Pindah Panas
8/24/2011
Pindah Panas Lecture Note Principles of Food Engineering (ITP 330)
Dept of Food Science & Technology Faculty of Agricultural Technology Bogor Agricultural University BOGOR
Pindah Panas Tujuan Pembelajaran • Mengerti prinsip dasar pindah panas – untuk mengetahui bagaimana bahan pangan dipanaskan dan/atau didinginkan
• mengerti bagaimana pindah panas diukur – menentukan laju pemanasan dan pendinginan bahan pangan
• Mengerti g faktor faktor--faktor apa p saja j yang y g mempengaruhi (dan bagaimana pengaruhnya) aplikasi pindah panas dalam proses penanganan, pengolahan, distribusi dan pemanfaatan pangan
Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
1
Pindah Panas
8/24/2011
Pindah Panas • Heat transfer - movement of energy due to a temperature difference • Can only occur if a temperature difference exists • Occurs through: 1. conduction, 2. convection, and 3. radiation, or 4. combination of above
Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
Heat Transfer (1) • May be indicated as total transfer • Identified by total heat flow (Q) with units of Btu • Identified by rate of heat flow (q) or ΔQ/ Q/Δ Δt with units of watts ot Btu/hr y be expressed p as heat transfer per p unit • Also,, may area = heat flux or q/A
Purwiyatno Hariyadi/ITP/Fateta/IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
2
Pindah Panas
8/24/2011
Heat Transfer (2) • Heat transfer can be classified as: 1. SteadySteady-state: o all factors are stabilized with respect to time o temperatures are constant at all locations o steadysteady-state is sometimes assumed if little error results 2. UnsteadyUnsteady-state (transient) heat transfer occurs when: o temperature changes with time o thermal processing of foods is an important example o must know time required for the coldest spot in can to reach set temperature Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
CONDUCTION HEAT TRANSFER • Occurs when heat moves through a material (usually solid or viscous liquid) due to molecular action only HEAT • Heat/energy is transferred at molecular level • No physical movement of material • Heating/cooling of solid • Heat flux is directly proportional to the temperature gradient, and inversely proportional to distance (thickness of material). Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
3
Pindah Panas
8/24/2011
CONDUCTION HEAT TRANSFER
• • • • • •
May occur simultaneously in one, or two, or three directions Many practical problems involve heat flow in only one or two directions Conduction along a rod heated at one end is an example of two dimensional conduction Heat flows along the length of the rod to the cooler end ((one direction)) If rod is not insulated, heat is also lost to surroundings Center warmer than outer surface
Purwiyatno Hariyadi/ITP/ Hariyadi/ITP/Fateta Fateta/IPB /IPB
CONDUCTION HEAT TRANSFER - one dimensional (unidirectional) • One dimensional conduction heat transfer is a function of: 1. temperature difference 2. material thickness 3. area through which heat flows 4. resistance of the material to heat flow
Purwiyatno Hariyadi/ITP/ Hariyadi/ITP/Fateta Fateta/IPB /IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
4
Pindah Panas
8/24/2011
CONDUCTION HEAT TRANSFER - one dimensional Fourier’s Law Of Heat Conduction:
ΔQ = qx = - kA dT dx Δt
qx
X1 X2 ΔQ = Total heat flow qx = rate of heat flow in x direction by conduction conduction, W k = thermal conductivity, W/mC A= area (normal to xx-direction) through which heat flows, m2 T = temperature, C x = distance increment, variable, m Purwiyatno Hariyadi/ITP/ Hariyadi/ITP/Fateta Fateta/IPB /IPB
SIGN CONVENTION
TEMPERATURE
direction of heat flow slope = -
ΔT Δx
dT dx Temperature profile
DISTANCE
