. Tudja, hogy a töltés mozgatása során végzett munka nem függ az úttól, csak a kezdeti és végállapotok helyzetétől. Legyen képes homogén
Az elektromos térerősség vektora, a tér szerkezetének szemléltetése erővonalakkal. A homogén elektromos mező. Az elektromos mező munkája homogén mezőben. Az elektromos feszültség fogalma.
Kapcsolódási pontok Kémia: Elektron, proton, elektromos töltés, az atom felépítése, elektrosztatikus kölcsönhatások, kristályrácsok szerkezete. Kötés, polaritás, molekulák polaritása, fémes kötés, fémek elektromos vezetése. Matematika: alapműveletek, egyenletrendezés, számok normálalakja, vektorok, függvények. Technika, életvitel és gyakorlat: balesetvédelem, földelés.
elektromos térrel kapcsolatos elemi feladatok megoldására. Töltés eloszlása fémes vezetőn. Jelenségek, gyakorlati alkalmazások: légköri elektromosság, csúcshatás, villámhárító, Faraday-kalitka, árnyékolás. Miért véd az autó karosszériája a villámtól? Elektromos koromleválasztó. A fénymásoló működése.
Tudja, hogy a fémre felvitt töltések a felületen helyezkednek el. Ismerje az elektromos megosztás, a csúcshatás jelenségét, a Faraday-kalitka és a villámhárító működését és gyakorlati jelentőségét.
Kapacitás fogalma.
Ismerje a kapacitás fogalmát, a síkkondenzátor terét.
A síkkondenzátor kapacitása. Kondenzátorok kapcsolása. A kondenzátor energiája. Az elektromos mező energiája.
Kulcsfogalmak/ fogalmak
Tudja értelmezni kondenzátorok soros és párhuzamos kapcsolását. Egyszerű kísérletek alapján tudja értelmezni, hogy a feltöltött kondenzátornak, azaz a kondenzátor elektromos terének energiája van.
Töltés, elektromos erőtér, térerősség, erővonalrendszer, feszültség, potenciál, kondenzátor, az elektromos tér energiája.
Tematikai egység Előzetes tudás A tematikai egység nevelési-fejlesztési céljai
A mozgó töltések – az egyenáram
Órakeret 24 óra
Telep (áramforrás), áramkör, fogyasztó, áramerősség, feszültség. Az egyenáram értelmezése, mint a töltések áramlása. Az elektromos áram jellemzése hatásain keresztül (hőhatás, mágneses, vegyi és biológiai hatás). Az elméleten alapuló gyakorlati ismeretek kialakítása (egyszerű hálózatok ismerete, ezekkel kapcsolatos egyszerű számítások, telepek, akkumulátorok, elektromágnesek, motorok). Az energiatudatos magatartás fejlesztése.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Az elektromos áram fogalma, kapcsolata a fémes vezetőkben zajló töltésmozgással. A zárt áramkör.
Követelmények
A tanuló ismerje az elektromos áram fogalmát, mértékegységét, mérését. Tudja, hogy az egyenáramú áramforrások feszültségét, pólusainak Jelenségek, alkalmazások: Volta- polaritását nem elektromos oszlop, laposelem, rúdelem, jellegű belső folyamatok napelem. (gyakran töltésátrendeződéssel járó kémiai vagy más
Kapcsolódási pontok Kémia: Elektromos áram, elektromos vezetés, rácstípusok tulajdonságai és azok anyagszerkezeti magyarázata. Galvánelemek működése, elektromotoros erő.
folyamatok) biztosítják. Ismerje az elektromos áramkör legfontosabb részeit, az áramkör ábrázolását kapcsolási rajzon. Ohm törvénye, áram- és feszültségmérés. Fogyasztók (vezetékek) ellenállása. Fajlagos ellenállás.
Ismerje az elektromos ellenállás, fajlagos ellenállás fogalmát, mértékegységét és mérésének módját.
Ohm törvénye teljes áramkörre. Elektromotoros erő, kapocsfeszültség, a belső ellenállás fogalma.
Tudja Ohm törvényét. Legyen képes egyszerű számításokat végezni Ohm törvénye alapján.
Az elektromos mező munkája az áramkörben. Az elektromos teljesítmény. Az elektromos áram hőhatása. Fogyasztók a háztartásban, fogyasztásmérés, az energiatakarékosság lehetőségei.
Ismerje a telepet jellemző elektromotoros erő és a belső ellenállás fogalmát, Ohm törvényét teljes áramkörre. Tudja értelmezni az elektromos áram teljesítményét, munkáját. Legyen képes egyszerű számítások elvégzésére. Tudja értelmezni a fogyasztókon feltüntetett teljesítményadatokat. Az energiatakarékosság fontosságának bemutatása.
Összetett hálózatok. Ellenállások kapcsolása. Az eredő ellenállás fogalma, számítása.
Tudja a hálózatok törvényeit alkalmazni ellenálláskapcsolások eredőjének számítása során.
Az áram vegyi hatása.
Tudja, hogy az elektrolitokban mozgó ionok jelentik az áramot. Ismerje az elektrolízis fogalmát, néhány gyakorlati alkalmazását. Értse, hogy az áram vegyi hatása és az élő szervezeteket gyógyító és károsító hatása között összefüggés van. Ismerje az alapvető elektromos érintésvédelmi szabályokat és azokat a gyakorlatban is tartsa be.
Az áram biológiai hatása.
Mágneses mező (permanens mágnesek). Permanens mágnesek kölcsönhatása, a mágnesek tere. Az egyenáram mágneses hatása.
Tudja bemutatni az áram mágneses terét egyszerű kísérlettel. Ismerje a tér jellemzésére alkalmas mágneses indukcióvektor fogalmát.
Ionos vegyületek elektromos vezetése olvadékban és oldatban, elektrolízis. Vas mágneses tulajdonsága. Matematika: alapműveletek, egyenletrendezés, számok normálalakja. Technika, életvitel és gyakorlat: Áram biológiai hatása, elektromos áram a háztartásban, biztosíték, fogyasztásmérők, balesetvédelem. A világítás fejlődése és a korszerű világítási eszközök. Korszerű elektromos háztartási készülékek, energiatakarékosság. Informatika: mikroelektronikai áramkörök, mágneses információrögzítés.
Áram és mágnes kölcsönhatása. Egyenes vezetőben folyó egyenáram mágneses terének vizsgálata. A mágneses mezőt jellemző indukcióvektor fogalma, mágneses indukcióvonalak. A vasmag (ferromágneses közeg) szerepe a mágneses hatás szempontjából. Az áramjárta vezetőre ható erő mágneses térben. Az elektromágnes és gyakorlati alkalmazásai.
Legyen képes a mágneses és az elektromos mező jellemzőinek összehasonlítására, a hasonlóságok és különbségek bemutatására. Tudja értelmezni az áramra ható erőt mágneses térben. Ismerje az egyenáramú motor működésének elvét.
Az elektromotor működése. Lorentz-erő – mágneses tér hatása mozgó szabad töltésekre.
Kulcsfogalmak/ fogalmak
Ismerje a Lorentz-erő fogalmát és tudja alkalmazni néhány jelenség értelmezésére (katódsugárcső, ciklotron).
Áramkör, ellenállás, fajlagos ellenállás, az egyenáram teljesítménye és munkája, elektromotoros erő, belső ellenállás, az áram hatásai (hő, kémiai, biológiai, mágneses), elektromágnes, Lorentz-erő, elektromotor.
Hőhatások és állapotváltozások – hőtani alapjelenségek, gáztörvények
Tematikai egység Előzetes tudás A tematikai egység nevelési-fejlesztési céljai
Órakeret 18 óra
Hőmérséklet, hőmérséklet mérése. A gázokról kémiából tanult ismeretek. A hőtágulás jelenségének tárgyalása, mint a hőmérséklet mérésének klasszikus alapjelensége. A gázok anyagi minőségtől független hőtágulásán alapuló Kelvin féle „abszolút” hőmérsékleti skála bevezetése. Gázok állapotjelzői közt fennálló összefüggések kísérleti és elméleti vizsgálata.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
A hőmérséklet, hőmérők, hőmérsékleti skálák.
Ismerje a tanuló a hőmérsékletmérésre leginkább elterjedt Celsius-skálát, néhány gyakorlatban használt hőmérő működési elvét. Legyen gyakorlata hőmérsékleti grafikonok olvasásában.
Hőtágulás. Szilárd anyagok lineáris, felületi
Ismerje a hőtágulás jelenségét szilárd anyagok és folyadékok
Kapcsolódási pontok Kémia: a gáz fogalma és az állapothatározók közötti összefüggések: Avogadro törvénye, moláris térfogat, abszolút, illetve relatív sűrűség.
és térfogati hőtágulása. Folyadékok hőtágulása.
esetén. Tudja a hőtágulás jelentőségét a köznapi életben, ismerje a víz különleges hőtágulási sajátosságát.
Gázok állapotjelzői, összefüggéseik. Boyle-Mariotte-törvény, Gay-Lussac-törvények. A Kelvin-féle gázhőmérsékleti skála.
Az ideális gáz állapotegyenlete.
Matematika: a függvény fogalma, grafikus ábrázolás, egyenletrendezés, exponenciális Ismerje a tanuló a gázok alapvető függvény. állapotjelzőit, az állapotjelzők közötti páronként kimérhető Testnevelés és sport: összefüggéseket. sport nagy magasságokban, Ismerje a Kelvin-féle sportolás a mélyben. hőmérsékleti skálát és legyen képes a két alapvető Biológia-egészségtan: hőmérsékleti skála közti keszonbetegség, hegyi átszámításokra. Tudja értelmezni betegség, madarak az abszolút nulla fok jelentését. repülése. Tudja, hogy a gázok döntő többsége átlagos körülmények Földrajz: között az anyagi minőségüktől széltérképek, függetlenül hasonló fizikai nyomástérképek, sajátságokat mutat. Ismerje az hőtérképek, ideális gázok állapotjelzői között áramlások. felírható összefüggést, az állapotegyenletet és tudjon ennek segítségével egyszerű feladatokat megoldani. Tudja a gázok állapotegyenletét mint az állapotjelzők közt fennálló összefüggést. Ismerje az izoterm, izochor és izobár, adiabatikus állapotváltozásokat.
Hőmérséklet, hőmérsékletmérés, hőmérsékleti skála, lineáris és térfogati Kulcsfogalmak/ hőtágulás, állapotegyenlet, egyesített gáztörvény, állapotváltozás, izochor, fogalmak izoterm, izobár változás, Kelvin-skála.
Tematikai egység
Részecskék rendezett és rendezetlen mozgása – A molekuláris hőelmélet elemei
Órakeret 10 óra
Előzetes tudás
Az anyag atomos szerkezete, az anyag golyómodellje, gázok nyomása, rugalmas ütközés, lendületváltozás, mozgási energia, kémiai részecskék tömege.
A tematikai egység nevelési-fejlesztési céljai
A gázok makroszkopikus jellemzőinek értelmezése a modell alapján, a nyomás, hőmérséklet – átlagos kinetikus energia, „belső energia”. A melegítés hatására fellépő hőmérséklet-növekedésnek és a belső energia változásának a modellre alapozott fogalmi összekapcsolása révén a hőtan főtételei megértésének előkészítése.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
Az ideális gáz kinetikus modellje.
A tanuló ismerje a gázok univerzális tulajdonságait magyarázó részecske-modellt.
A gáz nyomásának és hőmérsékletének értelmezése.
Értse a gáz nyomásának és hőmérsékletének a modellből kapott szemléletes magyarázatát.
Az ekvipartíció tétele, a részecskék szabadsági fokának fogalma. Gázok moláris és fajlagos hőkapacitása.
Ismerje az ekvipartíció-tételt, a gázrészecskék átlagos kinetikus energiája és a hőmérséklet közti kapcsolatot. Lássa, hogy a gázok melegítése során a gáz energiája nő, a melegítés lényege energiaátadás.
Kulcsfogalmak/ fogalmak
Kapcsolódási pontok Kémia: gázok tulajdonságai, ideális gáz.
Modellalkotás, kinetikus gázmodell, nyomás, hőmérséklet, ekvipartíció.
Tematikai egység Előzetes tudás
A tematikai egység nevelési-fejlesztési céljai
Energia, hő és munka – a hőtan főtételei
Órakeret 25 óra
Munka, kinetikus energia, energiamegmaradás, hőmérséklet, melegítés. A hőtan főtételeinek tárgyalása során annak megértetése, hogy a természetben lejátszódó folyamatokat általános törvények írják le. Az energiafogalom általánosítása, az energiamegmaradás törvényének kiterjesztése. A termodinamikai gépek működésének értelmezése, a termodinamikai hatásfok korlátos voltának megértetése. Annak elfogadtatása, hogy energia befektetése nélkül nem működik egyetlen gép, berendezés sem, örökmozgók nem léteznek. A hőtani főtételek univerzális (a természettudományokban általánosan érvényes) tartalmának bemutatása.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Melegítés munkavégzéssel. (Az ősember tűzgyújtása.) A belső energia fogalmának kialakítása. A belső energia megváltoztatása.
Követelmények Tudja a tanuló, hogy a melegítés lényege energiaátadás, „hőanyag” nincs!
Kapcsolódási pontok
Kémia: Exoterm és endoterm folyamatok, termokémia, Hesstétel, kötési energia, Ismerje a tanuló a belső energia reakcióhő, égéshő, fogalmát, mint a gázrészecskék elektrolízis. energiájának összegét. Tudja, Gyors és lassú égés, hogy a belső energia melegítéssel tápanyag, és/vagy munkavégzéssel energiatartalom
változtatható. A termodinamika I. főtétele. Alkalmazások konkrét fizikai, kémiai, biológiai példákon. Egyszerű számítások.
Hőerőgép. Gázzal végzett körfolyamatok. A hőerőgépek hatásfoka. Az élő szervezet hőerőgépszerű működése.
Az „örökmozgó” lehetetlensége.
A természeti folyamatok iránya. A spontán termikus folyamatok iránya, a folyamatok megfordításának lehetősége.
(ATP), a kémiai reakciók iránya, Ismerje a termodinamika I. megfordítható főtételét mint az folyamatok, kémiai energiamegmaradás általánosított egyensúlyok, megfogalmazását. stacionárius állapot, Az I. főtétel alapján tudja élelmiszerkémia. energetikai szempontból értelmezni a gázok korábban Technika, életvitel és tanult speciális gyakorlat: állapotváltozásait. Kvalitatív Folyamatos példák alapján fogadja el, hogy technológiai az I. főtétel általános természeti fejlesztések, törvény, ami fizikai, kémiai, innováció. biológiai, geológiai folyamatokra egyaránt érvényes. Földrajz: Gázok körfolyamatainak elméleti környezetvédelem, a vizsgálata alapján értse meg a megújuló és nem hőerőgép, hűtőgép, hőszivattyú megújuló energia működésének alapelvét. Tudja, fogalma. hogy a hőerőgépek hatásfoka lényegesen kisebb, mint 100%. Biológia-egészségtan: Tudja kvalitatív szinten az „éltető Nap”, alkalmazni a főtételt a hőháztartás, gyakorlatban használt öltözködés. hőerőgépek, működő modellek energetikai magyarázatára. Magyar nyelv és Energetikai szempontból lássa a irodalom: Madách lényegi hasonlóságot a Imre. hőerőgépek és az élő szervezetek működése között. Történelem, társadalmi és Tudja, hogy „örökmozgó” állampolgári (energiabetáplálás nélküli ismeretek; vizuális hőerőgép) nem létezhet! kultúra: A Nap Ismerje a reverzibilis és kitüntetett szerepe a irreverzibilis változások mitológiában és a fogalmát. Tudja, hogy a művészetekben. A természetben az irreverzibilitás a beruházás meghatározó. megtérülése, Kísérleti tapasztalatok alapján megtérülési idő, lássa, hogy a különböző takarékosság. hőmérsékletű testek közti termikus kölcsönhatás iránya Filozófia; magyar meghatározott: a magasabb nyelv és irodalom: hőmérsékletű test energiát ad át Madách: Az ember az alacsonyabb hőmérsékletűnek; tragédiája, eszkimó a folyamat addig tart, amíg a szín. hőmérsékletek kiegyenlítődnek. A spontán folyamat iránya csak
energiabefektetés árán változtatható meg. A termodinamika II. főtétele.
Kulcsfogalmak/ fogalmak
Ismerje a hőtan II. főtételét és tudja, hogy kimondása tapasztalati alapon történik. Tudja, hogy a hőtan II. főtétele általános természettörvény, a fizikán túl minden természettudomány és a műszaki tudományok is alapvetőnek tekintik.
Főtétel, hőerőgép, reverzibilitás, irreverzibilitás, örökmozgó.
Hőfelvétel hőmérsékletváltozás nélkül – halmazállapot-változások
Tematikai egység Előzetes tudás A tematikai egység nevelési-fejlesztési céljai
Órakeret 10 óra
Halmazállapotok szerkezeti jellemzői (kémia), a hőtan főtételei. A halmazállapotok jellemző tulajdonságainak és a halmazállapotváltozások energetikai hátterének tárgyalása, bemutatása. A halmazállapot-változásokkal kapcsolatos mindennapi jelenségek értelmezése a fizikában és a társ-természettudományok területén is.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek A halmazállapotok makroszkopikus jellemzése, energetikai és mikroszerkezeti értelmezése.
Az olvadás és a fagyás jellemzői. A halmazállapot-változás energetikai értelmezése. Jelenségek, alkalmazások: A hűtés mértéke és a hűtési sebesség meghatározza a megszilárduló anyag mikroszerkezetét és ezen keresztül sok
Követelmények A tanuló tudja az anyag különböző halmazállapotait (szilárd, folyadék- és gázállapot) makroszkopikus fizikai tulajdonságaik alapján jellemezni. Lássa, hogy ugyanazon anyag különböző halmazállapotai esetén a belsőenergia-értékek különböznek, a halmazállapot megváltozása energiaközlést (elvonást) igényel. Ismerje az olvadás, fagyás fogalmát, jellemző paramétereit (olvadáspont, olvadáshő). Legyen képes egyszerű kalorikus feladatok megoldására. Ismerje a fagyás és olvadás szerepét a mindennapi életben.