Purwiyatno Hariyadi/ITP/ Hariyadi/ITP/Fateta Fateta/IPB /IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
5
Pindah Panas
8/24/2011
PH/TPG/Fateta/IPB
USING FOURIER’S LAW Integrating :
T1 T2
X1
q
X2
=- k A
x
qx
A
∫
X2
dT dx
X = X1 ...........> T = T1 X = X2 ...........> T = T2
qx
X1
dx = -kdT
qx A
d =dx
T
∫ kdT
T1
qx A ( x1 - x 2 ) = − k(T1 - T 2 )
T1 = T2 −
q1 kA
q x = − kA
(x1 - x2 ) (T1 - T2 ) (X1 - X 2 )
Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
6
Pindah Panas
8/24/2011
HEAT CONDUCTION IN MULTILAYERED SYSTEMS Composite Rectangular Wall (In Series) kA kB kC q
Tempeerature
q
T1
xA
xB
xC Temperature profile in a multilayered system
T2 X Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
kA
kB
kC
q
q
xA
xB
USING FOURIER’S LAW :
q = -kA Δ T = -q
dT dX Δx
kA
xC
Δ T A = -q Δ T B = -q Δ T C = -q
Δx A kAA Δx B k BA Δx C k CA
Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
7
Pindah Panas
8/24/2011
kA q
kB
kC
T1
q
T2
xA
xB
xC
Δ T A = -q
Δ T = T1 − T 2
Δ T B = -q
Δ T = Δ TA + Δ TB + Δ TC T1 − T 2 = -
q ⎛ ΔX A ΔX B ΔX C ⎜ + + A ⎜⎝ k A kB kC
⎞ ⎟ ⎟ ⎠
Δ T C = -q
Δx A kAA Δx B k BA Δx C k CA
Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
ro
CONDUCTION IN CYLINDRICAL OBJECTS dr
Fourier’s law in cylindrical coordinates
qr
= - kA
dT
Integrating g g: q r dr
dr
qr = -k 2 π r L
dT dr
Boundary Conditions : T = Ti
at
r = ri
T = To
at
r = ro
2πL
∫
ri
o
r
ri
= −k
∫
To dT Ti
ro To Ln r = − kT T 2πL ri i 2π Lk(T i − T o ) q = ⎛r ⎞ ln ⎜ o ⎟ ⎜ r ⎟ ⎝ i⎠ q
Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
8
Pindah Panas
8/24/2011
COMPOSITE CYLINDRICAL TUBE r3 r1
Ti
r2
To
FROM FOURIER’S LAW:
qr =
2πLk(Ti − To ) ⎛r ⎞ ln⎜ o ⎟ ⎜ ri ⎟ ⎝ ⎠
Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
A =? Let us define logarithmic mean area Am such that
q r = kA m where A m
( Ti − To ) (ro − ri ) (ro − ri ) = 2π L ⎛r ⎞ ln ⎜⎜ o ⎟⎟ ⎝ ri ⎠
q (r − r ) Ti − To = r o i kA m
Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
r1
Ti
r3
r2
To
T1 − T 2 = T 2 − T3 =
q r (r 2 − r1 ) (kA
m
) 12
q r (r3 − r2 ) (kA
m
) 23
adding above two equations ( T1 − T 3 ) qr = ⎛ Δr ⎞ ⎛Δ r ⎞ ⎜ ⎟ +⎜ ⎟ ⎜ kA ⎟ ⎜ kA ⎟ m ⎠ 12 m ⎠ ⎝ ⎝ 23
9
Pindah Panas
8/24/2011
Convection Heat Transfer • Transfer of energy due to the movement of a heated fluid • Movement of the fluid (liquid or gas) causes transfer of heat from regions of warm fluid to cooler regions in the fluid • Natural Convection occurs when a fluid is heated and moves due to the change in density of the heated fluid • Forced Convection occurs when the fluid is moved by other methods (pumps, fans, etc.)
Purwiyatno Hariyadi/ITP/Fateta/IPB
CONVECTIVE HEAT TRANSFER : heat transfer to fluid q
Ta < Ts
Surface area = A
Ts
q = h A(Ts - Ta) q = rate of heat transfer h = convective heat transfer coefficient, W/m2.oC Ts= surface temperature Ta= surrounding fluid temperature Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
10
Pindah Panas
8/24/2011
Natural Convection
Colder fluid (higher (hi h d density) it )
Fluid absorbs heat (temperature increase: density decrease)
PH/TPG/Fateta/IPB
HEAT TRANSFER TO FLUID (Forced Convection)
FLUID FLOW IN A PIPE Fluid flow can occur as - laminar flow - turbulent flow - transition between laminar and turbulent flow - direction of flow …..> parallel or perpendicular to the solid object
Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
11
Pindah Panas
8/24/2011
HEAT TRANSFER TO FLUID……………> h? q = h A (Ts - Ta) y, velocity, y, diameter,, viscosity, y, specific p h = f ((density, heat, thermal conductivity, viscosity of fluid at wall temperature
The convective heat transfer coefficient is determined by dimensional analysis. A series of experiment are conducted to determine relationships between following dimensionless numbers.
Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
HEAT TRANSFER TO FLUID……………> h? Dimensionless Numbers In Convective Heat Transfer Nusselt Number = Nnu = (hD)/k Prandtl Number = NPr = μCp/k Reynolds Number = Re = (ρ (ρvD)/ vD)/μ μ Where D = characteristic dimension k = th thermall conductivity d ti it off fluid fl id v = velocity of fluid Cp= specific heat of fluid ρ= density of fluid μ= viscosity of fluid Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
12
Pindah Panas
8/24/2011
HEAT TRANSFER TO FLUID
….>
FORCED CONVECTION
Nnu = f (NRe, NPr) Laminar flow in pipes: If NRe<2100 For
(NRe R x NPr P x D/L) < 100
N Nu
D 0.14 0.085⎛⎜ NRe xNPr x ⎞⎟ ⎛ ⎞ L μ ⎠ ⎜ b⎟ ⎝ = 3.66 + 0.66 D ⎞ ⎜⎝ μ w ⎟⎠ ⎛ 1 + 0.045⎜ NRe xNPr x ⎟ L⎠ ⎝
For (NRe x NPR x D/L) > 100
N Nu
D⎞ ⎛ = 1.86⎜ N RE xN PR x ⎟ L⎠ ⎝
0.33
⎛μ ⎞ ⎜⎜ ⎟⎟ w μ ⎝ ⎠
0.14
All physical properties are evaluated at bulk fluid temperature, except μw (viscosity at the wall) Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
HEAT TRANSFER TO FLUID
….>
FORCED CONVECTION
Transition Flow in Pipes Æ NRE between 2100 and 10,000: Æ use chart to determine h : Æ diagram J Colburn factor (J) vs Re. 2
Æ
⎛ h ⎞ ⎛ Cp. Cp μ ⎞ 3 ⎛ μ w ⎟⎟ ⎜ ⎟ ⎜⎜ J = ⎜⎜ ⎝ ρCpV ⎠ ⎝ k ⎠ ⎝ μ
⎞ ⎟⎟ ⎠
0.14
Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
13
Pindah Panas
8/24/2011
HEAT TRANSFER TO FLUID
….>
FORCED CONVECTION
Turbulent Flow in Pipes: ………….> NRE > 10,000:
N NU = 0.023 N
0.33 Pr
⎛μ x ⎜ μw ⎜ ⎝
⎞ ⎟⎟ ⎠
0.14
Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
HEAT TRANSFER TO FLUID
….>
FREE CONVECTION
Free convection involves the dimensionless number called Grashof Number, NGr N Gr
=
(d
3
2
ρ gβ Δ T µ
2
hD N Nu
= a(N
= k
)
N Gr
m
) Pr
d= Dimension of the system; ρ= density; β = koeff ekspansi volumetrik (koef muai volumetrik; 1/K); µ=viscosity; µ=viscosity; g= gravity a and m = constant
Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
14
Pindah Panas
8/24/2011
HEAT TRANSFER TO FLUID N
hD Nu
= k
= a(N G r N Pr )
….>
FREE CONVECTION
m
V l off a and Value d m =f(physical f( h i l configuration) fi ti ) Vertical surface D=vertical dim. < 1 Horizontal cylinder D = dia < 20 cm
Horizontal flat surface Facing Upward Facing downward
mNGrNPr<104
a=1.36
m=1/5
NGrNPr<10-5 10-5
a=0.49 a=0.71 a=1,09
m=0 m=1/25 m=1/10
105< NGrNPr<2x107 a=0.54 2x107< NGrNPr<3x1010 a=0.14 3x105< NGrNPr<3x1010 a=0.27
m=1/4 m=1/3 m=1/4
Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
Equations for calculating heat transfer coefficient (h) in free convection from water to air (Toledo, p. 271, Table 7.3) Kondisi p permukaan Silinder horisontal yang dipanaskan/didinginkan Fluida di atas plate horizontal yang dipanaskan
Persamaan
Nilai untuk C Udara/Uap
Air
h = C(ΔT/D)0.25
1.3196
291.1
h = C(ΔT)0.25
2.4492
…. dst dt
Purwiyatno Hariyadi/ITP/Fateta/IPB
15
Pindah Panas
8/24/2011
HEAT TRANSFER TO FLUID……………> U? Temperature profile : conductive and convective heat transfer through a slab T1 Ta
hi
ho
T2
Tb
Q = UA(Ta-Tb) where U = Overall heat transfer coefficient [=] W/m2C Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
HEAT TRANSFER TO FLUID……………> U? T1 Steady State : Ta qi = qx =qo=q
q = UA(Ta-Tb) qi=q=hiA(Ta-T1) =q=kA(T1--T2)/Δ T2)/Δx qx=q=kA(T1
hi
qo=q=hoA(T2-Tb)
ho
T2
Tb
Ta-Tb = (Ta-T1)+(T1-T2)+(T2-Tb) q = q + qΔ x + q U A hiA kA h OA 1 = 1 + Δx + 1 U hi k hO
Atau, umum :
1 U iA
= i
1 + Δx + 1 hiA i kA lm h O A