Kapcsolódási pontok Matematika: a függvény fogalma, grafikus ábrázolás, egyenletrendezés. Kémia: halmazállapotok és halmazállapotváltozások, exoterm és endoterm folyamatok, kötési energia, képződéshő, reakcióhő, üzemanyagok égése, elektrolízis. Biológia-egészségtan: a táplálkozás alapvető biológiai folyamatai, ökológia, az „éltető Nap”, hőháztartás,
tulajdonságát. Fontos a kohászatban, mirelit-iparban. Ha a hűlés túl gyors, nincs kristályosodás – az olvadék üvegként szilárdul meg. Párolgás és lecsapódás (forrás). A párolgás (forrás), lecsapódás jellemzői. Halmazállapotváltozások a természetben. A halmazállapot-változás energetikai értelmezése. Jelenségek, alkalmazások: a „kuktafazék” működése (a forráspont nyomásfüggése), a párolgás hűtő hatása, szublimáció, desztilláció, szárítás, csapadékformák.
öltözködés.
Ismerje a párolgás, forrás, lecsapódás jelenségét, mennyiségi jellemzőit. Legyen képes egyszerű számítások elvégzésére, a jelenségek felismerésére a hétköznapi életben (időjárás). Ismerje a forráspont nyomásfüggésének gyakorlati jelentőségét és annak alkalmazását. Legyen képes egyszerű kalorikus feladatok megoldására számítással.
Technika, életvitel és gyakorlat: folyamatos technológiai fejlesztések, innováció. Földrajz: környezetvédelem, a megújuló és nem megújuló energia fogalma.
Kulcsfogalmak/ Halmazállapot (gáz, folyadék, szilárd), halmazállapot-változás (olvadás, fagyás, párolgás, lecsapódás, forrás). fogalmak
Tematikai egység
Mindennapok hőtana
Órakeret 9 óra
Előzetes tudás A tematikai egység nevelési-fejlesztési céljai
A fizika és a mindennapi jelenségek kapcsolatának, a fizikai ismeretek hasznosságának tudatosítása. Kiscsoportos projektmunka otthoni, internetes és könyvtári témakutatással, adatgyűjtéssel, kísérletezés tanári irányítással. A csoportok eredményeinek bemutatása, megvitatása, értékelése.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Feldolgozásra ajánlott témák: Halmazállapot-változások a természetben. Korszerű fűtés, hőszigetelés a lakásban. Hőkamerás felvételek. Hogyan készít meleg vizet a napkollektor. Hőtan a konyhában. Naperőmű. A vízerőmű és a hőerőmű összehasonlító vizsgálata. Az élő szervezet mint
Fejlesztési követelmények
Kapcsolódási pontok
Kísérleti munka tervezése csoportmunkában, a feladatok felosztása. A kísérletek megtervezése, a mérések elvégzése, az eredmények rögzítése. Az eredmények nyilvános bemutatása kiselőadások, kísérleti bemutató formájában.
Technika, életvitel és gyakorlat: takarékosság, az autók hűtési rendszerének téli védelme. Történelem, társadalmi és állampolgári ismeretek: beruházás megtérülése, megtérülési idő. Biológia-egészségtan:
termodinamikai gép. Az UV- és az IR-sugárzás egészségügyi hatása. Látszólagos „örökmozgók” működésének vizsgálata.
táplálkozás, ökológiai problémák. A hajszálcsövesség szerepe növényeknél, a levegő páratartalmának hatása az élőlényekre, fagykár a gyümölcsösökben, üvegházhatás, a vérnyomásra ható tényezők. Magyar nyelv és irodalom: Madách: Az ember tragédiája (eszkimó szín).
Kulcsfogalmak/ fogalmak
A hőtani tematikai egységek kulcsfogalmai.
Továbbhaladás feltételei A tanuló legyen képes megadott célú megfigyelések, egyszerű mérések (hőmérséklet, áramerősség, feszültség) önálló elvégzésére, egyszerű áramkört kapcsolási rajz alapján összeállítani. Legyen képes a tapasztalatok, mérési adatok rögzítésére (vázlatos szövegben, táblázatban, grafikusan). Legyen képes a tanult jelenségeket természeti jelenségekben, gyakorlati alkalmazásokban vagy leírás, ábra, kép, grafikon stb. alapján felismerni (hőtágulási jelenségek, gázok állapotváltozásai, halmazállapot-változások, elektromos és mágneses kölcsönhatás, áram, indukciós jelenségek). Tudjon egyszerű szemléltető ábrákat készíteni (mezők ábrázolása erő-, illetve indukcióvonalakkal, kapcsolási rajzok stb.) Tudja alkalmazni a tanult alapvető összefüggéseket egyszerű számításos feladatokban (gáztörvények, kalorimetriai számítások, I. főtétel alkalmazása, Ohm-törvény, elektromos fogyasztók teljesítménye és munkája – váltakozó áramra is effektív értékekkel). Tudja értelmezni kvalitatív módon a gázok nyomását és hőmérsékletét a kinetikus gázmodell alapján; a hőerőgépek működését az I. főtétel alapján; tudja kimondani és értelmezni az I. főtételt mint az energiamegmaradás törvényét Tudjon konkrét példákat mondani a tanultakkal kapcsolatban energiagazdálkodási és környezetvédelmi problémákra, ismerjen megoldási módokat. Ismerje és tartsa be az elektromos balesetvédelmi szabályokat.
A kísérletezési, mérési kompetencia, a megfigyelő, rendszerező készség fejlődése. A mozgástani alapfogalmak ismerete, grafikus feladatmegoldás. A newtoni mechanika szemléleti lényegének elsajátítása: az erő nem a mozgás fenntartásához, hanem a mozgásállapot megváltoztatásához szükséges. Egyszerű kinematikai és dinamikai feladatok megoldása. A kinematika és dinamika mindennapi alkalmazása. Folyadékok és gázok sztatikájának és áramlásának alapjelenségei és ezek A fejlesztés várt felismerése a gyakorlati életben. eredményei a két Az elektrosztatika alapjelenségei és fogalmai, az elektromos és a évfolyamos ciklus mágneses mező fizikai objektumként való elfogadása. Az áramokkal kapcsolatos alapismeretek és azok gyakorlati alkalmazásai, egyszerű végén feladatok megoldása. A gázok makroszkopikus állapotjelzői és összefüggéseik, az ideális gáz golyómodellje, a nyomás és a hőmérséklet kinetikus értelmezése golyómodellel. Hőtani alapfogalmak, a hőtan főtételei, hőerőgépek. Annak ismerete, hogy gépeink működtetése, az élő szervezetek működése csak energia befektetése árán valósítható meg, a befektetett energia jelentős része elvész, a működésben nem hasznosul, „örökmozgó” létezése elvileg kizárt. Mindennapi környezetünk hőtani vonatkozásainak ismerete. Az energiatudatosság fejlődése.
11. évfolyam A képzés második szakasza a matematikailag igényesebb mechanikai és elektrodinamikai tartalmakat (rezgések, indukció, elektromágneses rezgések, hullámok), az optikát és a modern fizika két nagy témakörét: a héj- és magfizikát, valamint a csillagászat-asztrofizikát dolgozza fel. A mechanika, az elektrodinamika és az optika esetén a jelenségek és a törvények megismerésén az érdekességek és a gyakorlati alkalmazásokon túl fontos az alapszintű feladat- és problémamegoldás. A modern fizikában a hangsúly a jelenségeken, a gyakorlati vonatkozásokon van. Az atommodellek fejlődésének bemutatása jó lehetőséget ad a fizikai törvények feltárásában alapvető modellezés lényegének koncentrált bemutatására. Az atomszerkezetek megismerésén keresztül jól kapcsolható a fizikai és a kémiai ismeretanyag, illetve megtárgyalható a kémiai kötésekkel összetartott kristályos és cseppfolyós anyagok mikroszerkezete és fizikai sajátságai közti kapcsolat. Ez utóbbi témának fontos része a félvezetők tárgyalása. A magfizika tárgyalása az elméleti alapozáson túl magába foglalja a nukleáris technika kérdéskörét, annak kockázati tényezőit is. A Csillagászat és asztrofizika fejezet a klasszikus csillagászati ismeretek rendszerezése után a magfizikához jól kapcsolódó csillagszerkezeti és kozmológiai kérdésekkel folytatódik. A fizika tematikus tanulásának záró éve döntően az ismeretek bővítését és rendszerezését szolgálja, bemutatva a fizika szerepét a mindennapi jelenségek és a korszerű technika értelmezésében, és hangsúlyozva a felelősséget környezetünk megóvásáért. A heti két órában tanult fizika alapot ad, de önmagában nem elegendő a fizika érettségi vizsga letételéhez, illetve a szakirányú (természettudományos és műszaki) felsőoktatásba történő bekapcsolódáshoz. A kerettanterv részletesen felbontott óraszámához hozzászámítandó 10% (azaz 7 óra) szabad tanári döntéssel felhasználható órakeret, továbbá 8 óra ismétlésre és számonkérésre ajánlott óraszám. Ezekből adódik össze a 72 órás teljes évi órakeret. Éves órakeret
144 óra
Mechanikai rezgések, hullámok Mágnesség és elektromosság Elektromágneses rezgések, hullámok Hullám- és sugároptika Az atomok szerkezete A magfizika eleme Csillagászat és asztrofizika elemei
31 óra 31 óra 9 óra 31 óra 12 óra 12 óra 18 óra
Tematikai egység Előzetes tudás A tematikai egység nevelési-fejlesztési céljai
Mechanikai rezgések, hullámok
Órakeret 31 óra
A forgásszögek szögfüggvényei. A dinamika alapegyenlete, a rugó erőtörvénye, kinetikus energia, rugóenergia, sebesség, hangtani jelenségek, alapismeretek. A mechanikai rezgések tárgyalásával a váltakozó áramok és az elektromágneses rezgések megértésének előkészítése. A rezgések szerepének bemutatása a mindennapi életben. A mechanikai hullámok tárgyalása. A rezgésállapot terjedésének és a hullám időbeli és térbeli
periodicitásának leírásával az elektromágneses hullámok megértését alapozza meg. Hangtan tárgyalása a fizikai fogalmak és a köznapi jelenségek összekapcsolásával. Problémák, jelenségek, gyakorlati alkalmazások, ismeretek A rugóra akasztott rezgő test kinematikai vizsgálata. A rezgésidő meghatározása.
Követelmények A tanuló ismerje a rezgő test jellemző paramétereit (amplitúdó, rezgésidő, frekvencia). Ismerje és tudja grafikusan ábrázolni a mozgás kitérés-idő, sebesség-idő, gyorsulás-idő függvényeit. Tudja, hogy a rezgésidőt a test tömege és a rugóállandó határozza meg.
A rezgés dinamikai vizsgálata.
Tudja, hogy a harmonikus rezgés dinamikai feltétele a lineáris erőtörvény. Legyen képes felírni a rugón rezgő test mozgásegyenletét.
A rezgőmozgás energetikai vizsgálata. A mechanikai energiamegmaradás harmonikus rezgés esetén.
Legyen képes az energiaviszonyok kvalitatív értelmezésére a rezgés során. Tudja, hogy a feszülő rugó energiája a test mozgási energiájává alakul, majd újból rugóenergiává. Ha a csillapító hatások elhanyagolhatók, a rezgésre érvényes a mechanikai energia megmaradása. Tudja, hogy a környezeti hatások (súrlódás, közegellenállás) miatt a rezgés csillapodik. Ismerje a rezonancia jelenségét és ennek gyakorlati jelentőségét.
A hullám fogalma, jellemzői.
A tanuló tudja, hogy a mechanikai hullám a rezgésállapot terjedése valamely közegben, miközben anyagi részecskék nem haladnak a hullámmal, a hullámban energia terjed.
Hullámterjedés egy dimenzióban, Kötélhullámok esetén értelmezze kötélhullámok. a jellemző mennyiségeket (hullámhossz, periódusidő).
Kapcsolódási pontok Matematika: periodikus függvények. Filozófia: az idő filozófiai kérdései. Informatika: az informatikai eszközök működésének alapja, az órajel.
Ismerje a terjedési sebesség, a hullámhossz és a periódusidő kapcsolatát. Ismerje a longitudinális és transzverzális hullámok fogalmát. Felületi hullámok. Hullámok visszaverődése, törése. Hullámok találkozása, állóhullámok. Hullámok interferenciája, az erősítés és a gyengítés feltételei.
Hullámkádas kísérletek alapján értelmezze a hullámok visszaverődését, törését. Tudja, hogy a hullámok akadálytalanul áthaladhatnak egymáson. Értse az interferencia jelenségét és értelmezze az erősítés és gyengítés (kioltás) feltételeit.
Térbeli hullámok. Jelenségek: földrengéshullámok, lemeztektonika.
Tudja, hogy alkalmas frekvenciájú rezgés állandósult hullámállapotot (állóhullám) eredményezhet.
A hang mint a térben terjedő hullám.
Tudja, hogy a hang mechanikai rezgés, ami a levegőben longitudinális hullámként terjed. Ismerje a hangmagasság, a hangerősség, a terjedési sebesség fogalmát. Legyen képes legalább egy hangszer működésének magyarázatára. Ismerje az ultrahang és az infrahang fogalmát, gyakorlati alkalmazását. Ismerje a hallás fizikai alapjait, a hallásküszöb és a zajszennyezés fogalmát.
A hang fizikai jellemzői. Alkalmazások: hallásvizsgálat. Hangszerek, a zenei hang jellemzői. Ultrahang és infrahang. Zajszennyeződés fogalma.
Harmonikus rezgés, lineáris erőtörvény, rezgésidő, hullám, hullámhossz, Kulcsfogalmak/ periódusidő, transzverzális hullám, longitudinális hullám, hullámtörés, interferencia, állóhullám, hanghullám, hangsebesség, hangmagasság, fogalmak hangerő, rezonancia.
Tematikai egység
Mágnesség és elektromosság – Elektromágneses indukció, váltóáramú hálózatok
Előzetes tudás
Mágneses tér, az áram mágneses hatása, feszültség, áram.
A tematikai egység nevelési-fejlesztési céljai
Órakeret 31 óra
Az indukált elektromos mező és a nyugvó töltések által keltett erőtér közötti lényeges szerkezeti különbség kiemelése. Az elektromágneses indukció gyakorlati jelentőségének bemutatása. Energia hálózatok ismerete és az energiatakarékosság fogalmának kialakítása a
fiatalokban. Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
Kapcsolódási pontok
Az elektromágneses indukció jelensége.
A tanuló ismerje a mozgási indukció alapjelenségét, és tudja azt a Lorentz-erő segítségével értelmezni.
Kémia: elektromos áram, elektromos vezetés.
A mozgási indukció.
Ismerje a nyugalmi indukció jelenségét.
A nyugalmi indukció.
Tudja értelmezni Lenz törvényét az indukció jelenségeire.
Matematika: trigonometrikus függvények, függvény transzformáció.
Váltakozó feszültség keltése, a váltóáramú generátor elve (mozgási indukció mágneses térben forgatott tekercsben).
Értelmezze a váltakozó feszültség keletkezését mozgásindukcióval. Ismerje a szinuszosan váltakozó feszültséget és áramot leíró függvényt, tudja értelmezni a benne szereplő mennyiségeket.
Lenz törvénye. A váltakozó feszültség és áram jellemző paraméterei.
Technika, életvitel és gyakorlat: Az áram biológiai hatása, balesetvédelem, elektromos áram a háztartásban, biztosíték, fogyasztásmérők. Ismerje Lenz törvényét. Korszerű elektromos Ismerje a váltakozó áram effektív háztartási készülékek, hatását leíró mennyiségeket energiatakarékosság. (effektív feszültség, áram, teljesítmény).
Ohm törvénye váltóáramú hálózatban.
Értse, hogy a tekercs és a kondenzátor ellenállásként viselkedik a váltakozó áramú hálózatban.
Transzformátor. Gyakorlati alkalmazások.
Értelmezze a transzformátor működését az indukciótörvény alapján. Tudjon példákat a transzformátorok gyakorlati alkalmazására.
Az önindukció jelensége.
Ismerje az önindukció jelenségét és szerepét a gyakorlatban.
Az elektromos energiahálózat. A háromfázisú energiahálózat jellemzői. Az energia szállítása az erőműtől a fogyasztóig. Távvezeték, transzformátorok.
Ismerje a hálózati elektromos energia előállításának gyakorlati megvalósítását, az elektromos energiahálózat felépítését és működésének alapjait.
Az elektromos energiafogyasztás mérése.
Ismerje az elektromos energiafogyasztás mérésének fizikai alapjait, az
Az energiatakarékosság lehetőségei.
energiatakarékosság gyakorlati lehetőségeit a köznapi életben.
Tudomány- és technikatörténet. Jedlik Ányos, Siemens szerepe. Ganz, Diesel mozdonya. A transzformátor magyar feltalálói. Kulcsfogalmak/ Mozgási indukció, nyugalmi indukció, önindukció, váltóáramú generátor, váltóáramú elektromos hálózat. fogalmak Rádió, televízió, mobiltelefon – Elektromágneses rezgések, hullámok
Tematikai egység Előzetes tudás A tematikai egység nevelési-fejlesztési céljai
Órakeret 9 óra
Elektromágneses indukció, önindukció, kondenzátor, kapacitás, váltakozó áram. Az elektromágneses sugárzások fizikai hátterének bemutatása. Az elektromágneses hullámok spektrumának bemutatása, érzékszerveinkkel, illetve műszereinkkel érzékelt egyes spektrumtartományai jellemzőinek kiemelése. Az információ elektromágneses úton történő továbbításának elméleti és kísérleti megalapozása.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
Az elektromágneses rezgőkör, elektromágneses rezgések.
A tanuló ismerje az elektromágneses rezgőkör felépítését és működését.
Elektromágneses hullám, hullámjelenségek.
Ismerje az elektromágneses hullám fogalmát, tudja, hogy az elektromágneses hullámok fénysebességgel terjednek, a terjedéshez nincs szükség közegre. Távoli, rezonanciára hangolt rezgőkörök között az elektromágneses hullámok révén energiaátvitel lehetséges fémes összeköttetés nélkül. Az információtovábbítás új útjai.
Jelenségek, gyakorlati alkalmazások: információtovábbítás elektromágneses hullámokkal.
Az elektromágneses spektrum. Jelenségek, gyakorlati alkalmazások: hőfénykép, röntgenteleszkóp, rádiótávcső.
Ismerje az elektromágneses hullámok frekvenciatartományokra osztható spektrumát és az egyes tartományok jellemzőit.
Az elektromágneses hullámok gyakorlati alkalmazása. Jelenségek, gyakorlati alkalmazások: a rádiózás fizikai
Tudja, hogy az elektromágneses hullámban energia terjed. Legyen képes példákon
Kapcsolódási pontok Technika, életvitel és gyakorlat: kommunikációs eszközök, információtovábbítás üvegszálas kábelen, levegőben, az információ tárolásának lehetőségei. Biológia-egészségtan: élettani hatások, a képalkotó diagnosztikai eljárások, a megelőzés szerepe. Informatika: információtovábbítás jogi szabályozása, internetjogok és -szabályok.
alapjai. A tévéadás és -vétel elvi alapjai. A GPS műholdas helymeghatározás. A mobiltelefon. A mikrohullámú sütő.
bemutatni az elektromágneses hullámok gyakorlati alkalmazását.
Vizuális kultúra: Képalkotó eljárások alkalmazása a digitális művészetekben, művészi reprodukciók. A média szerepe.
Kulcsfogalmak/ Elektromágneses rezgőkör, rezgés, rezonancia, elektromágneses hullám, elektromágneses spektrum. fogalmak
Előzetes tudás A tematikai egység nevelési-fejlesztési céljai
Órakeret 31 óra
Hullám- és sugároptika
Tematikai egység
Korábbi geometriai optikai ismeretek, hullámtulajdonságok, elektromágneses spektrum. A fény és a fényjelenségek tárgyalása az elektromágneses hullámokról tanultak alapján. A fény gyakorlati szempontból kiemelt szerepének tudatosítása, hétköznapi fényjelenségek és optikai eszközök működésének értelmezése.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
A fény mint elektromágneses hullám. Jelenségek, gyakorlati alkalmazások: a lézer mint fényforrás, a lézer sokirányú alkalmazása.
Tudja a tanuló, hogy a fény elektromágneses hullám, az elektromágneses spektrum egy meghatározott frekvenciatartományához tartozik.
A fény terjedése, a vákuumbeli fénysebesség. A történelmi kísérletek a fény terjedési sebességének meghatározására.
Tudja a vákuumbeli fénysebesség értékét és azt, hogy mai tudásunk szerint ennél nagyobb sebesség nem létezhet (határsebesség).
A fény visszaverődése, törése új közeg határán (tükör, prizma).
Ismerje a fény terjedésével kapcsolatos geometriai optikai alapjelenségeket (visszaverődés, törés)
Interferencia, polarizáció (optikai rés, optikai rács).
Ismerje a fény hullámtermészetét bizonyító legfontosabb kísérleti jelenségeket (interferencia, polarizáció), és értelmezze azokat.
A fehér fény színekre bontása.
Tudja értelmezni a fehér fény összetett voltát.
Kapcsolódási pontok Biológia-egészségtan: A szem és a látás, a szem egészsége. Látáshibák és korrekciójuk. Az energiaátadás szerepe a gyógyászati alkalmazásoknál, a fény élettani hatása napozásnál. A fény szerepe a gyógyászatban és a megfigyelésben. Magyar nyelv és irodalom; mozgóképkultúra és médiaismeret: A fény szerepe. Az Univerzum megismerésének irodalmi és művészeti vonatkozásai, színek a művészetben.
Prizma és rács színkép. A fény kettős természete. Fényelektromos hatás – Einsteinféle foton elmélete. Gázok vonalas színképe.
A geometriai optika alkalmazása. Képalkotás. Jelenségek, gyakorlati alkalmazások: a látás fizikája, a szivárvány. Optikai kábel, spektroszkóp. A hagyományos és a digitális fényképezőgép működése. A lézer mint a digitális technika eszköze (CD-írás, -olvasás, lézernyomtató). A 3D-s filmek titka. Légköroptikai jelenségek (szivárvány, lemenő nap vörös színe). Kulcsfogalmak/ fogalmak
Vizuális kultúra: a Ismerje a fény fényképezés mint részecsketulajdonságára utaló művészet. fényelektromos kísérletet, a foton fogalmát, energiáját. Legyen képes egyszerű számításokra a foton energiájának felhasználásával. Ismerje a geometriai optika legfontosabb alkalmazásait. Értse a leképezés fogalmát, tükrök, lencsék képalkotását. Legyen képes egyszerű képszerkesztésekre és tudja alkalmazni a leképezési törvényt egyszerű számításos feladatokban. Ismerje és értse a gyakorlatban fontos optikai eszközök (egyszerű nagyító, mikroszkóp, távcső), szemüveg, működését. Legyen képes egyszerű optikai kísérletek elvégzésére.
A fény mint elektromágneses hullám, fénytörés, visszaverődés, elhajlás, interferencia, polarizáció, diszperzió, spektroszkópia, képalkotás.
Tematikai egység Előzetes tudás
A tematikai egység nevelési-fejlesztési céljai
Az atomok szerkezete
Órakeret 12 óra
Az anyag atomos szerkezete. Az atomfizika tárgyalásának összekapcsolása a kémiai tapasztalatokon (súlyviszonytörvények) alapuló atomelmélettel. A fizikában alapvető modellalkotás folyamatának bemutatása az atommodellek változásain keresztül. A kvantummechanikai atommodell egyszerűsített, képszerű bemutatása. A műszaki-technikai szempontból alapvető félvezetők sávszerkezetének, kvalitatív, kvantummechanikai szemléletű megalapozása.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Az anyag atomos felépítése felismerésének történelmi folyamata.
Követelmények Ismerje a tanuló az atomok létezésére utaló korai természettudományos tapasztalatokat, tudjon meggyőzően érvelni az atomok
Kapcsolódási pontok Kémia: az anyag szerkezetéről alkotott elképzelések, a változásukat előidéző kísérleti tények és a
létezése mellett. A modern atomelméletet megalapozó felfedezések. A korai atommodellek. Az elektron felfedezése: Thomson-modell. Az atommag felfedezése: Rutherford-modell.
Értse az atomról alkotott elképzelések (atommodellek) fejlődését: a modell mindig kísérleteken, méréseken alapul, azok eredményeit magyarázza; új, a modellel már nem értelmezhető, azzal ellentmondásban álló kísérleti tapasztalatok esetén új modell megalkotására van szükség. Mutassa be a modellalkotás lényegét Thomson és Rutherford modelljén, a modellt megalapozó és megdöntő kísérletek, jelenségek alapján.
Bohr-féle atommodell.
Ismerje a Bohr-féle atommodell kísérleti alapjait (spektroszkópia, Rutherford-kísérlet). Legyen képes összefoglalni a modell lényegét és bemutatni, mennyire alkalmas az a gázok vonalas színképének értelmezésére és a kémiai kötések magyarázatára.
Az elektron kettős természete, de Broglie-hullámhossz.
Ismerje az elektron hullámtermészetét igazoló elektroninterferencia-kísérletet. Értse, hogy az elektron hullámtermészetének ténye új alapot ad a mikrofizikai jelenségek megértéséhez.
Alkalmazás: az elektronmikroszkóp.
A kvantummechanikai atommodell.
Tudja, hogy a kvantummechanikai atommodell az elektronokat hullámként írja le. Tudja, hogy az elektronok impulzusa és helye egyszerre nem mondható meg pontosan.
Fémek elektromos vezetése. Jelenség: szupravezetés.
Legyen kvalitatív képe a fémek elektromos ellenállásának klasszikus értelmezéséről.
Félvezetők szerkezete és vezetési tulajdonságai.
A kovalens kötésű kristályok szerkezete alapján értelmezze a szabad töltéshordozók keltését tiszta félvezetőkben. Ismerje a szennyezett félvezetők elektromos tulajdonságait.
Mikroelektronikai alkalmazások: dióda, tranzisztor, LED, fényelem stb.
belőlük levont következtetések, a periódusos rendszer elektronszerkezeti értelmezése. Matematika: folytonos és diszkrét változó. Filozófia: ókori görög bölcselet; az anyag mélyebb megismerésének hatása a gondolkodásra, a tudomány felelősségének kérdései, a megismerhetőség határai és korlátai.
Tudja magyarázni a p-n átmenetet. Kulcsfogalmak/ fogalmak
Atom, atommodell, elektronhéj, energiaszint, kettős természet, Bohrmodell, Heisenberg-féle határozatlansági reláció, félvezetők.
Tematikai egység
Az atommag is részekre bontható – a magfizika elemei
Órakeret 12 óra
Előzetes tudás
Atommodellek, Rutherford-kísérlet, rendszám, tömegszám, izotópok.
A tematikai egység nevelési-fejlesztési céljai
A magfizika alapismereteinek bemutatása a XX. századi történelmi események, a nukleáris energiatermelés, a mindennapi életben történő széleskörű alkalmazás és az ezekhez kapcsolódó nukleáris kockázat kérdéseinek szempontjából. Az ismereteken alapuló energiatudatos szemlélet kialakítása. A betegség felismerése és a terápia során fellépő reális kockázatok felelős vállalásának megértése.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
Az atommag alkotórészei, tömegszám, rendszám, neutronszám.
A tanuló ismerje az atommag jellemzőit (tömegszám, rendszám) és a mag alkotórészeit.
Az erős kölcsönhatás. Stabil atommagok létezésének magyarázata.
Ismerje az atommagot összetartó magerők, az ún. „erős kölcsönhatás” tulajdonságait. Tudja kvalitatív szinten értelmezni a mag kötési energiáját, értse a neutronok szerepét a mag stabilizálásában. Ismerje a tömegdefektus jelenségét és kapcsolatát a kötési energiával.
Magreakciók.
Tudja értelmezni a fajlagos kötési energia-tömegszám grafikont, és ehhez kapcsolódva tudja értelmezni a lehetséges magreakciókat.
A radioaktív bomlás.
Ismerje a radioaktív bomlás típusait, a radioaktív sugárzás fajtáit és megkülönböztetésük kísérleti módszereit. Tudja, hogy a radioaktív sugárzás intenzitása mérhető. Ismerje a felezési idő fogalmát és ehhez kapcsolódóan tudjon egyszerű feladatokat megoldani.
Kapcsolódási pontok Kémia: Atommag, proton, neutron, rendszám, tömegszám, izotóp, radioaktív izotópok és alkalmazásuk, radioaktív bomlás. Hidrogén, hélium, magfúzió. Biológia-egészségtan: a sugárzások biológiai hatásai; a sugárzás szerepe az evolúcióban, a fajtanemesítésben a mutációk előidézése révén; a radioaktív sugárzások hatása. Földrajz: energiaforrások, az atomenergia szerepe a világ energiatermelésében. Történelem, társadalmi és állampolgári
A természetes radioaktivitás.
Legyen tájékozott a természetben előforduló radioaktivitásról, a radioaktív izotópok bomlásával kapcsolatos bomlási sorokról. Ismerje a radioaktív kormeghatározási módszer lényegét.
Mesterséges radioaktív izotópok előállítása és alkalmazása.
Legyen fogalma a radioaktív izotópok mesterséges előállításának lehetőségéről és tudjon példákat a mesterséges radioaktivitás néhány gyakorlati alkalmazására a gyógyászatban és a műszaki gyakorlatban.
Maghasadás. Tömegdefektus, tömeg-energia egyenértékűség. A láncreakció fogalma, létrejöttének feltételei. Az atombomba.
ismeretek: a Hirosimára és Nagaszakira ledobott két atombomba története, politikai háttere, későbbi következményei. Einstein; Szilárd Leó, Teller Ede és Wigner Jenő, a világtörténelmet formáló magyar tudósok. Filozófia; etika: a tudomány felelősségének kérdései.
Ismerje az urán–235 izotóp spontán hasadásának jelenségét. Tudja értelmezni a hasadással járó energia-felszabadulást. Értse a láncreakció lehetőségét és Matematika: valószínűséglétrejöttének feltételeit. számítás. Értse az atombomba működésének fizikai alapjait és ismerje egy esetleges nukleáris háború globális pusztításának veszélyeit.
Az atomreaktor és az atomerőmű.
Ismerje az ellenőrzött láncreakció fogalmát, tudja, hogy az atomreaktorban ellenőrzött láncreakciót valósítanak meg és használnak energiatermelésre. Értse az atomenergia szerepét az emberiség növekvő energiafelhasználásában, ismerje előnyeit és hátrányait.
Magfúzió.
Legyen tájékozott arról, hogy a csillagokban magfúziós folyamatok zajlanak, ismerje a Nap energiatermelését biztosító fúziós folyamat lényegét. Tudja, hogy a H-bomba pusztító hatását mesterséges magfúzió során felszabaduló energiája biztosítja. Tudja, hogy a békés energiatermelésre használható, ellenőrzött magfúziót még nem sikerült megvalósítani, de ez lehet a jövő perspektivikus
energiaforrása. A radioaktivitás kockázatainak leíró bemutatása. Sugárterhelés, sugárvédelem.
Ismerje a kockázat fogalmát, számszerűsítésének módját és annak valószínűségi tartalmát. Ismerje a sugárvédelem fontosságát és a sugárterhelés jelentőségét.
Kulcsfogalmak/ Magerő, kötési energia, tömegdefektus, maghasadás, radioaktivitás, magfúzió, láncreakció, atomreaktor, fúziós reaktor. fogalmak Tematikai egység Előzetes tudás
A tematikai egység nevelési-fejlesztési céljai
Csillagászat és asztrofizika elemei
A földrajzból tanult csillagászati alapismeretek, a bolygómozgás törvényei, a gravitációs erőtörvény. Annak bemutatása, hogy a csillagászat, a megfigyelési módszerek gyors fejlődése révén, a XXI. század vezető tudományává vált. A világegyetemről szerzett új ismeretek segítenek, hogy az emberiség felismerje a helyét a kozmoszban, miközben minden eddiginél magasabb szinten meggyőzően igazolják az égi és földi jelenségek törvényeinek azonosságát.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Leíró csillagászat. Problémák: a csillagászat kultúrtörténete. Geocentrikus és heliocentrikus világkép. Asztronómia és asztrológia. Alkalmazások: hagyományos és új csillagászati műszerek. Űrtávcsövek. Rádiócsillagászat.
Égitestek.
Órakeret 18 óra
Követelmények
Kapcsolódási pontok
A tanuló legyen képes tájékozódni a csillagos égbolton. Ismerje a csillagászati helymeghatározás alapjait. Ismerjen néhány csillagképet és legyen képes azokat megtalálni az égbolton. Ismerje a Nap és a Hold égi mozgásának jellemzőit, értse a Hold fázisainak változását, tudja értelmezni a hold- és napfogyatkozásokat. Tájékozottság szintjén ismerje a csillagászat megfigyelési módszereit az egyszerű távcsöves megfigyelésektől az űrtávcsöveken át a rádióteleszkópokig.
Történelem, társadalmi és állampolgári ismeretek: Kopernikusz, Kepler, Newton munkássága. A napfogyatkozások szerepe az emberi kultúrában, a Hold „képének” értelmezése a múltban.
Ismerje a legfontosabb égitesteket (bolygók, holdak, üstökösök, kisbolygók és aszteroidák, csillagok és csillagrendszerek, galaxisok, galaxishalmazok) és azok
Földrajz: a Föld forgása és keringése, a Föld forgásának következményei (nyugati szelek öve), a Föld belső szerkezete, földtörténeti katasztrófák, kráterbecsapódás keltette felszíni
A Naprendszer és a Nap.
Csillagrendszerek, Tejútrendszer és galaxisok. A csillagfejlődés: a csillagok szerkezete, energiamérlege és keletkezése. Kvazárok, pulzárok; fekete lyukak. A kozmológia alapjai. Problémák, jelenségek: a kémiai anyag (atommagok) kialakulása. Perdület a Naprendszerben. Nóvák és szupernóvák. A földihez hasonló élet, kultúra esélye és keresése, exobolygók kutatása. Gyakorlati alkalmazások: műholdak, hírközlés és meteorológia, GPS, űrállomás, holdexpediciók, bolygók kutatása.
legfontosabb jellemzőit.
alakzatok.
Legyenek ismeretei a mesterséges égitestekről és azok gyakorlati jelentőségéről a tudományban és a technikában.
Biológia-egészségtan: a Hold és az ember biológiai ciklusai, az élet feltételei.
Ismerje a Naprendszer jellemzőit, a keletkezésére vonatkozó tudományos elképzeléseket. Tudja, hogy a Nap csak egy az átlagos csillagok közül, miközben a földi élet szempontjából meghatározó jelentőségű. Ismerje a Nap legfontosabb jellemzőit: a Nap szerkezeti felépítését, belső, energiatermelő folyamatait és sugárzását, a Napból a Földre érkező energia mennyiségét (napállandó).
Kémia: a periódusos rendszer, a kémiai elemek keletkezése. Magyar nyelv és irodalom; mozgóképkultúra és médiaismeret: „a csillagos ég alatt”. Filozófia: a kozmológia kérdései.
Legyen tájékozott a csillagokkal kapcsolatos legfontosabb tudományos ismeretekről. Ismerje a gravitáció és az energiatermelő nukleáris folyamatok meghatározó szerepét a csillagok kialakulásában, „életében” és megszűnésében. Legyenek alapvető ismeretei az Univerzumra vonatkozó aktuális tudományos elképzelésekről. Ismerje az ősrobbanásra és a Világegyetem tágulására utaló csillagászati méréseket. Ismerje az Univerzum korára és kiterjedésére vonatkozó becsléseket, tudja, hogy az Univerzum gyorsuló ütemben tágul.