O
Ai=Alm=Ao=A Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
16
Pindah Panas
8/24/2011
HEAT TRANSFER TO FLUID……………> U? T1 Ta r2 Ta r1
Surrounding fluid temp; Tb < Ta 1 = 1 + Δr + 1 U hi k hO
1 U iA
Atau, umum :
hi
ho
=
1 + Δr + 1 hiA i kA lm h O A
i
Alm =
Tb
T2
O
Ao - Ai Ao ln Ai
Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
HEAT TRANSFER TO FLUID……………> U? ri = r1= inside radius of cylinder r1
Ti
r2
r3
ro= r3= outside radius of cylinder hi = inside heat transfer coefficient ho = outside heat transfer coefficient
To
Calculating U based on outside radius of cylinder: 1 U
=
1 + roln(r2/r1) + roln(r3/r2) r r ln(r /r ) + …+ o n n-1 + o ho k1 r Kn-1 k2 i hi
Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
17
Pindah Panas
8/24/2011
Contoh soal • Hitung heat flux (q/A) yang melewati glass pane yang terbuat dari lapisan gelas dengan ketebalan 1.6 mm yang dipisahkan oleh 0.8 mm lapisan insulator. Koefisien pindah panas pada sisi yang satu pada 21oC adalah 2.84 W/m2K dan pada sisi yangg lain bersuhu -15oC adalah 11.4 W/m2K. y Konduktivitas panas gelas adalah 0.52 W/mK dan pada lapisan udara adalah 0.031 W/mK.
Jawab:
1.6mm 0.8mm 1.6mm
h1 = 2.84 W/m2K
T1 = 21oC
h2 = 11.4 W/m2.K h1
h2 T2= -15oC
k1
k2
k1 = 0.52 W/mK k2 = 0.031 W/mK
k1
Heat flow
Terdapat 5 hambatan yang dialami selama proses pindah panas: 2 konveksi, 3 konduksi
1/U = 1/h1 + x1/k1 + x2/k2 + x3/k3 + 1/h2 1/U = 1/2.84 + 1.6 x 10-3/0.52 + 0.8x10-3/0.031 + 1.6x10-3/0.52 + 1/11.4 = 0.352 + 0.0031 + 0.0258 + 0.0031 + 0.0877 = 0.4718 U = 2.12 W/m2K q/A = U ΔT = 2.12 (21-(-15) = 76.32 W/m2
Purwiyatno Hariyadi/ITP/Fateta/IPB
18
Pindah Panas
8/24/2011
Soal 2 • Hitung overall heat transfer coefficient (U) untuk heat exchanger dengan koefisien pindah panas 568/m2K di bagian dalam dan 5678 W/m2K di bagian luar. Dinding tube mempunyai konduktivitas panas (k) 55.6 W/mK. Tube mempunyai p y diameter dalam 2.21 cm dan ketebalan 1.65 mm. Jika suhu fluida di dalam tube 80oC dan di luar 120oC, hitung juga suhu pada dinding tube sebelah dalam.
ro = 1.2701 cm
(a) Menghitung U: T1 = 80oC
ri = 1.105 cm
hi = 568 W/m2K ho = 5678 W/m2.K k = 55.6 W/mK
T2 = 120oC
ri = 2.21/2 = 1.105 cm ro = 1.105 + 0.1651 = 1.2701 cm Terdapat 3 hambatan yang dialami selama proses pindah panas melalui heat exchanger: 2 konveksi, 1 konduksi 1/U = ro/rihi + + ro ln(ro/r1)/k + 1/ho 1/U =
1.2701x10-2/[(1.105x10-2)(568)]
+ 1.2701x10-2 ln(1.2701x10-2/1.105x10-2)/55.6 + 1/5678
= 20.236x10-4 + 0.318x10-4 + 1.76x10-4 = 22.315x10-4 U = 448 W/m2K
Purwiyatno Hariyadi/ITP/Fateta/IPB
19
Pindah Panas
8/24/2011
(b) Suhu pada dinding tube sebelah dalam: q(overall) = q (yang melewati konveksi) = q (melewati konduksi) L t Tf = suhu Let: h fluida fl id di dalam d l tube; t b Tw = suhu h pada d dinding di di tube) t b ) UAoΔT = hiAi(Tw – Tf) 448(2πroL)(120-80) = 568(2πr1L)(Tw-80) (Tw – 80) = 448(ro)(40)/568(r1) = 80 + 448(1.2701)(40)/568(1.105) 448(1 2701)(40)/568(1 105) = 80 + 36.3 = 116.3oC
Uap panas 125oC, hi = 11400 W/m2K
PR…. Ke dalam sebuah pipa baja berinsulasi (ID=0.04089 m; OD=0.04826 m)) dialirkan uapp air (125oC, hi=11400 W/m2K). Ketebalan insulator adalah 5 cm (k2=0.1 W/mK). Diketahui baja memiliki k1=45 W/mK, koefisien pindah panas di lingkungan/luar pipa (ho) adalah 6 W/m2K, dan suhu lingkungan g g 20oC. Hitunglah g nilai U dan panas yang berpindah ke lingkungan (Q=UAΔT)).