Kulcsfogalmak/ Égitest, csillagfejlődés, csillagrendszer, ősrobbanás, táguló világegyetem, Naprendszer, űrkutatás. fogalmak
Továbbhaladás feltételei A tanuló tudja leírni a harmonikus rezgőmozgás időbeli lefolyását a jellemző mennyiségek helyes használatával (amplitúdó, frekvencia, rezgésidő, a sebesség és a gyorsulás maximális és 0 értékeinek összekapcsolása a kitérés megfelelő értékeivel), ismerje a rezgőmozgás dinamikai feltételét. Ismerje fel a rezonanciát jelenségekben vagy leírásból. Tudjon konkrét példákat mondani a mechanikai hullámok különböző típusaira, tudja helyesen használni a hullámokat jellemző mennyiségeket (hullámhossz, frekvencia, terjedési sebesség). Ismerje fel a hullámjelenségeket leírás, kép, ábra stb. alapján. Tudja értelmezni a rezgőkörben zajló elektromágneses rezgés során történő energiaátalakulásokat. Tudja felsorolni az elektromágneses spektrum tartományait frekvencia vagy hullámhossz szerinti sorrendben, minden típus esetén tudjon konkrét példát mondani előfordulásra, élettani, környezeti hatásra, gyakorlati-technikai felhasználásra. Tudjon az anyag atomos természetét bizonyító jelenségeket ismertetni. Tudja a fényelektromos jelenséget, a fény kettős természetét értelmezni.
A mechanikai fogalmak bővítése a rezgések és hullámok témakörével, valamint a forgómozgás és a síkmozgás gyakorlatban is fontos ismereteivel. Az elektromágneses indukcióra épülő mindennapi alkalmazások fizikai alapjainak ismerete: elektromos energiahálózat, elektromágneses hullámok. Az optikai jelenségek értelmezése hármas modellezéssel (geometriai A fejlesztés várt optika, hullámoptika, fotonoptika). Hétköznapi optikai jelenségek eredményei a két értelmezése. évfolyamos ciklus A modellalkotás jellemzőinek bemutatása az atommodellek fejlődésén. Alapvető ismeretek a kondenzált anyagok szerkezeti és fizikai végén tulajdonságainak összefüggéseiről. A magfizika elméleti ismeretei alapján a korszerű nukleáris technikai alkalmazások értelmezése. A kockázat ismerete és reális értékelése. A csillagászati alapismeretek felhasználásával Földünk elhelyezése az Univerzumban, szemléletes kép az Univerzum térbeli, időbeli méreteiről. A csillagászat és az űrkutatás fontosságának ismerete és megértése. Képesség önálló ismeretszerzésre, forráskeresésre, azok szelektálására és feldolgozására.
12- évfolyam Éves órakeret
128 óra
Munka – Energia – Teljesítmény A mozgó töltések – az egyenáram Energia, hő és munka – a hőtan főtételei Hő felvétel – halmazállapot-változások Mágnesség és elektromosság Az atomok szerkezete A magfizika eleme Csillagászat és asztrofizika elemei
12 óra 24 óra 25 óra 10 óra 31 óra 12 óra 12 óra 18 óra
Erőfeszítés és hasznosság Munka – Energia – Teljesítmény
Tematikai egység
Órakeret 12 óra
Előzetes tudás
A newtoni dinamika elemei, a fizikai munkavégzés tanult fogalma.
A tematikai egység nevelési-fejlesztési céljai
Az általános iskolában tanult munka- és mechanikai energiafogalom elmélyítése és bővítése, a mechanikai energiamegmaradás igazolása speciális esetekre és az energiamegmaradás törvényének általánosítása. Az elméleti megközelítés mellett a fizikai ismeretek mindennapi alkalmazásának bemutatása, gyakorlása.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Fizikai munka és teljesítmény.
Követelmények A tanuló értse a fizikai munkavégzés és a teljesítmény fogalmát, ismerje mértékegységeiket. Legyen képes egyszerű feladatok megoldására.
Kapcsolódási pontok Matematika: a függvény fogalma, grafikus ábrázolás, egyenletrendezés.
Testnevelés és sport: sportolók Munkatétel. Ismerje a munkatételt és tudja azt teljesítménye, egyszerű esetekre alkalmazni. sportoláshoz használt Mechanikai energiafajták Ismerje az alapvető mechanikai pályák energetikai (helyzeti energia, mozgási energiafajtákat, és tudja azokat a viszonyai és energia, rugalmas energia). gyakorlatban értelmezni. sporteszközök energetikája. A mechanikai Tudja egyszerű zárt rendszerek energiamegmaradás törvénye. példáin keresztül értelmezni a mechanikai energiamegmaradás Technika, életvitel és törvényét. gyakorlat: járművek Alkalmazások, jelenségek: a Tudja, hogy a mechanikai fogyasztása, fékút és a sebesség kapcsolata, a energiamegmaradás nem teljesül munkavégzése, követési távolság meghatározása. súrlódás, közegellenállás esetén, közlekedésbiztonsági mert a rendszer mechanikailag
nem zárt. Ilyenkor a mechanikai energiaveszteség a súrlódási erő munkájával egyenlő.
eszközök, technikai eszközök (autók, motorok).
Egyszerű gépek, hatásfok. Érdekességek, alkalmazások. Ókori gépezetek, mai alkalmazások. Az egyszerű gépek elvének felismerése az élővilágban. Egyszerű gépek az emberi szervezetben.
Tudja a gyakorlatban használt Biológia-egészségtan: egyszerű gépek működését élőlények mozgása, értelmezni, ezzel kapcsolatban teljesítménye. feladatokat megoldani. Értse, hogy az egyszerű gépekkel munka nem takarítható meg.
Energia és egyensúlyi állapot.
Ismerje a stabil, labilis és közömbös egyensúlyi állapot fogalmát és tudja alkalmazni egyszerű esetekben.
Kulcsfogalmak/ Munkavégzés, energia, helyzeti energia, mozgási energia, rugalmas energia, munkatétel, mechanikai energiamegmaradás. fogalmak
Tematikai egység Előzetes tudás A tematikai egység nevelési-fejlesztési céljai
A mozgó töltések – az egyenáram
Órakeret 24 óra
Telep (áramforrás), áramkör, fogyasztó, áramerősség, feszültség. Az egyenáram értelmezése, mint a töltések áramlása. Az elektromos áram jellemzése hatásain keresztül (hőhatás, mágneses, vegyi és biológiai hatás). Az elméleten alapuló gyakorlati ismeretek kialakítása (egyszerű hálózatok ismerete, ezekkel kapcsolatos egyszerű számítások, telepek, akkumulátorok, elektromágnesek, motorok). Az energiatudatos magatartás fejlesztése.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
Az elektromos áram fogalma, kapcsolata a fémes vezetőkben zajló töltésmozgással. A zárt áramkör.
A tanuló ismerje az elektromos áram fogalmát, mértékegységét, mérését. Tudja, hogy az egyenáramú áramforrások feszültségét, pólusainak Jelenségek, alkalmazások: Volta- polaritását nem elektromos oszlop, laposelem, rúdelem, jellegű belső folyamatok napelem. (gyakran töltésátrendeződéssel járó kémiai vagy más folyamatok) biztosítják. Ismerje az elektromos áramkör legfontosabb részeit, az áramkör ábrázolását kapcsolási rajzon. Ohm törvénye, áram- és feszültségmérés.
Ismerje az elektromos ellenállás, fajlagos ellenállás fogalmát,
Kapcsolódási pontok Kémia: Elektromos áram, elektromos vezetés, rácstípusok tulajdonságai és azok anyagszerkezeti magyarázata. Galvánelemek működése, elektromotoros erő. Ionos vegyületek elektromos vezetése olvadékban és oldatban, elektrolízis. Vas mágneses tulajdonsága.
Fogyasztók (vezetékek) ellenállása. Fajlagos ellenállás.
mértékegységét és mérésének módját.
Ohm törvénye teljes áramkörre. Elektromotoros erő, kapocsfeszültség, a belső ellenállás fogalma.
Tudja Ohm törvényét. Legyen képes egyszerű számításokat végezni Ohm törvénye alapján.
Az elektromos mező munkája az áramkörben. Az elektromos teljesítmény. Az elektromos áram hőhatása. Fogyasztók a háztartásban, fogyasztásmérés, az energiatakarékosság lehetőségei.
Ismerje a telepet jellemző elektromotoros erő és a belső ellenállás fogalmát, Ohm törvényét teljes áramkörre. Tudja értelmezni az elektromos áram teljesítményét, munkáját. Legyen képes egyszerű számítások elvégzésére. Tudja értelmezni a fogyasztókon feltüntetett teljesítményadatokat. Az energiatakarékosság fontosságának bemutatása.
Összetett hálózatok. Ellenállások kapcsolása. Az eredő ellenállás fogalma, számítása.
Tudja a hálózatok törvényeit alkalmazni ellenálláskapcsolások eredőjének számítása során.
Az áram vegyi hatása.
Tudja, hogy az elektrolitokban mozgó ionok jelentik az áramot. Ismerje az elektrolízis fogalmát, néhány gyakorlati alkalmazását. Értse, hogy az áram vegyi hatása és az élő szervezeteket gyógyító és károsító hatása között összefüggés van. Ismerje az alapvető elektromos érintésvédelmi szabályokat és azokat a gyakorlatban is tartsa be.
Az áram biológiai hatása.
Mágneses mező (permanens mágnesek). Permanens mágnesek kölcsönhatása, a mágnesek tere. Az egyenáram mágneses hatása. Áram és mágnes kölcsönhatása. Egyenes vezetőben folyó egyenáram mágneses terének vizsgálata. A mágneses mezőt jellemző indukcióvektor fogalma, mágneses indukcióvonalak.
Tudja bemutatni az áram mágneses terét egyszerű kísérlettel. Ismerje a tér jellemzésére alkalmas mágneses indukcióvektor fogalmát. Legyen képes a mágneses és az elektromos mező jellemzőinek összehasonlítására, a hasonlóságok és különbségek bemutatására. Tudja értelmezni az áramra ható
Matematika: alapműveletek, egyenletrendezés, számok normálalakja. Technika, életvitel és gyakorlat: Áram biológiai hatása, elektromos áram a háztartásban, biztosíték, fogyasztásmérők, balesetvédelem. A világítás fejlődése és a korszerű világítási eszközök. Korszerű elektromos háztartási készülékek, energiatakarékosság. Informatika: mikroelektronikai áramkörök, mágneses információrögzítés.
A vasmag (ferromágneses közeg) erőt mágneses térben. szerepe a mágneses hatás szempontjából. Az áramjárta Ismerje az egyenáramú motor vezetőre ható erő mágneses működésének elvét. térben. Az elektromágnes és gyakorlati alkalmazásai. Az elektromotor működése. Lorentz-erő – mágneses tér hatása mozgó szabad töltésekre.
Kulcsfogalmak/ fogalmak
Ismerje a Lorentz-erő fogalmát és tudja alkalmazni néhány jelenség értelmezésére (katódsugárcső, ciklotron).
Áramkör, ellenállás, fajlagos ellenállás, az egyenáram teljesítménye és munkája, elektromotoros erő, belső ellenállás, az áram hatásai (hő, kémiai, biológiai, mágneses), elektromágnes, Lorentz-erő, elektromotor.
Tematikai egység Előzetes tudás
A tematikai egység nevelési-fejlesztési céljai
Energia, hő és munka – a hőtan főtételei
Órakeret 25 óra
Munka, kinetikus energia, energiamegmaradás, hőmérséklet, melegítés. A hőtan főtételeinek tárgyalása során annak megértetése, hogy a természetben lejátszódó folyamatokat általános törvények írják le. Az energiafogalom általánosítása, az energiamegmaradás törvényének kiterjesztése. A termodinamikai gépek működésének értelmezése, a termodinamikai hatásfok korlátos voltának megértetése. Annak elfogadtatása, hogy energia befektetése nélkül nem működik egyetlen gép, berendezés sem, örökmozgók nem léteznek. A hőtani főtételek univerzális (a természettudományokban általánosan érvényes) tartalmának bemutatása.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Melegítés munkavégzéssel. (Az ősember tűzgyújtása.) A belső energia fogalmának kialakítása. A belső energia megváltoztatása.
A termodinamika I. főtétele.
Követelmények Tudja a tanuló, hogy a melegítés lényege energiaátadás, „hőanyag” nincs!
Kapcsolódási pontok
Kémia: Exoterm és endoterm folyamatok, termokémia, Hesstétel, kötési energia, Ismerje a tanuló a belső energia reakcióhő, égéshő, fogalmát, mint a gázrészecskék elektrolízis. energiájának összegét. Tudja, Gyors és lassú égés, hogy a belső energia melegítéssel tápanyag, és/vagy munkavégzéssel energiatartalom változtatható. (ATP), a kémiai reakciók iránya, Ismerje a termodinamika I. megfordítható főtételét mint az
Alkalmazások konkrét fizikai, kémiai, biológiai példákon. Egyszerű számítások.
Hőerőgép. Gázzal végzett körfolyamatok. A hőerőgépek hatásfoka. Az élő szervezet hőerőgépszerű működése.
energiamegmaradás általánosított megfogalmazását. Az I. főtétel alapján tudja energetikai szempontból értelmezni a gázok korábban tanult speciális állapotváltozásait. Kvalitatív példák alapján fogadja el, hogy az I. főtétel általános természeti törvény, ami fizikai, kémiai, biológiai, geológiai folyamatokra egyaránt érvényes. Gázok körfolyamatainak elméleti vizsgálata alapján értse meg a hőerőgép, hűtőgép, hőszivattyú működésének alapelvét. Tudja, hogy a hőerőgépek hatásfoka lényegesen kisebb, mint 100%. Tudja kvalitatív szinten alkalmazni a főtételt a gyakorlatban használt hőerőgépek, működő modellek energetikai magyarázatára. Energetikai szempontból lássa a lényegi hasonlóságot a hőerőgépek és az élő szervezetek működése között.
Az „örökmozgó” lehetetlensége.
Tudja, hogy „örökmozgó” (energiabetáplálás nélküli hőerőgép) nem létezhet!
A természeti folyamatok iránya.
Ismerje a reverzibilis és irreverzibilis változások fogalmát. Tudja, hogy a természetben az irreverzibilitás a meghatározó. Kísérleti tapasztalatok alapján lássa, hogy a különböző hőmérsékletű testek közti termikus kölcsönhatás iránya meghatározott: a magasabb hőmérsékletű test energiát ad át az alacsonyabb hőmérsékletűnek; a folyamat addig tart, amíg a hőmérsékletek kiegyenlítődnek. A spontán folyamat iránya csak energiabefektetés árán változtatható meg.
A spontán termikus folyamatok iránya, a folyamatok megfordításának lehetősége.
A termodinamika II. főtétele.
Ismerje a hőtan II. főtételét és
folyamatok, kémiai egyensúlyok, stacionárius állapot, élelmiszerkémia. Technika, életvitel és gyakorlat: Folyamatos technológiai fejlesztések, innováció. Földrajz: környezetvédelem, a megújuló és nem megújuló energia fogalma. Biológia-egészségtan: az „éltető Nap”, hőháztartás, öltözködés. Magyar nyelv és irodalom: Madách Imre. Történelem, társadalmi és állampolgári ismeretek; vizuális kultúra: A Nap kitüntetett szerepe a mitológiában és a művészetekben. A beruházás megtérülése, megtérülési idő, takarékosság. Filozófia; magyar nyelv és irodalom: Madách: Az ember tragédiája, eszkimó szín.
tudja, hogy kimondása tapasztalati alapon történik. Tudja, hogy a hőtan II. főtétele általános természettörvény, a fizikán túl minden természettudomány és a műszaki tudományok is alapvetőnek tekintik. Kulcsfogalmak/ fogalmak
Főtétel, hőerőgép, reverzibilitás, irreverzibilitás, örökmozgó.
Hőfelvétel hőmérsékletváltozás nélkül – halmazállapot-változások
Tematikai egység Előzetes tudás A tematikai egység nevelési-fejlesztési céljai
Órakeret 10 óra
Halmazállapotok szerkezeti jellemzői (kémia), a hőtan főtételei. A halmazállapotok jellemző tulajdonságainak és a halmazállapotváltozások energetikai hátterének tárgyalása, bemutatása. A halmazállapot-változásokkal kapcsolatos mindennapi jelenségek értelmezése a fizikában és a társ-természettudományok területén is.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek A halmazállapotok makroszkopikus jellemzése, energetikai és mikroszerkezeti értelmezése.
Az olvadás és a fagyás jellemzői. A halmazállapot-változás energetikai értelmezése. Jelenségek, alkalmazások: A hűtés mértéke és a hűtési sebesség meghatározza a megszilárduló anyag mikroszerkezetét és ezen keresztül sok tulajdonságát. Fontos a kohászatban, mirelit-iparban. Ha a hűlés túl gyors, nincs kristályosodás – az olvadék
Követelmények A tanuló tudja az anyag különböző halmazállapotait (szilárd, folyadék- és gázállapot) makroszkopikus fizikai tulajdonságaik alapján jellemezni. Lássa, hogy ugyanazon anyag különböző halmazállapotai esetén a belsőenergia-értékek különböznek, a halmazállapot megváltozása energiaközlést (elvonást) igényel. Ismerje az olvadás, fagyás fogalmát, jellemző paramétereit (olvadáspont, olvadáshő). Legyen képes egyszerű kalorikus feladatok megoldására. Ismerje a fagyás és olvadás szerepét a mindennapi életben.