Purwiyatno Hariyadi/ITP/Fateta/IPB
r3 Ti k1 k2
r1
r2
Lingkungan (To=20C ho=6 W/m2K)
Baja Insulator
20
Pindah Panas
8/24/2011
Soal 3 • Air mengalir dengan laju 0.02 kg/s di dalam pipa penukar panas horizontal (ID= 2.5 2 5 cm, cm k=0.633 W/moC), dan dipanaskan dari 20oC menjadi 60oC (µair 658.026x10-6 Pas dan µw = 308.909x10-6 Pas). Suhu permukaan dalam pipa adalah 90oC. Perkirakan koefisien pindah panas (h) pada permukaan dalam pipa yang panjangnya 1 m. Cp air = 4175 J/kgoC
Jawab Soal 3 •
• •
Air mengalir pada pipa horizontal, berarti ada proses pemompaan (forced convection). Maka h akan dipengaruhi nilai NRe, NPr, D/L. NRe untuk t k Newtonian N t i fluida: fl id Re R = ρDV/µ DV/ Diketahui : µair = 658.026x10-6 Pas; µw = 308.909x10-6 Pas; Cp air = 4175 J/kgoC D = 2.5 cm = 2.5x10-2 m laju masa (ṁ) = 0.2 kg/s, L pipa = 1 m v (m/s) = ṁ (kg/s) /ρ(kg/m3)(π(D/2)2 (m2), maka = NRe = 4ρD(ṁ/ρπD2 µ) = 4ṁ/πµD = 4(0.02)/π (658.026x10-6)(2.5x10-2) = 1457.9 (Laminar) NPr = µCp/k = (658.026x10-6)(4175)/(0.633) = 4.34 D/L = 2.5x10-2/1 = 2.5x10-2
•
Maka NRe x NPr x D/L = 1457.9 x 4.34 x 2.5x10-2 = 168 (>100)
•
Maka gunakan persamaan empiris: Nu = 1.86(NRexNPrxD/L)0.33 (µ/µw)0.14= Nu = 1.86(1547.9x4.34x2.5x10-2)0.33(658.026x10-6/308.909x10-6) = 93 Nu = hD/k = 93 = 2.5x10-2/0.633 Æ h = 2355 w/m2C
• •
Purwiyatno Hariyadi/ITP/Fateta/IPB
21
Pindah Panas
8/24/2011
PR… • Hitung berapa nilai h, h bila kecepatan aliran dinaikkan menjadi 1.5 kg/s
Soal 3 • Hitunglah tu g a kecepatan ecepata kehilangan e a ga panas pa as kee lingkungan dari pipa baja (ID=0.04089 m) berisi uap pada suhu 130oC. Koefisien konveksi (h) pada sisi uap adalah 11400 W/m2K dan di luar pipa ke udara adalah 5.7 W/m2K. Suhu lingkungan ratarata 15oC, konduktivitas panas (k) dinding pipa baja adalah 45 W/mK. • Bila Bil pipa i diberi dib i hambatan h b t (insulator) (i l t ) setebal t b l 5 cm yang memiliki k=0.07 W/mK (h uap dan udara seperti di atas), berapa energi yang dapat diselamatkan?