Kapcsolódási pontok Matematika: a függvény fogalma, grafikus ábrázolás, egyenletrendezés. Kémia: halmazállapotok és halmazállapotváltozások, exoterm és endoterm folyamatok, kötési energia, képződéshő, reakcióhő, üzemanyagok égése, elektrolízis. Biológia-egészségtan: a táplálkozás alapvető biológiai folyamatai, ökológia, az „éltető Nap”, hőháztartás, öltözködés. Technika, életvitel és gyakorlat: folyamatos
üvegként szilárdul meg. Párolgás és lecsapódás (forrás). A párolgás (forrás), lecsapódás jellemzői. Halmazállapotváltozások a természetben. A halmazállapot-változás energetikai értelmezése. Jelenségek, alkalmazások: a „kuktafazék” működése (a forráspont nyomásfüggése), a párolgás hűtő hatása, szublimáció, desztilláció, szárítás, csapadékformák.
Ismerje a párolgás, forrás, lecsapódás jelenségét, mennyiségi jellemzőit. Legyen képes egyszerű számítások elvégzésére, a jelenségek felismerésére a hétköznapi életben (időjárás). Ismerje a forráspont nyomásfüggésének gyakorlati jelentőségét és annak alkalmazását. Legyen képes egyszerű kalorikus feladatok megoldására számítással.
technológiai fejlesztések, innováció. Földrajz: környezetvédelem, a megújuló és nem megújuló energia fogalma.
Kulcsfogalmak/ Halmazállapot (gáz, folyadék, szilárd), halmazállapot-változás (olvadás, fagyás, párolgás, lecsapódás, forrás). fogalmak
Tematikai egység
Mágnesség és elektromosság – Elektromágneses indukció, váltóáramú hálózatok
Előzetes tudás
Mágneses tér, az áram mágneses hatása, feszültség, áram.
A tematikai egység nevelési-fejlesztési céljai
Órakeret 31 óra
Az indukált elektromos mező és a nyugvó töltések által keltett erőtér közötti lényeges szerkezeti különbség kiemelése. Az elektromágneses indukció gyakorlati jelentőségének bemutatása. Energia hálózatok ismerete és az energiatakarékosság fogalmának kialakítása a fiatalokban.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
Kapcsolódási pontok
Az elektromágneses indukció jelensége.
A tanuló ismerje a mozgási indukció alapjelenségét, és tudja azt a Lorentz-erő segítségével értelmezni.
Kémia: elektromos áram, elektromos vezetés.
A mozgási indukció.
Ismerje a nyugalmi indukció jelenségét.
A nyugalmi indukció.
Tudja értelmezni Lenz törvényét az indukció jelenségeire.
Matematika: trigonometrikus függvények, függvény transzformáció.
Váltakozó feszültség keltése, a váltóáramú generátor elve (mozgási indukció mágneses térben forgatott tekercsben).
Értelmezze a váltakozó feszültség keletkezését mozgásindukcióval. Ismerje a szinuszosan váltakozó feszültséget és áramot leíró függvényt, tudja értelmezni a benne szereplő mennyiségeket.
Technika, életvitel és gyakorlat: Az áram biológiai hatása, balesetvédelem, elektromos áram a háztartásban, biztosíték,
Lenz törvénye. A váltakozó feszültség és áram jellemző paraméterei.
Ismerje Lenz törvényét. Ismerje a váltakozó áram effektív hatását leíró mennyiségeket (effektív feszültség, áram, teljesítmény).
Ohm törvénye váltóáramú hálózatban.
Értse, hogy a tekercs és a kondenzátor ellenállásként viselkedik a váltakozó áramú hálózatban.
Transzformátor. Gyakorlati alkalmazások.
Értelmezze a transzformátor működését az indukciótörvény alapján. Tudjon példákat a transzformátorok gyakorlati alkalmazására.
Az önindukció jelensége.
Ismerje az önindukció jelenségét és szerepét a gyakorlatban.
Az elektromos energiahálózat. A háromfázisú energiahálózat jellemzői. Az energia szállítása az erőműtől a fogyasztóig. Távvezeték, transzformátorok.
Ismerje a hálózati elektromos energia előállításának gyakorlati megvalósítását, az elektromos energiahálózat felépítését és működésének alapjait.
Az elektromos energiafogyasztás mérése. Az energiatakarékosság lehetőségei.
fogyasztásmérők. Korszerű elektromos háztartási készülékek, energiatakarékosság.
Ismerje az elektromos energiafogyasztás mérésének fizikai alapjait, az energiatakarékosság gyakorlati lehetőségeit a köznapi életben.
Tudomány- és technikatörténet. Jedlik Ányos, Siemens szerepe. Ganz, Diesel mozdonya. A transzformátor magyar feltalálói. Kulcsfogalmak/ Mozgási indukció, nyugalmi indukció, önindukció, váltóáramú generátor, váltóáramú elektromos hálózat. fogalmak
Tematikai egység Előzetes tudás A tematikai egység nevelési-fejlesztési céljai
Az atomok szerkezete
Órakeret 12 óra
Az anyag atomos szerkezete. Az atomfizika tárgyalásának összekapcsolása a kémiai tapasztalatokon (súlyviszonytörvények) alapuló atomelmélettel. A fizikában alapvető modellalkotás folyamatának bemutatása az atommodellek változásain keresztül. A kvantummechanikai atommodell egyszerűsített, képszerű
bemutatása. A műszaki-technikai szempontból alapvető félvezetők sávszerkezetének, kvalitatív, kvantummechanikai szemléletű megalapozása. Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
Az anyag atomos felépítése felismerésének történelmi folyamata.
Ismerje a tanuló az atomok létezésére utaló korai természettudományos tapasztalatokat, tudjon meggyőzően érvelni az atomok létezése mellett.
A modern atomelméletet megalapozó felfedezések. A korai atommodellek. Az elektron felfedezése: Thomson-modell. Az atommag felfedezése: Rutherford-modell.
Értse az atomról alkotott elképzelések (atommodellek) fejlődését: a modell mindig kísérleteken, méréseken alapul, azok eredményeit magyarázza; új, a modellel már nem értelmezhető, azzal ellentmondásban álló kísérleti tapasztalatok esetén új modell megalkotására van szükség. Mutassa be a modellalkotás lényegét Thomson és Rutherford modelljén, a modellt megalapozó és megdöntő kísérletek, jelenségek alapján.
Bohr-féle atommodell.
Ismerje a Bohr-féle atommodell kísérleti alapjait (spektroszkópia, Rutherford-kísérlet). Legyen képes összefoglalni a modell lényegét és bemutatni, mennyire alkalmas az a gázok vonalas színképének értelmezésére és a kémiai kötések magyarázatára.
Az elektron kettős természete, de Broglie-hullámhossz.
Ismerje az elektron hullámtermészetét igazoló elektroninterferencia-kísérletet. Értse, hogy az elektron hullámtermészetének ténye új alapot ad a mikrofizikai jelenségek megértéséhez.
Alkalmazás: az elektronmikroszkóp.
A kvantummechanikai atommodell.
Tudja, hogy a kvantummechanikai atommodell az elektronokat hullámként írja le. Tudja, hogy az elektronok
Kapcsolódási pontok Kémia: az anyag szerkezetéről alkotott elképzelések, a változásukat előidéző kísérleti tények és a belőlük levont következtetések, a periódusos rendszer elektronszerkezeti értelmezése. Matematika: folytonos és diszkrét változó. Filozófia: ókori görög bölcselet; az anyag mélyebb megismerésének hatása a gondolkodásra, a tudomány felelősségének kérdései, a megismerhetőség határai és korlátai.
impulzusa és helye egyszerre nem mondható meg pontosan. Fémek elektromos vezetése. Jelenség: szupravezetés.
Legyen kvalitatív képe a fémek elektromos ellenállásának klasszikus értelmezéséről.
Félvezetők szerkezete és vezetési tulajdonságai.
A kovalens kötésű kristályok szerkezete alapján értelmezze a szabad töltéshordozók keltését tiszta félvezetőkben. Ismerje a szennyezett félvezetők elektromos tulajdonságait. Tudja magyarázni a p-n átmenetet.
Mikroelektronikai alkalmazások: dióda, tranzisztor, LED, fényelem stb.
Kulcsfogalmak/ fogalmak
Atom, atommodell, elektronhéj, energiaszint, kettős természet, Bohrmodell, Heisenberg-féle határozatlansági reláció, félvezetők.
Tematikai egység
Az atommag is részekre bontható – a magfizika elemei
Órakeret 12 óra
Előzetes tudás
Atommodellek, Rutherford-kísérlet, rendszám, tömegszám, izotópok.
A tematikai egység nevelési-fejlesztési céljai
A magfizika alapismereteinek bemutatása a XX. századi történelmi események, a nukleáris energiatermelés, a mindennapi életben történő széleskörű alkalmazás és az ezekhez kapcsolódó nukleáris kockázat kérdéseinek szempontjából. Az ismereteken alapuló energiatudatos szemlélet kialakítása. A betegség felismerése és a terápia során fellépő reális kockázatok felelős vállalásának megértése.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek
Követelmények
Az atommag alkotórészei, tömegszám, rendszám, neutronszám.
A tanuló ismerje az atommag jellemzőit (tömegszám, rendszám) és a mag alkotórészeit.
Az erős kölcsönhatás. Stabil atommagok létezésének magyarázata.
Ismerje az atommagot összetartó magerők, az ún. „erős kölcsönhatás” tulajdonságait. Tudja kvalitatív szinten értelmezni a mag kötési energiáját, értse a neutronok szerepét a mag stabilizálásában. Ismerje a tömegdefektus jelenségét és kapcsolatát a kötési energiával.
Kapcsolódási pontok Kémia: Atommag, proton, neutron, rendszám, tömegszám, izotóp, radioaktív izotópok és alkalmazásuk, radioaktív bomlás. Hidrogén, hélium, magfúzió. Biológia-egészségtan: a sugárzások biológiai hatásai; a sugárzás szerepe az
Magreakciók.
Tudja értelmezni a fajlagos kötési energia-tömegszám grafikont, és ehhez kapcsolódva tudja értelmezni a lehetséges magreakciókat.
evolúcióban, a fajtanemesítésben a mutációk előidézése révén; a radioaktív sugárzások hatása.
A radioaktív bomlás.
Ismerje a radioaktív bomlás típusait, a radioaktív sugárzás fajtáit és megkülönböztetésük kísérleti módszereit. Tudja, hogy a radioaktív sugárzás intenzitása mérhető. Ismerje a felezési idő fogalmát és ehhez kapcsolódóan tudjon egyszerű feladatokat megoldani.
Földrajz: energiaforrások, az atomenergia szerepe a világ energiatermelésében.
A természetes radioaktivitás.
Mesterséges radioaktív izotópok előállítása és alkalmazása.
Maghasadás. Tömegdefektus, tömeg-energia egyenértékűség. A láncreakció fogalma, létrejöttének feltételei. Az atombomba.
Az atomreaktor és az atomerőmű.
Történelem, társadalmi és állampolgári Legyen tájékozott a természetben ismeretek: a Hirosimára és előforduló radioaktivitásról, a Nagaszakira ledobott radioaktív izotópok bomlásával két atombomba kapcsolatos bomlási sorokról. története, politikai Ismerje a radioaktív háttere, későbbi kormeghatározási módszer következményei. lényegét. Einstein; Szilárd Leó, Legyen fogalma a radioaktív Teller Ede és Wigner izotópok mesterséges Jenő, a előállításának lehetőségéről és világtörténelmet tudjon példákat a mesterséges formáló magyar radioaktivitás néhány gyakorlati tudósok. alkalmazására a gyógyászatban és a műszaki gyakorlatban. Filozófia; etika: a tudomány Ismerje az urán–235 izotóp spontán hasadásának jelenségét. felelősségének kérdései. Tudja értelmezni a hasadással járó energia-felszabadulást. Értse a láncreakció lehetőségét és Matematika: valószínűséglétrejöttének feltételeit. számítás. Értse az atombomba működésének fizikai alapjait és ismerje egy esetleges nukleáris háború globális pusztításának veszélyeit. Ismerje az ellenőrzött láncreakció fogalmát, tudja, hogy az atomreaktorban ellenőrzött láncreakciót valósítanak meg és használnak energiatermelésre. Értse az atomenergia szerepét az emberiség növekvő energiafelhasználásában, ismerje
előnyeit és hátrányait. Magfúzió.
Legyen tájékozott arról, hogy a csillagokban magfúziós folyamatok zajlanak, ismerje a Nap energiatermelését biztosító fúziós folyamat lényegét. Tudja, hogy a H-bomba pusztító hatását mesterséges magfúzió során felszabaduló energiája biztosítja. Tudja, hogy a békés energiatermelésre használható, ellenőrzött magfúziót még nem sikerült megvalósítani, de ez lehet a jövő perspektivikus energiaforrása.
A radioaktivitás kockázatainak leíró bemutatása.
Ismerje a kockázat fogalmát, számszerűsítésének módját és annak valószínűségi tartalmát. Ismerje a sugárvédelem fontosságát és a sugárterhelés jelentőségét.
Sugárterhelés, sugárvédelem.
Kulcsfogalmak/ Magerő, kötési energia, tömegdefektus, maghasadás, radioaktivitás, magfúzió, láncreakció, atomreaktor, fúziós reaktor. fogalmak
Tematikai egység Előzetes tudás
A tematikai egység nevelési-fejlesztési céljai
Csillagászat és asztrofizika elemei
Órakeret 18 óra
A földrajzból tanult csillagászati alapismeretek, a bolygómozgás törvényei, a gravitációs erőtörvény. Annak bemutatása, hogy a csillagászat, a megfigyelési módszerek gyors fejlődése révén, a XXI. század vezető tudományává vált. A világegyetemről szerzett új ismeretek segítenek, hogy az emberiség felismerje a helyét a kozmoszban, miközben minden eddiginél magasabb szinten meggyőzően igazolják az égi és földi jelenségek törvényeinek azonosságát.
Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Leíró csillagászat. Problémák: a csillagászat kultúrtörténete. Geocentrikus és heliocentrikus világkép. Asztronómia és asztrológia. Alkalmazások:
Követelmények
Kapcsolódási pontok
A tanuló legyen képes tájékozódni a csillagos égbolton. Ismerje a csillagászati helymeghatározás alapjait. Ismerjen néhány csillagképet és legyen képes azokat megtalálni az égbolton. Ismerje a Nap és a
Történelem, társadalmi és állampolgári ismeretek: Kopernikusz, Kepler, Newton munkássága. A napfogyatkozások
hagyományos és új csillagászati műszerek. Űrtávcsövek. Rádiócsillagászat.
Égitestek.
Hold égi mozgásának jellemzőit, értse a Hold fázisainak változását, tudja értelmezni a hold- és napfogyatkozásokat. Tájékozottság szintjén ismerje a csillagászat megfigyelési módszereit az egyszerű távcsöves megfigyelésektől az űrtávcsöveken át a rádióteleszkópokig. Ismerje a legfontosabb égitesteket (bolygók, holdak, üstökösök, kisbolygók és aszteroidák, csillagok és csillagrendszerek, galaxisok, galaxishalmazok) és azok legfontosabb jellemzőit. Legyenek ismeretei a mesterséges égitestekről és azok gyakorlati jelentőségéről a tudományban és a technikában.
A Naprendszer és a Nap.
Csillagrendszerek, Tejútrendszer és galaxisok. A csillagfejlődés: a csillagok szerkezete, energiamérlege és keletkezése. Kvazárok, pulzárok; fekete lyukak. A kozmológia alapjai. Problémák, jelenségek:
Ismerje a Naprendszer jellemzőit, a keletkezésére vonatkozó tudományos elképzeléseket. Tudja, hogy a Nap csak egy az átlagos csillagok közül, miközben a földi élet szempontjából meghatározó jelentőségű. Ismerje a Nap legfontosabb jellemzőit: a Nap szerkezeti felépítését, belső, energiatermelő folyamatait és sugárzását, a Napból a Földre érkező energia mennyiségét (napállandó). Legyen tájékozott a csillagokkal kapcsolatos legfontosabb tudományos ismeretekről. Ismerje a gravitáció és az energiatermelő nukleáris folyamatok meghatározó szerepét a csillagok kialakulásában, „életében” és megszűnésében. Legyenek alapvető ismeretei az Univerzumra vonatkozó aktuális
szerepe az emberi kultúrában, a Hold „képének” értelmezése a múltban. Földrajz: a Föld forgása és keringése, a Föld forgásának következményei (nyugati szelek öve), a Föld belső szerkezete, földtörténeti katasztrófák, kráterbecsapódás keltette felszíni alakzatok. Biológia-egészségtan: a Hold és az ember biológiai ciklusai, az élet feltételei. Kémia: a periódusos rendszer, a kémiai elemek keletkezése. Magyar nyelv és irodalom; mozgóképkultúra és médiaismeret: „a csillagos ég alatt”. Filozófia: a kozmológia kérdései.
a kémiai anyag (atommagok) kialakulása. Perdület a Naprendszerben. Nóvák és szupernóvák. A földihez hasonló élet, kultúra esélye és keresése, exobolygók kutatása. Gyakorlati alkalmazások: műholdak, hírközlés és meteorológia, GPS, űrállomás, holdexpediciók, bolygók kutatása.
tudományos elképzelésekről. Ismerje az ősrobbanásra és a Világegyetem tágulására utaló csillagászati méréseket. Ismerje az Univerzum korára és kiterjedésére vonatkozó becsléseket, tudja, hogy az Univerzum gyorsuló ütemben tágul.
Továbbhaladás feltételei Tudja leírni az atommag összetételét, a természetes radioaktív sugárzások során lezajló magátalakulásokat. Tudja leírni a maghasadást és a magfúziót. Tudjon egy-két konkrét példát mondani a nukleáris energia, a radioaktív sugárzás (izotópok) gyakorlati alkalmazására. Sematikus ábra alapján tudja ismertetni az atomreaktor (erőmű) működését. Ismerje a radioaktív sugárzások hatását, legyen tisztában az alapvető sugárvédelmi ismeretekkel. Ismerje a Naprendszert alkotó legfontosabb égitesteket, tudja ezek mozgását magyarázni. Tudjon példákat mondani csillagászati megfigyelési módszerekre, űrkutatási eljárásokra. Tudja, mit jelent az Ősrobbanás-elmélet és a táguló világegyetemről szóló elmélet.