Purwiyatno Hariyadi/ITP/Fateta/IPB
22
Pindah Panas
8/24/2011
TRANSIENT (UNSTEADY UNSTEADY--STATE) STATE) HEAT TRANSFER
Purwiyatno Hariyadi/ITP/ Hariyadi/ITP/Fateta Fateta/IPB /IPB
PH/TPG/Fateta/IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
23
Pindah Panas
8/24/2011
PH/TPG/Fateta/IPB
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER Boiling water 100oC Solid food material Ts,initial=35oC
r
Change in temperature?? Ts = f(t,r)
Purwiyatno Hariyadi/ITP/Fateta/IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
24
Pindah Panas
8/24/2011
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
z Importance of internal and
Boiling water 100oC
external resistance to heat transfer relative importance of conductive and convective heat transfer
r
Biot number, NBi = hD/k NBi =
or NBi =
D/k 1/ h
Internal resistance to heat transfer External resistant to heat transfer
Purwiyatno Hariyadi/ITP/Fateta/IPB
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
z Negligible internal resistance ………….>N Bi
< 0.1
q = ρ V Cp dT/dt = h A (Ta - T)
dT ∫ Ta - T =
hAdt ∫ ρ CpV
t T
ln(T
a
− T) = Ti
Ta - T
=e
h At
ρ C pV 0 - (h A/ ρ Cp V) t
Ta - To Purwiyatno Hariyadi/ITP/Fateta/IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
25
Pindah Panas
8/24/2011
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
z Finite Surface and Internal Resistance To Heat Transfer ………….>
0.1
………..>
m=1/NBi
z Negligible Surface Resistance To Heat Transfer ………….> NBi > 40 ………..> m=1/NBi = 0 Infinite Slab, infinite cylinder and sphere Use GurnieGurnie-Lurie Chart and/or Heisler Chart …………> temperaturetemperature-time (T(T-t) chart Dimensionless number : Fourier number (NFo) N Fo =
kt 2 ρ C pD
=
α t D2
D = characteristic dimension Dsphere = radius Dinf cylinder = radius Dinf slab = half thickness
Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
The physical meaning of Fourier Number :
1 k ⎛⎜ ⎞⎟D 2 D αt N Fo = 2 = ⎝ ⎠ 3 D ⎛ ρ Cp D ⎞ ⎜ ⎟ ⎜ ⎟ t ⎝ ⎠ NFo =
Rate of heat conduction
across D in volume D 3 (W/C)
Rate of heat storage in volume D 3
(W/C)
Large value of NFo indicates deeper penetration of heat into solid in a given period of time
Purwiyatno Hariyadi Hariyadi/ITP/ /ITP/Fateta Fateta/IPB /IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
26
Pindah Panas
8/24/2011
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER Prosedur pengunaan diagram TT-t 1. Untuk silinder tak berbatas R ∞Suhu pusat (sumbu) silinder setelah pemanasan selama t? a. hitung NFo, gunakan R sebagai D b. hitung NBi, gunakan R sebagai D ………> hitung 1/NBi=m=k/hD c. gunakan diagram untuk silinder tak berbatas, dari NFo dan NBi cari ratio T Purwiyatno Hariyadi/ITP/Fateta/IPB
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
1/Nbi = m
NFo
Diagram T-t : hubungan antara suhu di sumbu silinder dan NFo Purwiyatno Hariyadi/ITP/Fateta/IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
27
Pindah Panas
8/24/2011
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER 2. Untuk lempeng tak berbatas ketebalan, X = 2D lebar = ∞; panjang =∞ =∞ Tebal=X
Suhu di tengah (midplane) lempeng tak berbatas setelah pemanasan selama t ?? a. hitung NFo, gunakan (1/2)X sebagai D b. hitung NBi, gunakan (1/2)X sebagai D ………> hitung 1/NBi c. gunakan diagram untuk lempengtak berbatas, dari NFo dan NBi cari ratio T Purwiyatno Hariyadi/ITP/Fateta/IPB
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
Diagram T-t : hubungan suhu di “midplane” lempeng tak berbatas dan NFo Purwiyatno Hariyadi/ITP/Fateta/IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
28
Pindah Panas
8/24/2011
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
Diagram T-t : hubungan antara suhu di pusat bola dan NFo Purwiyatno Hariyadi/ITP/Fateta/IPB