A fejlesztés várt eredményei a két évfolyamos ciklus végén A mechanikai fogalmak bővítése a rezgések és hullámok témakörével, valamint a forgómozgás és a síkmozgás gyakorlatban is fontos ismereteivel. Az elektromágneses indukcióra épülő mindennapi alkalmazások fizikai alapjainak ismerete: elektromos energiahálózat, elektromágneses hullámok. Az optikai jelenségek értelmezése hármas modellezéssel (geometriai optika, hullámoptika, fotonoptika). Hétköznapi optikai jelenségek értelmezése. A modellalkotás jellemzőinek bemutatása az atommodellek fejlődésén. Alapvető ismeretek a kondenzált anyagok szerkezeti és fizikai tulajdonságainak összefüggéseiről. A magfizika elméleti ismeretei alapján a korszerű nukleáris technikai alkalmazások értelmezése. A kockázat ismerete és reális értékelése. A csillagászati alapismeretek felhasználásával Földünk elhelyezése az Univerzumban, szemléletes kép az Univerzum térbeli, időbeli méreteiről. A csillagászat és az űrkutatás fontosságának ismerete és megértése. Képesség önálló ismeretszerzésre, forráskeresésre, azok szelektálására és feldolgozására.
FIZIKA I. RÉSZLETES VIZSGAKÖVETELMÉNYEK A)KOMPETENCIÁK A vizsgázónak a követelményrendszerben és a vizsgaleírásban meghatározott módon az alábbi kompetenciák meglétét kell bizonyítania: - ismeretei összekapcsolása a mindennapokban tapasztalt jelenségekkel, a modern kor technikai eszközeinek működésével és azok hétköznapi használatával; - az alapvető természettudományos megismerési módszerek ismerete, alkalmazása; - alapmennyiségek mérése; - egyszerű számítások elvégzése; - egyszerűen lefolytatható fizikai kísérletek elvégzése, a kísérleti tapasztalatok kiértékelése; - grafikonok, ábrák és folyamatábrák készítése, értékelése, elemzése; - mértékegységek, mértékrendszerek használata; - a vizsga szintjének megfelelő szakkifejezések szabatos használata szóban és írásban; - induktív és deduktív következtetés; - analógiás következtetés; - adatok, ábrák kiegészítése, adatsorok, ábrák (köztük diagramok, grafikonok) elemzése, felhasználása; - tudományos és áltudományos szövegek/információk elkülönítése; téves információk azonosítása; - a napjainkban felmerülő, fizikai ismereteket is igénylő problémák lényegének megértése; - a mindennapi életben használt eszközök működésének megértése; - időbeli tájékozódás a fizikatörténet legfontosabb eseményeiben; - a környezetvédelemmel összefüggő problémák felismerése és megértése; - a környezettudatossággal és energiahatékonysággal összefüggő problémák megértése és a lehetséges megoldási lehetőségek ismerete. Az emelt szintű fizika érettségi vizsgán ezen túlmenően az alábbi kompetenciák szükségesek: - az ismeretanyag belső összefüggéseinek, az egyes témakörök közötti kapcsolatok áttekintése, felismerése; - integrált gondolkodás (az egyik szaktudomány tartalmi elemeinek átvitele és alkalmazása egy másik szaktudomány területén); - problémák megoldásában - a megfelelő matematikai eszközöket is felhasználva - az ismeretek alkalmazása; - a fizika tanult vizsgálati és következtetési módszereinek alkalmazása; - az adatok, mérési eredmények felhasználása bizonyítékként, érvként; - változók vizsgálata (függő és független változók felismerése, elkülönítése, a változók közötti kapcsolatok szisztematikus vizsgálata, kontrollja); - hipotézisek, elméletek, modellek, törvények megfogalmazása, vizsgálata; Hatályos 2017. január 1-jétől.
- az alapvető fontosságú tények és az ezekből következő alaptörvények, összefüggések szabatos kifejtése, magyarázata szóban és írásban; - a mindennapi életet befolyásoló fizikai természetű jelenségek értelmezése; - több témakör ismeretanyagának logikai összekapcsolását igénylő fizikai feladatok, problémák megoldása; - időbeli tájékozódás a legfontosabb fizikatörténeti és kultúrtörténeti vonatkozásokban; - a környezetvédelemmel összefüggő problémák megértése és elemzése.
B) TÉMAKÖRÖK Emelt szinten csak a középszintet meghaladó követelmények találhatók.
A táblázat első oszlopában dőlt betűvel szereplő fogalmak, jelenségek stb. csak az emelt szintre vonatkoznak. Amely témakörhöz a táblázat nem tartalmaz külön követelményt, ott a fogalom ismerete az elvárás. Hatályos 2017. január 1-jétől.
1. Mechanika TÉMÁK VIZSGASZINTEK Középszint Emelt szint 1.1. Newton törvényei 1.1.1. Newton I. törvénye Kölcsönhatás Mozgásállapot, -változás Tehetetlenség, tömeg Inerciarendszer Ismerje fel és jellemezze a mechanikai kölcsönhatásokat. Ismerje a mozgásállapot-változások létrejöttének feltételeit, tudjon példákat említeni különböző típusaikra. Ismerje fel, ábrázolja és jellemezze az egy kölcsönhatásban fellépő erőket, fogalmazza meg, értelmezze Newton törvényeit. Értelmezze a tömeg fogalmát Newton 2. törvénye segítségével. Ismerje a sztatikai tömegmérés módszerét. Tudja meghatározni az 1.4. pontban felsorolt mozgásfajták létrejöttének dinamikai feltételét. Értelmezze a mindennapos mechanikai jelenségeknél az ok-okozati kapcsolatokat. Legyen jártas a sztatikai tömegmérésben. Alkalmazza Newton törvényeit az 1.4. pontban meghatározott mozgásfajtákra. 1.1.2. Newton II. törvénye Erőhatás, erő, eredő erő támadáspont, hatásvonal Legyen jártas az erővektorok ábrázolásában, összegzésében. Legyen jártas az erővektorok felbontásában. Lendület, lendületváltozás, Lendületmegmaradás Zárt rendszer Ütközések vizsgálata Tudja, mit értünk egy test lendületén, lendületváltozásán. Konkrét, mindennapi példákban (pl. ütközések, közlekedésbiztonság) ismerje fel a lendületmegmaradás törvényének érvényesülését, egy egyenesbe eső változások esetén tudjon egyszerű feladatokat megoldani. Tudja alkalmazni a lendületmegmaradás törvényét feladatmegoldásokban. Szabaderő, kényszererő 1.1.3. Newton III. törvénye Legyen jártas az egy testre ható erők és az egy kölcsönhatásban fellépő erők felismerésében, ábrázolásában. 1.2. Pontszerű és merev test egyensúlya Forgatónyomaték Tudja értelmezni dinamikai szempontból a testek egyensúlyi állapotát. Ismerje az erő forgató hatását, a forgatónyomaték fogalmát, a merev test egyensúlyának kettős feltételét. Tudjon egyszerű számításos feladatot e témakörben megoldani. Legyen képes a témához kapcsolódó feladatokat megoldani. Erőpár Egyszerű gépek: Lejtő, emelő, csiga Hatályos 2017. január 1-jétől.
Tömegközéppont Ismerje a tömegközéppont fogalmát, tudja alkalmazni szabályos homogén testek esetén. Legyen képes egyszerű számítások, mérések, szerkesztések elvégzésére. Tudja egyszerű esetekben pontrendszer tömegközéppontját számolással meghatározni. 1.3. A változó forgómozgás dinamikai leírása Tehetetlenségi nyomaték Perdület és perdület-megmaradás Ismerje a forgómozgás dinamikai leírását. Tudja, hogy a test forgásának megváltoztatása a testre ható forgatónyomatékok hatására történik. Lássa a párhuzamot a haladó mozgás és a forgómozgás dinamikai leírásában. Tudja alkalmazni a forgómozgás mozgásegyenletét egyszerű forgásszimmetrikus testekre.
Legyen tisztában a tiszta gördülés fogalmával és feltételével. Egyszerű példákban (pl. Naprendszer, korcsolyázó) ismerje fel a perdületmegmaradás törvényének érvényesülését. 1.4. Mozgásfajták Anyagi pont, merev test Ismerje az anyagi pont és a merev test fogalmát a probléma jellegének megfelelően. Vonatkoztatási rendszer Egyszerű példákban ismerje fel a hely és a mozgás viszonylagosságát. Pálya, út, elmozdulás Tudja alkalmazni a pálya, út, elmozdulás fogalmakat. Helyvektor, elmozdulásvektor 1.4.1. Egyenes vonalú egyenletes mozgás Legyen jártas konkrét mozgások út-idő, sebesség-idő grafikonjának készítésében és elemzésében. Sebesség, átlagsebesség Ismerje és alkalmazza a sebesség fogalmát. Mozgást befolyásoló tényezők: súrlódás, közegellenállás súrlódási erő Ismerje a súrlódás és a közegellenállás hatását a mozgásoknál, ismerje a súrlódási erők nagyságát befolyásoló tényezőket. Tudja alkalmazni a csúszási és tapadási súrlódásra vonatkozó összefüggéseket. 1.4.2. Egyenes vonalú egyenletesen változó mozgás Egyenletesen változó mozgás átlagsebessége, pillanatnyi sebessége Ismerje fel és jellemezze az egyenes vonalú egyenletesen változó mozgásokat. Konkrét példákon keresztül különböztesse meg az átlag- és a pillanatnyi sebességet, ismerje ezek kapcsolatát. Az a-t, v-t, s-t grafikon egyikének ismeretében tudja a másik két grafikont elkészíteni. Ismerje az út és a gyorsulás grafikus kiszámítását a v-t grafikonból. Gyorsulás Ismerje és alkalmazza a gyorsulás fogalmát. Négyzetes úttörvény Tudjon megoldani egyszerű feladatokat. Szabadesés, nehézségi Értelmezze a szabadesést mint egyenletesen változó mozgást. Hatályos 2017. január 1-jétől.
gyorsulás (→ 6.1) Tudja a nehézségi gyorsulás fogalmát és értékét, egyszerűbb feladatokban alkalmazni is. 1.4.3. Összetett mozgások Függőleges, vízszintes hajítás Értelmezze egyszerű példák segítségével az összetett mozgást. Tudja meghatározni a függőleges és vízszintes hajítás magasságát, távolságát, időtartamát, végsebességét. 1.4.4. Periodikus mozgások Jellemezze a periodikus mozgásokat. Tudjon kinematikai és dinamikai feladatokat megoldani a periodikus mozgások témakörében. 1.4.4.1. Az egyenletes körmozgás Periódusidő, fordulatszám Kerületi sebesség Szögelfordulás, szögsebesség Centripetális gyorsulás Centripetális erő mint a körmozgást fenntartó erő Ismerje fel a centripetális gyorsulást okozó erőt konkrét jelenségekben, tudjon egyszerű számításos feladatokat megoldani. Szöggyorsulás és kerületi gyorsulás 1.4.4.2. Mechanikai rezgések Rezgőmozgás Ismerje a rezgőmozgás fogalmát. Harmonikus rezgőmozgás Kitérés, amplitúdó, fázis Rezgésidő, frekvencia Ismerje a harmonikus rezgőmozgás kinematikai jellemzőit, kapcsolatát az egyenletes körmozgással kísérleti tapasztalat alapján. Tudja alkalmazni a harmonikus rezgőmozgás összefüggéseit (periódusidő, elmozdulás-idő, sebesség-idő, gyorsulás-idő) egyszerűbb feladatok megoldásában.
Rugalmas erő A rugóállandó és rugóerő fogalma és alkalmazása egyszerű feladatokban. Matematikai inga Lengésidő Tudjon periódusidőt mérni. Ismerje a matematikai inga periódusidejét leíró összefüggést, feladatmegoldásoknál és méréseknél tudja alkalmazni. Csillapított és csillapítatlan rezgések Rezgő rendszer energiája Ismerje, milyen energiaátalakulások mennek végbe a rezgő rendszerben. Szabadrezgés, kényszerrezgés Ismerje a szabadrezgés, a kényszerrezgés jelenségét. Hatályos 2017. január 1-jétől.
Rezonancia Ismerje a rezonancia jelenségét, tudja mindennapi példákon keresztül megmagyarázni káros, illetve hasznos voltát. 1.4.4.3. Mechanikai hullámok (→ 4.1.) Ismerje a mechanikai hullám fogalmát, fajtáit, tudjon példákat mondani a mindennapi életből. Tudja alkalmazni a hullámjelenségeket leíró összefüggéseket. Longitudinális, transzverzális hullám, polarizált hullám, egy-, két, háromdimenziós hullám Ismerje fel, hogy egy adott hullám melyik kategóriába tartozik. Hullámhossz, terjedési sebesség, frekvencia Ismerje a hullámmozgást leíró fizikai mennyiségeket. Visszaverődés, törés jelensége, törvényei Beesési, visszaverődési, törési szög, törésmutató Polarizáció Tudjon példákat mondani a mindennapi életből hullámjelenségekre. Interferencia Ismerje az interferencia létrejöttének feltételeit. Elhajlás Állóhullám, duzzadóhely, csomópont Húrok, sípok Ismerje az állóhullám kialakulásának feltételeit. Hangforrás, hanghullámok Hangerősség Hangmagasság Hangszín A hangtani alapfogalmakat tudja összekapcsolni a hullámmozgást leíró fizikai mennyiségekkel. Ismerje a decibel mértékegységet, és annak nagyságrendjét az ember által szokásosan érzékelt hangtartományban. Ultrahang, infrahang Ismerje az ultra- és infrahang jellemzőit, néhány gyakorlati alkalmazást, a zajártalom mibenlétét. 1.5. Munka, energia Munkavégzés, munka Definiálja a munkát és a teljesítményt, tudja kiszámítani állandó erőhatás esetén. Ismerje a munka ábrázolását F-s diagramon. Tudjon munkát, teljesítményt számolni egyenletesen változó erőhatás esetén is. Gyorsítási munka Emelési munka Súrlódási munka Energia, energiaváltozás Mechanikai energia: Tudja megkülönböztetni a különféle mechanikai energiafajtákat, Jellemezze kvantitatív értelemben a különféle mechanikai Hatályos 2017. január 1-jétől.
Mozgási energia Forgási energia Rugalmassági energia Helyzeti energia tudjon azokkal folyamatokat leírni, jellemezni. energiafajtákat.
Munkatétel Tudjon egyszerű feladatokat megoldani a munkatétel segítségével. Energiamegmaradás törvénye (→ 2.5) Konzervatív erők munkája Tudja alkalmazni a mechanikai energiamegmaradás törvényét egyszerű feladatokban. Ismerje az energiagazdálkodás környezetvédelmi vonatkozásait. Mutassa be néhány energiaátalakító berendezés példáján, hogyan hasznosítjuk a természet energiáit. Értelmezze a konzervatív erő fogalmát. Teljesítmény Hatásfok (→ 2.8) Ismerje és alkalmazza egyszerű feladatokban a teljesítmény és a hatásfok fogalmát. Értelmezze a hatásfokot, mint a folyamatok gazdaságosságának jellemzőjét. 1.6. A speciális relativitáselmélet alapjait
(→ 5.2) Az éter fogalmának elvetése, fénysebesség Egyidejűség, idődilatáció, hosszúságkontrakció A tömeg, tömegnövekedés Ismerje a speciális relativitáselmélet alapgondolatait. 1.7. Folyadékok és gázok mechanikája A légnyomás kimutatása és mérése Ismerje a légnyomás fogalmát, mértékegységeit. Ismerjen néhány, a levegő nyomásával kapcsolatos, gyakorlati szempontból is fontos jelenséget. Pascal törvénye Hidrosztatikai nyomás Felhajtóerő Tudja alkalmazni hidrosztatikai ismereteit hétköznapi jelenségek értelmezésére. Legyen képes egyszerű kísérletek elvégzésére. Tudja alkalmazni hidrosztatikai ismereteit egyszerű számításos feladatok megoldására. Felületi feszültség Ismerje a felületi feszültség fogalmát. Ismerje a határfelületeknek azt a tulajdonságát, hogy minimumra törekszenek. Közegellenállás Ismerje a közegellenállás jelenségét, és tudja, hogy mitől függ a közegellenállási erő. Kontinuitási törvény Bernoulli-törvény Tudjon példát mondani az áramlási törvények alkalmazására a gyakorlati életből. Hatályos 2017. január 1-jétől.
2. Hőtan, termodinamika TÉMÁK VIZSGASZINTEK Középszint Emelt szint 2.1. ÁllapotjelzŊk, termodinamikai egyensúly Egyensúlyi állapot Hőmérséklet, nyomás, térfogat Belső energia Anyagmennyiség (tömeg, részecskeszám), mól Ideális gáz Tudja, mit értünk állapotjelzőn, nevezze meg őket. Legyen tájékozott arról, milyen módszerekkel történik a hőmérséklet mérése. Ismerjen különböző hőmérőfajtákat (mérési tartomány, pontosság). Ismerje a Celsius- és Kelvin-skálákat, és feladatokban tudja használni. Értelmezze, hogy mikor van egy test környezetével termikus egyensúlyban. Avogadro törvénye (→ 4.1) Ismerje az Avogadro-törvényt. 2.2. HŊtágulás Feladatok megoldásakor alkalmazza a hőtágulást leíró összefüggéseket. Szilárd anyag lineáris, térfogati hőtágulása
Ismerje a hőmérséklet-változás hatására végbemenő méretváltozásokat, tudja azokat konkrét példákkal alátámasztani. Folyadékok hőtágulása Ismerje az egyes anyagok különböző hőtágulásának jelentőségét, a jelenség szerepét a természeti és technikai folyamatokban, tudja azokat konkrét példákkal alátámasztani. Mutassa be a hőtágulást egyszerű kísérletekkel. 2.3. Állapotegyenletek (összefüggés a gázok állapotjelzŊi között) Gay-Lussac I. és II. törvénye Boyle-Mariotte törvénye Egyesített gáztörvény Állapotegyenlet Izobár, izochor, izoterm állapotváltozás Ismerje és alkalmazza egyszerű feladatokban a gáztörvényeket, tudja összekapcsolni a megfelelő állapotváltozással. Ismerje az állapotegyenletet. Tudjon értelmezni egyszerű p-V diagramokat. Ismerje és alkalmazza egyszerű feladatokban a gáztörvényeket, tudja összekapcsolni a megfelelő állapotváltozással. Mutasson be egyszerű kísérleteket a gázok állapotváltozásaira. Legyen jártas a p-V diagramon való grafikus ábrázolásban. Tudja alkalmazni az állapotegyenletet. 2.4. Az ideális gáz kinetikus modellje (→ 5.1) Kvalitatív módon ismerje, mit jelent a gáznyomás, a hőmérséklet a kinetikus gázelmélet alapján. Hőmozgás Ismerjen a hőmozgást bizonyító jelenségeket (pl. Brown-mozgás, diffúzió). Hatályos 2017. január 1-jétől.