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER Diagram Gurnie-Lurie untuk LEMPENG : 1. Menentukan suhu setelah pemanasan/pendinginan • cari nilai NFo=αt/δ2 • cari nilai Nbi dan m=1/Nbi • tentukan posisi dimana suhu ingin diketahui, n = x/δ • cari ratio suhu 2. Menentukan waktu pemanasan/pendinginan untuk mencapai suhu ttt • cari rasio suhu suhu, pada posisi ttt yang diketahui, n = r/R • cari nilai NBi dan m=1/Nbi • cari NFo= αt/δ2; dan hitung t
Purwiyatno Hariyadi/ITP/Fateta/IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
29
Pindah Panas
8/24/2011
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER Diagram Gurnie-Lurie untuk SILINDER : 1. Menentukan suhu setelah pemanasan/pendinginan • cari nilai NFo=αt/R2 • cari nilai Nbi dan m=1/Nbi • tentukan posisi dimana suhu ingin diketahui, n = r/R • cari ratio suhu 2. Menentukan waktu pemanasan/pendinginan untuk mencapai suhu ttt • cari rasio suhu, pada posisi ttt yang diketahui, n = r/R • cari nilai Nbi dan m=1/Nbi • cari Nfo =αt/R2; dan hitung t Purwiyatno Hariyadi/ITP/Fateta/IPB
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER Diagram Gurnie-Lurie untuk BOLA : 1. Menentukan suhu setelah pemanasan/pendinginan • cari nilai NFo=αt/R2 • cari nilai Nbi dan m=1/Nbi • tentukan posisi dimana suhu ingin diketahui, n = r/R • cari ratio suhu 2. Menentukan waktu pemanasan/pendinginan untuk mencapai suhu ttt • cari rasio suhu, pada posisi ttt yang diketahui, n = r/R • cari nilai Nbi dan m=1/Nbi • cari Nfo =αt/R2; dan hitung t Purwiyatno Hariyadi/ITP/Fateta/IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
30
Pindah Panas
8/24/2011
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER Diagram Gurnie-Lurie :(Toledo)
Purwiyatno Hariyadi/ITP/Fateta/IPB
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
Purwiyatno Hariyadi/ITP/Fateta/IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
31
Pindah Panas
8/24/2011
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
Purwiyatno Hariyadi/ITP/Fateta/IPB
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
Finite object ….> finite slab (bentuk bata, panjang=l, lebar=w, tinggi=h) ⎛T T⎞ ⎛T T⎞ ⎛T T⎞ ⎛T T⎞ ⎜⎜ a − ⎟⎟ = ⎜⎜ a − ⎟⎟ x ⎜⎜ a − ⎟⎟ x ⎜⎜ a − ⎟⎟ ⎝ Ta − Ti ⎠Finite⎝ Ta − Ti ⎠Inf. Slab ⎝ Ta − Ti ⎠ Inf slab, ⎝ Ta − Ti ⎠ Inf slab, l
slab,, l,w,h
w
h
length depth
width Purwiyatno Hariyadi/ITP/Fateta/IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
32
Pindah Panas
8/24/2011
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
Finite object …….> finite slab (bentuk (bentuk kaleng, jarijari-jari=R, tinggi=h)
Infinite cylinder, radius R Infinite slab, thickness=h
⎛ Ta − T ⎞ ⎜⎜ ⎟⎟ T T − ⎝ a i⎠
=
⎛ Ta − T ⎞ ⎜⎜ ⎟⎟ T T − ⎝ a i⎠
Finite cylinder R, h
x
⎛ Ta − T ⎞ ⎜⎜ ⎟⎟ T T − ⎝ a i ⎠Infinite slab (h)
Infinite cylinder R
Purwiyatno Hariyadi/ITP/Fateta/IPB
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER Penentuan posisi pada benda berbatas ? Lokasi : tengah tutup kaleng - ditengah silinder : n=0 - dipermukaan lempeng: n=1
R
δ
r= 1/2R
X=1/2δ
X? Lokasi x - n silinder = r/R=1/2 - n lempeng = x/δ x/δ = 1/2
Purwiyatno Hariyadi/ITP/Fateta/IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
33
Pindah Panas
8/24/2011
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER CONTOH SOAL Apel didinginkan dari suhu 20oC menjadi 8oC, dengan menggunakan air dingin mengalir (5oC). Aliran air dingin ini memberikan koef. Pindah panas konvensi sebesar 10 M/m2.K. Asumsikan apel sebagai bola dengan diamater 8 cm. Nilai k apel = 0.4 W/m/K, Cp apel apel= 3.8 kJ/kg.K dan densitasnya=960 kg/m3. Untuk pusat geometri apel mencapai suhu 8oC, berapa lama harus dilakukan pendinginan? Jawab : 1. Cek NBi ;
apakah nilainya <0.1? 0,1
40??