2.5. Energiamegmaradás hŊtani folyamatokban (→ 1.4) 2.5.1. Termikus, mechanikai kölcsönhatás Hőmennyiség, munkavégzés Ismerje a gázon és a gáz által végzett térfogati munkavégzést és a hőmennyiség fogalmát. Ismerje a térfogati munkavégzés grafikus megjelenítését p-V diagramon. Értse a folyamatra jellemző mennyiségek és az állapotjelzők közötti különbséget. 2.5.2. A termodinamika I. főtétele zárt rendszer Belső energia Adiabatikus állapotváltozás Értelmezze az I. főtételt speciális - izoterm, izochor, izobár, adiabatikus - állapotváltozásokra. Tudja alkalmazni az I. főtételt feladatmegoldásoknál. 2.5.3. Körfolyamatok Tudjon értelmezni p-V diagramon ábrázolt speciális körfolyamatokat. Perpetuum mobile Ismerje, mit jelent az elsőfajú perpetuum mobile kifejezés, értse a megvalósítás lehetetlenségét. 2.6. Kalorimetria Fajhő, mólhő, hőkapacitás, termikus egyensúly Gázok fajhői Ismerje a hőkapacitás, fajhő fogalmát, és azokat tudja alkalmazni egyszerű problémák esetén. Ismerje a hőkapacitás, fajhő és mólhő fogalmát, tudja kvalitatív módon megmagyarázni az állandó térfogaton és állandó nyomáson mért fajhő különbözőségét gázoknál. Legyen képes egyszerű keverési feladatok megoldására. Tudjon egyszerű kalorimetrikus mérést elvégezni. 2.7. Halmazállapot-változások Ismerje a különböző halmazállapotok tulajdonságait. Ismerje a halmazállapot-változásokkal kapcsolatos fogalmakat és azokat tudja alkalmazni egyszerű problémák esetén. Tudja, milyen energiaváltozással járnak a halmazállapot-változások, legyen képes egyszerű számításos feladatok elvégzésére. Értelmezze a fogalmakat, és tudjon számításos feladatokat megoldani velük. 2.7.1. Olvadás, fagyás Olvadáshő, olvadáspont Ismerje az olvadáspontot befolyásoló tényezőket. 2.7.2. Párolgás, lecsapódás Párolgáshő Telített és telítetlen gőz Forrás, forráspont, forráshő Tudja, mely tényezők befolyásolják a párolgás sebességét.
Ismerje a forrás jelenségét. Ismerje a forráspontot befolyásoló tényezőket. Értse a gáz és a gőz fogalmak különbözőségét. Tudja kvalitatív módon magyarázni a gőz telítetté válásának okait, a telített gőz tulajdonságait. Szublimáció Cseppfolyósíthatóság 2.7.3. Jég, víz, gőz Ismerje a víz különleges tulajdonságainak jelentőségét, tudjon Hatályos 2017. január 1-jétől. A víz különleges fizikai tulajdonságai példákat mondani ezek következményeire (pl. az élet kialakulásában, fennmaradásában betöltött szerepe). A levegő páratartalma Ismerje a levegő relatív páratartalmát befolyásoló tényezőket. Csapadékképződés Kvalitatív módon ismerje az eső, a hó, a jégeső kialakulásának legfontosabb okait. Ismerje, milyen változásokat okoz a felmelegedés, az üvegházhatás, a savas eső stb. a Földön. 2.8. A termodinamika II. fŊtétele 2.8.1. Hőfolyamatok iránya Tudjon értelmezni mindennapi jelenségeket a II. főtétel alapján. Rendezettség, rendezetlenség Értse, hogy mit jelent termodinamikai értelemben a rendezettség, rendezetlenség fogalma. Reverzibilis, irreverzibilis folyamatok Ismerje a reverzibilis, irreverzibilis folyamatok fogalmát. Példákban értelmezze a reverzibilis, irreverzibilis folyamatok fogalmát. 2.8.2. Hőerőgépek (→ 1.5.) Tudja alkalmazni a hőerőgépek működését leíró fogalmakat konkrét esetekre (pl. gőzgép, belső égésű motor). Ismerje a hűtőgép működési elvét. Hatásfok Legyen tisztában a hőerőgépek hatásfokának fogalmával és korlátaival. Másodfajú perpetuum mobile Ismerje a másodfajú perpetuum mobile megvalósíthatatlanságát. 2.9. A hŊterjedés formái Ismerje a hővezetés, hőáramlás és hősugárzás jelenségét.
3. Elektromágnesség TÉMÁK VIZSGASZINTEK Középszint Emelt szint 3.1. Elektromos mezŊ 3.1.1. Elektrosztatikai alapjelenségek Kétféle elektromos töltés Vezetők és szigetelők Elektroszkóp Elektromos megosztás Értse az elektrosztatikai alapjelenségeket, és tudja ezeket elemezni és bemutatni egyszerű elektrosztatikai kísérletek, hétköznapi jelenségek alapján. Coulomb-törvény Alkalmazza a Coulomb-törvényt feladatmegoldásban. A töltésmegmaradás törvénye 3.1.2. Az elektromos Alkalmazza az elektromos mező jellemzésére használt fogalmakat. Hatályos 2017. január 1-jétől. mező jellemzése Térerősség A szuperpozíció elve Erővonalak, -fluxus Ismerje a pontszerű elektromos töltés által létrehozott és a homogén elektromos mező szerkezetét és tudja jellemezni az erővonalak segítségével. Tudja alkalmazni az összefüggéseket homogén elektromos mező esetén egyszerű feladatokban. Feszültség
Potenciál, ekvipotenciális felület A pontszerű elektromos töltés által létrehozott és a homogén elektromos mezőt tudja jellemezni az ekvipotenciális felületek segítségével. Konzervatív mező (→ 1.5.) Homogén mező Tudja, hogy az elektromos mező által végzett munka független az úttól. Értse, hogy az elektrosztatikus mező konzervatív volta miatt értelmezhető a potenciál és a feszültség fogalma. Földpotenciál 3.1.3. Töltések mozgása elektromos mezőben (→ 1.1.) Alkalmazza a munkatételt ponttöltésre elektromos mezőben. 3.1.4. Töltés, térerősség, potenciál a vezetőkön Töltések elhelyezkedése vezetőkön Térerősség a vezetők belsejében és felületén Csúcshatás Az elektromos mező árnyékolása Ismerje a töltés- és térerősség viszonyokat a vezetőkön, legyen tisztában ezek következményeivel a mindennapi életben, tudjon példákat mondani gyakorlati alkalmazásukra. Földelés 3.1.5. Kondenzátorok Kapacitás Síkkondenzátor Permittivitás Ismerje a kondenzátor és a kapacitás fogalmát. Tudjon példát mondani a kondenzátor gyakorlati alkalmazására. Ismerje a kondenzátor lemezei között lévő szigetelőanyag kapacitásmódosító szerepét. Ismerje a síkkondenzátor kapacitásának meghatározását. Feltöltött kondenzátor energiája Ismerje a kondenzátor energiáját. Ismerje a feltöltött kondenzátor energiájának meghatározását, és alkalmazza a fenti összefüggéseket feladatok megoldásában. 3.2. Egyenáram 3.2.1. Elektromos áram, áramerősség Feszültségforrás, áramforrás Értse az elektromos áram létrejöttének feltételeit, ismerje az áramkör részeit, tudjon egyszerű áramkört összeállítani. Elektromotoros erő, belső feszültség, kapocsfeszültség Áramerősség- és Ismerje az áramerősség- és feszültségmérő eszközök használatát. Hatályos 2017. január 1-jétől.
feszültségmérő műszerek 3.2.2. Ohm törvénye Ellenállás, belső ellenállás, külső ellenállás Vezetők ellenállása, fajlagos ellenállás Változtatható ellenállás Értse az Ohm-törvényt vezető szakaszra és ennek következményeit, tudja alkalmazni egyszerű feladat megoldására, kísérlet, illetve ábra elemzésére. Alkalmazza az Ohm-törvényt összetett feladat megoldására, kísérlet, illetve ábra elemzésére. Ismerjen ellenállásmérési módszert. Az ellenállás hőmérsékletfüggése Ismerje a fémek ellenállásának hőmérsékletfüggését. Telepek soros, fogyasztók soros és párhuzamos kapcsolása Az eredő ellenállás Ismerje a soros és a párhuzamos kapcsolásra vonatkozó összefüggéseket, és alkalmazza ezeket egyszerű áramkörökre. Értse a soros és a párhuzamos kapcsolásra vonatkozó összefüggések magyarázatát, és alkalmazza ezeket összetettebb áramkörökre is. Alkalmazza ismereteit egyszerűbb egyenáramú mérések megtervezésére, vagy megadott kapcsolási rajz alapján történő összeállítására és elvégzésére. 3.2.3. Félvezetők Ismerje a félvezető fogalmát, tulajdonságait. Félvezető eszközök
Tudjon megnevezni félvezető kristályokat. Tudja megfogalmazni a félvezetők alkalmazásának jelentőségét a technika fejlődésében, tudjon példákat mondani a félvezetők gyakorlati alkalmazására (pl. dióda, tranzisztor, memóriachip, napelemek). 3.2.4. Az egyenáram hatásai, munkája és teljesítménye Ismerje az elektromos áram hatásait és alkalmazásukat az elektromos eszközökben. Alkalmazza egyszerű feladatok megoldására az elektromos eszközök teljesítményével és energiafogyasztásával kapcsolatos ismereteit. Hő-, mágneses, vegyi hatás (→ 4.2) Ismerje az áram élettani hatásait, a baleset-megelőzési és érintésvédelmi szabályokat. Galvánelemek, akkumulátor Ismerje a galvánelem és az akkumulátor fogalmát, és ezek környezetkárosító hatását. Tudja az ismereteit alkalmazni egyszerű elektrolízises problémák értelmezésében. 3.3. Az idŊben állandó mágneses mezŊ 3.3.1. Mágneses alapjelenségek A dipólus fogalma Ismerje az analógiát és a különbséget a magneto- és az elektrosztatikai alapjelenségek között. Mágnesezhetőség, mágneses megosztás A Föld mágneses mezeje Iránytű Ismerje a Föld mágneses mezejét és az iránytű használatát. 3.3.2. A mágneses mező jellemzése Indukcióvektor Ismerje a mágneses mező jellemzésére használt fogalmakat és definíciójukat, tudja kvalitatív módon jellemezni a különböző mágneses mezőket. Tudja kvantitatív módon jellemezni a mágneses mezőket. Ismerje az elektromos áram keltette mágneses mezőnek az elektrosztatikus mezőtől eltérő szerkezetét. Hatályos 2017. január 1-jétől.
Indukcióvonalak, indukciófluxus 3.3.3. Az áram mágneses mezeje Hosszú egyenes vezető, áramhurok, egyenes tekercs mágneses mezeje Homogén mágneses mező Ismerje az egyenes tekercs és az egyenes vezető mágneses mezejének jellegét. Alkalmazza a speciális alakú áramvezetők mágneses mezejére vonatkozó összefüggéseket egyszerű feladatokban. Elektromágnes, vasmag Mágneses permeabilitás Ismerje az elektromágnes néhány gyakorlati alkalmazását, a vasmag szerepét hangszóró, csengő, műszerek, relé stb.). 3.3.4. Mágneses erőhatások A mágneses mező erőhatása áramjárta vezetőre Ismerje a mágneses mező erőhatását áramjárta vezetőre nagyság és irány szerint speciális esetben. Két párhuzamos, hosszú egyenes vezető között ható erő Lorentz-erő Részecskegyorsító berendezés (→ 5.3.) Ismerje a Lorentz-erő fogalmát, hatását a mozgó töltésre, ismerje ennek néhány következményét. Tudjon a Lorentz-erővel kapcsolatos feladatokat megoldani. Tudjon megnevezni egy gyorsítótípust és ismerje működési elvét. 3.4. Az idŊben változó mágneses mezŊ 3.4.1. Az indukció alapjelensége Mozgási indukció Nyugalmi indukció Faraday-féle indukciós törvény Ismerje az indukció alapjelenségét, és tudja, hogy a mágneses mező mindennemű megváltozása elektromos mezőt hoz létre. Ismerje az időben változó mágneses mező keltette elektromos mező és a nyugvó töltés körül kialakuló elektromos mező eltérő szerkezetét. Alkalmazza az indukcióval kapcsolatos ismereteit egyszerű feladatok megoldására. Lenz törvénye (→ 1.4) Kölcsönös indukció Ismerje Lenz törvényét, és tudjon hozzá kapcsolódó egyszerű kísérleteket és jelenségeket említeni.
Tudjon egyszerű jelenségeket a Lenz-törvény alapján értelmezni. Önindukció Ismerje az önindukció szerepét az áram ki- és bekapcsolásánál. Tekercs mágneses energiája Ismerje a tekercs mágneses energiáját. 3.4.2. A váltakozó áram A váltakozó áram fogalma Ismerje a váltakozó áram előállításának módját, a váltakozó áram tulajdonságait, hatásait, és hasonlítsa össze az egyenáraméval. Ismerje a feszültség és az áram időbeli lefolyását leíró összefüggéseket. Alkalmazza ismereteit egyszerűbb váltakozó áramú kísérletek megadott kapcsolási rajz alapján történő összeállítására és elvégzésére. Generátor, motor, dinamó Ismerje a generátor, a motor és a dinamó működési elvét, Hatályos 2017. január 1-jétől.
alkalmazásait. Pillanatnyi, maximális és effektív feszültség és áramerősség Ismerje az effektív feszültség és áramerősség jelentését. Ismerje a hálózati áram alkalmazásával kapcsolatos gyakorlati tudnivalókat. Ismerje, hogy a tekercs és a kondenzátor eltérő módon viselkedik egyenárammal és váltakozó árammal szemben. Értse az eltérő viselkedés okát. Váltakozó áramú ellenállások: ohmos, induktív és kapacitív ellenállás Fáziskésés, fázissietés 3.4.3. A váltakozó áram teljesítménye és munkája Hatásos teljesítmény Látszólagos teljesítmény Fáziseltérés nélküli esetben ismerje az átlagos teljesítmény és a munka kiszámítását. Általános esetben ismerje az átlagos teljesítmény és a munka kiszámítását. Transzformátor Ismerje a transzformátor felépítését, működési elvét és szerepét az energia szállításában. Tudjon egyszerű feladatokat megoldani a transzformátorral kapcsolatban. 3.5. Elektromágneses hullámok 3.5.1. Az elektromágneses hullám fogalma Terjedési sebessége vákuumban Ismerje a mechanikai és az elektromágneses hullámok azonos és eltérő viselkedését. Az elektromágneses hullámok spektruma: rádióhullámok, infravörös sugarak, fény, ultraibolya, röntgen- és gammasugarak Ismerje az elektromágneses spektrumot, tudja az elektromágneses hullámok terjedési tulajdonságait kvalitatív módon leírni. Ismerje a különböző elektromágneses hullámok alkalmazását és biológiai hatásait. Ismerje, hogy a modern híradástechnikai, távközlési, kép- és hangrögzítő eszközök működési alapelveiben a tanultakból mit használnak fel. Párhuzamos rezgőkör zárt, nyitott Tudja, miből áll egy rezgőkör, és milyen energiaátalakulás megy végbe benne. Értse a rezgőkörben létrejövő szabad elektromágneses rezgések kialakulását Thomson-képlet Csatolt rezgések, rezonancia Dipólus sugárzása, antenna, szabad elektromágneses hullámok Ismerje a gyorsuló töltés és az elektromágneses hullám kapcsolatát. Hatályos 2017. január 1-jétől.
4. Optika TÉMÁK VIZSGASZINTEK Középszint Emelt szint 4.1. A fény mint elektromágneses hullám 4.1.1. Terjedési tulajdonságok Fényforrás Fénynyaláb, fénysugár
Tudja, hogy a fény elektromágneses hullám, ismerje ennek következményeit. Ismerje a fény terjedési tulajdonságait, tudja tapasztalati és kísérleti bizonyítékokkal alátámasztani. Fénysebesség Tudja, hogy a fénysebesség határsebesség. Ismerjen a fénysebesség mérésére vonatkozó klasszikus módszert (pl. Olaf Römer, Fizeau). 4.1.2. Hullámjelenségek A visszaverődés és törés törvényei - Snellius-Descartes törvény Prizma, planparalel lemez Abszolút és relatív törésmutató Teljes visszaverődés, határszög (száloptika) Tudja alkalmazni a hullámtani törvényeket egyszerűbb feladatokban. Ismerje fel a jelenségeket, legyen tisztában létrejöttük feltételeivel, és értse az ezzel kapcsolatos természeti jelenségeket és technikai eszközöket. Tudja egyszerű kísérletekkel szemléltetni a jelenségeket. Alkalmazza a hullámtani törvényeket összetett (prizma, planparalel lemez) feladatokban. Tudjon egyszerűbb méréseket tervezni és elvégezni a hullámtani törvényekkel kapcsolatban (pl. törésmutató meghatározása). Diszperzió Ismerje, hogy a prizma a fehér fényt a szivárvány színeire bontja. Ismerje, hogy a fény terjedési sebessége egy közegben frekvenciafüggő. Színképek (→ 5.2.) Homogén és összetett színek Legyen ismerete a homogén és összetett színekről. Fényinterferencia, koherencia Fénypolarizáció, polárszűrő Ismerje az interferenciát, elhajlást és a polarizációt, és ismerje fel ezeket egyszerű jelenségekben. Értse a fény transzverzális jellegét. Fényelhajlás résen, rácson Ismerje és értelmezze a színfelbontás néhány esetét (prizma, rács). Tudja alkalmazni a rácson történő elhajlásra vonatkozó összefüggéseket hullámhossz mérésére. Lézerfény Ismerje a lézerfény fogalmát, tulajdonságait. 4.1.3. A geometriai fénytani leképezés Az optikai kép fogalma (valódi, látszólagos) Síktükör Ismerje a képalkotás fogalmát sík- és gömbtükrök, valamint lencsék esetén. Tudjon képszerkesztést végezni tükrökre, lencsékre a nevezetes sugármenetek segítségével. Ismerje, hogy a lencse gyűjtő Tudja, hogy a lencse gyűjtő és szóró mivolta a környező közeg anyagától is függ. Hatályos 2017. január 1-jétől.
Lapos gömbtükrök (homorú, domború) Vékony lencsék (gyűjtő, szóró) Fókusztávolság, dioptria és szóró mivolta adott közegben a lencse alakjától függ. Leképezési törvény Nagyítás Alkalmazza egyszerű feladatok megoldására a leképezési törvényt. Tudjon egyszerűbb méréseket elvégezni a leképezési törvénnyel kapcsolatban. (Pl. tükör, illetve lencse fókusztávolságának meghatározása.) Alkalmazza a leképezési törvényt összetettebb feladatok megoldására. Tudjon egyszerűbb méréseket tervezni a leképezési törvénnyel kapcsolatban. Egyszerű nagyító Fényképezőgép, vetítő, mikroszkóp, távcső Ismerje a tükrök, lencsék, optikai eszközök gyakorlati alkalmazását, az egyszerűbb eszközök működési elvét. 4.1.4. A szem és a látás Rövidlátás, távollátás Szemüveg Ismerje a szem fizikai működésével és védelmével kapcsolatos tudnivalókat, a rövidlátás és a távollátás lényegét, a szemüveg használatát, a dioptria fogalmát.
5. Atomfizika, magfizika TÉMÁK VIZSGASZINTEK
Középszint Emelt szint 5.1. Az anyag szerkezete (→ 2.4.) Atom Molekula Ion Kémiai elem Tudja meghatározni az atom, molekula, ion és elem fogalmát. Tudjon példákat mondani az ezek létezését bizonyító fizikai-kémiai jelenségekre. Avogadro-szám (→ 2.1., 2.3.) Relatív atomtömeg Atomi tömegegység Ismerje az Avogadro-számot, a relatív atomtömeg és az atomi tömegegység fogalmát, ezek kapcsolatát. Tudjon ezekkel a mennyiségekkel számításokat végezni. 5.2. Az atom szerkezete Elektron Elemi töltés Ismerje az elektron tömegének és töltésének meghatározására vonatkozó kísérletek alapelvét. Tudja értelmezni Thomson katódsugárcsöves méréseit, a Millikan-kísérletet. Elektronburok Ismerje az elektromosság atomos természetét. Rutherford-féle atommodell Tudja ismertetni Rutherford atommodelljét, szórási kísérletének eredményeit. Atommag Ismerje az atommag és az elektronburok méretének nagyságrendjét. Hatályos 2017. január 1-jétől.
5.2.1. A kvantumfizika elemei Planck-formula Ismerje Planck alapvetően új gondolatát az energia kvantáltságáról. Ismerje a Planck-formulát. Tudja a kilépési munka és a Planck-állandó méréssel való meghatározását. Foton (energiakvantum) Fényelektromos jelenség Kilépési munka Tudja megfogalmazni az einsteini felismerést a fénysugárzás energiájának kvantumosságáról. Ismerje a foton jellemzőit. Tudja értelmezni a fotoeffektus jelenségét. Fotocella (fényelem) Tudja ismertetni a fotocella működési elvét, tudjon példát mondani gyakorlati alkalmazására. Vonalas színkép (→ 4.1., 6.2.) Emissziós színkép Abszorpciós színkép Ismerje a vonalas színkép keletkezését, tudja indokolni alkalmazhatóságát az anyagi minőség meghatározására. Ismerje a színképvonalak hullámhossza és az atomi elektronok energiája közötti összefüggést. Ismerje az emissziós és abszorpciós színképek jellemzőit. Tudja mindezt értelmezni új elemek felfedezése szempontjából. Tudjon számításokat végezni az atomok által elnyelt vagy kibocsátott fotonokkal kapcsolatban. Bohr-féle atommodell Energiaszintek Bohr-posztulátumok Alapállapot, gerjesztett állapot Ionizációs energia Tudja megmagyarázni a Bohr-modell újszerűségét Rutherford modelljéhez képest. Ismerje az alap- és a gerjesztett állapot, valamint az ionizációs energia fogalmát. 5.2.2. Részecske- és hullámtermészet A fény mint részecske Tudja megfogalmazni a fény kettős természetének jelentését. Tudja felírni a foton tömegére és energiájára vonatkozó összefüggéseket. Tömeg-energia ekvivalencia (→ 1.5.)
Ismerje a tömeg-energia ekvivalenciáját kifejező einsteini egyenletet. Az elektron hullámtermészete de Broglie-hullámhossz Ismerje az elektron hullámtermészetét. Tudja megfogalmazni az anyag kettős természetét. Ismerje az elektron de Broglie-hullámhosszát és kiszámítását egy szabadon mozgó részecske esetére. Ismerjen az elektron hullámtermészetét bizonyító kísérletet. Heisenberg-féle határozatlansági reláció 5.2.3. Az elektronburok szerkezete Kvantumszámok: fő- és mellékkvantumszám, mágneses kvantumszám, spin Ismerje a fő- és mellékkvantumszám fogalmát, tudja, hogy az elektron állapotának teljes jellemzéséhez további adatok szükségesek. Tudja értelmezni a kvantumszámok fizikai jelentését. Tudja megfogalmazni a Bohr-modell erre vonatkozó korlátait. Pauli-féle kizárási elv, Hund-szabály Tudja meghatározni az elektronhéj fogalmát. Tudja megfogalmazni a Pauli-féle kizárási elvet. Tudja alkalmazni Pauli elvét és a Hund-szabályt az elektronok betöltési rendjére a periódusos rendszerben. Hatályos 2017. január 1-jétől.
Elektronhéj Kvantummechanikai atommodell Ismerje az elektron „tartózkodási helyének” jelentését az atomban a kvantummechanikai atommodell szerint. 5.3. Az atommagban lejátszódó jelenségek 5.3.1. Az atommag összetétele Proton Neutron Nukleon Rendszám Tömegszám Tudja felsorolni az atommagot alkotó részecskéket. Ismerje a proton és a neutron tömegének az elektron tömegéhez viszonyított nagyságrendjét. Tudja a proton és a neutron legfontosabb jellemzőit. Tudja megfogalmazni a neutron felfedezésének jelentőségét az atommag felépítésének megismerésében. Ismerje a nukleon, a rendszám és a tömegszám fogalmának meghatározását, tudja a közöttük fennálló összefüggéseket. Izotóp Tudja meghatározni az izotóp fogalmát, tudjon példát mondani a természetben található stabil és instabil izotópokra. Erős (nukleáris) kölcsönhatás Ismerje az erős (nukleáris) kölcsönhatás fogalmát, jellemzőit. Magerő Tudja megmagyarázni a magerő fogalmát, természetét. Tömeghiány (→ 1.5.) Kötési energia Fajlagos kötési energia Tudja értelmezni a tömegdefektus keletkezését. Tudja értelmezni az atommag kötési energiáját a tömegdefektus alapján, ismerje nagyságrendjét. Tudja kiszámolni a tömegdefektus nagyságát. Tudja meghatározni a fajlagos kötési energia fogalmát, nagyságrendjét MeV-ban kifejezve. Tudja értelmezni a fajlagos kötési energia görbéjét a tömegszám függvényében. 5.3.2. Radioaktivitás Radioaktív bomlás Tudja meghatározni a radioaktív bomlás fogalmát. α-, β-, γ-sugárzás Tudja jellemezni az α-, β-, γ-sugárzást. Tudja értelmezni a bomlás során átalakuló atommagok rendszám- és tömegszám-változását. Magreakció Felezési idő Bomlási törvény Ismerje a magreakció, a felezési idő fogalmát, a bomlási törvényt. Tudja a bomlási törvényt egyszerű feladatmegoldásban használni. Aktivitás Ismerje az aktivitás, a bomlási sor fogalmát, ábra alapján tudjon megadott bomlási sort ismertetni.
Mesterséges radioaktivitás Ismerje a mesterséges radioaktivitás fogalmát. Tudjon példákat mondani a radioaktív izotópok ipari, orvosi és tudományos alkalmazására. Sugárzásmérő detektorok Tudjon példát mondani sugárzásmérő eszközre és annak gyakorlati alkalmazására. Ismerje néhány sugárzásfajta detektálására alkalmas eszköz (GM-cső, Wilson-kamra) működési elvét. 5.3.3. Maghasadás Hasadási reakció Hasadási termék Ismerje a maghasadás folyamatát, jellemzőit. Tudjon párhuzamot vonni a radioaktív bomlás és a maghasadás között. Ismerje a hasadási termék fogalmát. Tudja elemezni a 235U-ra megadott hasadási reakció egyenletét. Lassítás Láncreakció Tudja ismertetni a láncreakció folyamatát, megvalósításának feltételeit. Hatályos 2017. január 1-jétől.
Hasadási energia Ismerje a maghasadás során felszabaduló energia nagyságát és keletkezésének módját. Szabályozott láncreakció Atomreaktor Atomerőmű Atomenergia (nukleáris energia) (→ 2.8., 1.5.) Tudja elmagyarázni a szabályozott láncreakció folyamatát, megvalósítását az atomreaktorban. Ismerje az atomerőmű és a hagyományos erőmű közötti különbség lényegét. Tudja megfogalmazni az atomenergia (nukleáris energia) jelentőségét az energiatermelésben. Ismerje az atomerőművek előnyeit, tudjon reális értékelést adni a veszélyességükről. Tudja indokolni, hogy miért alkalmas az atomreaktor radioaktív izotóp gyártására. Szabályozatlan láncreakció Atombomba Ismerje a szabályozatlan láncreakció folyamatát, az atombomba működési elvét. 5.3.4. Magfúzió Tudja elmagyarázni a magfúzió folyamatát és értelmezni az energiafelszabadulást. Tudjon értelmezni megadott fúziós magreakció egyenletet. A Nap energiája (→ 6.2.) Ismerje a Napban lejátszódó energiatermelő folyamatot. Hidrogénbomba Ismerje a H-bomba működési elvét. 5.4. Sugárvédelem Ismerje a radioaktív sugárzás környezeti és biológiai hatásait. Sugárterhelés Ismerje a sugárterhelés fogalmát. Háttérsugárzás Tudja megfogalmazni a háttérsugárzás eredetét. Elnyelt sugárdózis Tudja ismertetni a sugárzások elleni védelem szükségességét és módszereit. Dózisegyenérték Ismerje az embert érő átlagos sugárterhelés összetételét. Ismerje az elnyelt sugárdózis fogalmát, mértékegységét, valamint a dózisegyenérték fogalmát, mértékegységét. 5.5. Elemi részek Stabil és instabil részecske Neutrino Szétsugárzás-párkeltés Tudjon a stabil és instabil elemi részecskére példát mondani. Tudja, mi az antirészecske. Ismerje a neutrino jelentőségét a maghasadás energiamérlegében. Ismerje a szétsugárzás és párkeltés folyamatát.
6. Gravitáció, csillagászat TÉMÁK VIZSGASZINTEK Középszint Emelt szint 6.1. A gravitációs mezŊ
Az általános tömegvonzás törvénye Ismerje a gravitációs kölcsönhatásban a tömegek szerepét, az erő távolságfüggését, tudja értelmezni ennek általános érvényét. Ismerje a Kepler törvényei és Newton gravitációs törvénye közötti összefüggést. Ismerje a gravitációs állandó mérését. A bolygómozgás Kepler-törvényei (→ 7.2.) Értelmezze a Kepler-törvényeket a bolygómozgásokra és a Föld körül keringő műholdak mozgására. Súly és súlytalanság Értelmezze a súly és súlytalanság fogalmát. Hatályos 2017. január 1-jétől.
Nehézségi erő Tudjon példát mondani a gravitációs gyorsulás mérési eljárásaira. (→ 1.4) Potenciális energia homogén gravitációs mezőben (→ 1.5.) és centrális gravitációs mezőben Feladatokban tudja alkalmazni a homogén gravitációs mezőre vonatkozó összefüggéseket. Problémamegoldásban tudja figyelembe venni a gravitációs gyorsulás tömeg- és távolságfüggését, térerősségjellegét. Kozmikus sebességek Tudja értelmezni a kozmikus sebességeket. 6.2. Csillagászat Fényév Ismerje a fényév távolságegységet. Vizsgálati módszerek, eszközök (→ 5.2.) Legyen ismerete az űrkutatás alapvető vizsgálati módszereiről és eszközeiről. Naprendszer Legyen fogalma a Naprendszer méretéről, ismerje a bolygókat, a fő típusok jellegzetességeit, mozgásukat. Nap (→ 5.3.4.) Ismerje a Nap szerkezetének főbb részeit, anyagi összetételét, legfontosabb adatait. Hold Üstökösök, meteoritok Tudja jellemezni a Hold felszínét, anyagát, ismerje legfontosabb adatait. Ismerje a holdfázisokat, a nap- és holdfogyatkozásokat. A csillagok (→ 5.3.4.) Határozza meg a csillag fogalmát, tudjon megnevezni néhány csillagot. Jellemezze a csillagok Naphoz viszonyított méretét, tömegét. A Tejútrendszer, galaxisok Ismerje a Tejútrendszer szerkezetét, méreteit, tudja, hogy a Tejútrendszer is egy galaxis. Ismerje a Tejútrendszeren belül a Naprendszer elhelyezkedését. Legyen tájékozott a galaxisok hozzávetőleges számát és távolságát illetően, legyen ismerete az Univerzum méreteiről. Az Ősrobbanás elmélete A táguló Univerzum Ismerje az Ősrobbanás-elmélet lényegét, az ebből adódó következtetéseket a Világegyetem korára és kiinduló állapotára vonatkozóan.
7. Fizika- és kultúrtörténeti ismeretek A fejezethez kapcsolódó kérdések, feladatok az előző fejezetek témaköreiben jelennek meg. TÉMÁK VIZSGASZINTEK Középszint Emelt szint 7.1. A fizikatörténet fontosabb személyiségei Arkhimédész, Kopernikusz, Kepler, Tudja, hogy a felsorolt tudósok mikor (fél évszázad pontossággal) és hol éltek, tudja, melyek voltak legfontosabb, a tanultakhoz Hatályos 2017. január 1-jétől.
Galilei, Newton, Huygens, Watt, Ohm, Joule, Ampère, Faraday, Jedlik Ányos, Maxwell, Hertz, Eötvös Loránd, J. J. Thomson, Rutherford, M. Curie és P. Curie, Planck, Heisenberg, Bohr, Einstein, Kármán Tódor, Szilárd Leó, Teller Ede, Wigner Jenő, Gábor Dénes köthető eredményeik. 7.2. Felfedezések, találmányok, elméletek Geo- és heliocentrikus világkép „Égi és földi mechanika egyesítése”
Távcső, mikroszkóp, vetítő A fény természetének problémája Gőzgép és alkalmazásai Dinamó, generátor, elektromotor Az elektromágnesség egységes elmélete Belső égésű motorok Az elektron felfedezésének története Radioaktivitás, az atomenergia alkalmazása Röntgensugárzás Speciális relativitáselmélet Kvantummechanika Az űrkutatás történetének legfontosabb eredményei Félvezetők Lézer Tudja a felsoroltak keletkezésének idejét fél évszázad pontossággal, a 20. századtól évtized pontossággal. Tudja a felsoroltak hatását, jelentőségét egy-két érvvel alátámasztani, az elméletek lényegét néhány mondatban összefoglalni. Tudja a felsoroltakat a megfelelő nevekkel összekapcsolni. Ismerje a geo- és heliocentrikus világképet. Tudja, milyen szerepe volt a kísérlet és a mérés mint megismerési módszer megjelenésének az újkori fizika kialakulásában. Ismerje a newtoni fizika tudománytörténeti hatását. Ismerje az optikai eszközök hatását az egyéb tudományok fejlődésében. Ismerjen néhány új energiatermelő, átalakító technikát, és azok hatását az adott kor gazdasági és társadalmi folyamataira (gőzgépek, az elektromos energia és szállíthatósága, atomenergia, alternatív energiahordozók). Tudja felsorolni a klasszikus fizika és a kvantummechanika alapvető szemléletmódbeli eltéréseit. Ismerje a nukleáris fegyverek jelenlétének hatását világunkban. Ismerje a modern híradástechnikai, távközlési, számítástechnikai eszközöknek a mindennapi életre is gyakorolt hatását. Ismerje Maxwell és Hertz munkásságának lényegét, jelentőségét. Tudja felsorolni a tanultak alapján a klasszikus fizika és a relativitáselmélet alapvető szemléletmódbeli eltéréseit. Hatályos 2017. január 1-jétől.