NBi= (hR/k)=1 …………> 0.1
Purwiyatno Hariyadi/ITP/Fateta/IPB
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER 2. Hitung rasio suhu yang dikehendaki : (Ta-T)/(Ta-Ti) = (58)/(5-20) = 0.2
θ=0.2
3. Posisi? Di pusat geometri Æ n=0 4. Cari nilai NFo, dan tentukan t n=0
m=1
NFo=αt/R2=0.78
NFo=αt/R2=0.78 t = 0.78R 0 78R2/α / 2 t = 0.78R /[k/(ρ.Cp)] t = 0.78(0.04)2/[0.4/(960)(3800)] t = 11,381 s t = 3.16 h
Purwiyatno Hariyadi/ITP/Fateta/IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
34
Pindah Panas
8/24/2011
PH/TPG/Fateta/IPB
PH/TPG/Fateta/IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
35
Pindah Panas
8/24/2011
PH/TPG/Fateta/IPB
PH/TPG/Fateta/IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
36
Pindah Panas
8/24/2011
PH/TPG/Fateta/IPB
PH/TPG/Fateta/IPB
Purwiyatno Hariyadi/ITP/Fateta/IPB
37
Pindah Panas
8/24/2011
PH/TPG/Fateta/IPB
Selesai ….………. NEXT Heat Exchangers
Purwiyatno Hariyadi/ITP/Fateta/IPB
38
Pindah Panas
8/24/2011
Soal 3 • Hitung laju kehilangan panas (q) dari sebuah retort horizontal dengan diameter dalam 1.524 m dan panjang 9.144 m. Uap di dalam retort bersuhu 121oC. Udara luar bersuhu 25oC. Retort dibuat dari baja (k = 42 W/mK) dan mempunyai ketebalan 0.635 m.
Jawaban Soal 3 • Diketahui Diketahui, udara melewati silinder horisontal, maka h = 1.3196(ΔT/Do)0.25
Purwiyatno Hariyadi/ITP/Fateta/IPB
39
Pindah Panas
8/24/2011
Soal 3 • Hitung overall heat transfer coefficient (U) untuk saus tomat (densitas 995 kg/m3, viskositas 0.676 Pas) yang dipanaskan dari suhu 20oC ke 80oC dalam stainless steel tube dengan panjang 5 m dengan inside diameter 1.034 cm dan ketebalan 2.77 mm. Uap p panas p di luar tube bersuhu 120oC. Koefisien pindah panas steam di dalam tube 6000 W/m2K. Laju aliran (v) adalah 0.1 m/s.
Soal 3 • Hitung tu g nilai a koefisien oe s e ppindah da panas pa as (h) ( ) dan da overall ove a heat eat transfer coefficient (U) untuk saus tomat (densitas 995 kg/m3, n=0.34 dan K= 10.42 Pas; equivalent Newtonian viscosity (µ)= 0.5 Pa.s, µw= 0.45 Pa.s, panas jenis=3817 J/kg.K) yang dipompa dan dipanaskan dalam stainless steel tube. Saus masuk pada suhu 20oC dan keluar pada suhu 80oC. Stainless steel tube berdimensi panjang 5 m, inside diameter 1.034 cm, dan ketebalan 2.77 mm, konduktivitas panas (k) tube wall 17.3 W/mK. Uap panas di luar tube bersuhu 120oC. Koefisien pindah panas steam di dalam tube 6000 W/m2K. Laju aliran rata-rata (v) adalah 0.1 m/s.
Purwiyatno Hariyadi/ITP/Fateta/IPB
40
Pindah Panas
8/24/2011
Jawaban Soal 3 n 8 ( v ) 2 -n ( R ) ρ
• •
Dipompa, berarti forced convection Reynolds Number:
• • •
NRe = 8(0.1)2-0.34+(1.034x10-2)0.34*995 = 11.02 (Laminar) 10.42 [(3*0.34+1)/0.34]0.34 Prandtl Number = NPr = μCp/k = 0.5*3817/17.3 = 110.3 D/L = 1.034E-2/5 = 0.02
•
Maka: (NRe x NPr x D/L) = 11 11.02 02 * 110.3 110 3 * 0.02 0 02 = 24.31 24 31 < 100
•
0 . 085 Maka, N = 3. 66 + Nu
⎛⎜ ⎝ N
NRe =
D ⎞ xN x ⎠ Re Pr L
D ⎛ 1 + 0 . 045 ⎜N xN x ⎝ Re Pr L
0.66 ⎞ ⎟ ⎠
⎡ 3 n + 1⎤ K⎢ ⎣ n ⎥⎦
⎛ μ ⎞ b ⎟ ⎜ ⎜ ⎟ ⎝ μ w ⎠
n
0 .14 = (hD)/k
h = ….
Overall heat transfer coeffiecient: 1/U = ro/rihi + + ro ln(ro/r1)/k + 1/ho Maka : U???
PR…..
Purwiyatno Hariyadi/ITP/Fateta/IPB
41