MATEMATICKÁ OLYMPIÁDA pro žáky základních škol a nižších ročníků víceletých gymnázií 63. ROČNÍK, 2013/2014 http://math.muni.cz/mo
Milí mladí přátelé, máte rádi zajímavé matematické úlohy a chtěli byste si v jejich řešení zasoutěžit? Jestliže ano, zveme vás k účasti v matematické olympiádě (MO). Soutěž je dobrovolná a nesouvisí s klasifikací z matematiky. Mohou se jí zúčastnit žáci 5. až 9. ročníků základních škol a žáci jim odpovídajících ročníků víceletých gymnázií vždy ve svých kategoriích. Podrobnější rozdělení uvádí následující tabulka. ročník kategorie ZŠ 8leté G 6leté G 9 4 2 Z9 8 3 1 Z8 7 2 – Z7 6 1 – Z6 5 – – Z5
Se souhlasem svého učitele matematiky můžete soutěžit i v některé kategorii určené pro vyšší ročník nebo v některé kategorii A, B, C, P, které jsou určeny pro studenty středních škol. Soutěžní úlohy pro kategorie A, B, C, P jsou uveřejněny v letáku Matematická olympiáda na středních školách. Průběh soutěže Soutěž v jednotlivých kategoriích probíhá ve dvou nebo ve třech kolech. Kategorie Z9 má školní, okresní a krajské kolo. Kategorie Z8, Z7, Z6 a Z5 mají školní a okresní kolo. Školní kolo: V tomto vstupním kole soutěže, organizovaném na školách, řeší žáci ve svém volném čase (doma) šest úloh uveřejněných v tomto 1
letáku. Do soutěže budou zařazeni žáci, kteří odevzdají svým učitelům matematiky řešení alespoň čtyř úloh. Všem soutěžícím však doporučujeme, aby se snažili vyřešit všechny úlohy, protože v dalším průběhu soutěže mohou být zadány podobné úlohy. Řešení úloh odevzdávejte svým učitelům matematiky v těchto termínech: Kategorie Z5, Z9: první trojici úloh do 25. listopadu 2013 a druhou trojici úloh do 6. ledna 2014. Kategorie Z6 až Z8: první trojici úloh do 6. ledna 2014 a druhou trojici úloh do 17. března 2014. Vaši učitelé úlohy opraví a ohodnotí podle stupnice 1 – výborně, 2 – dobře, 3 – nevyhovuje. Pak je s vámi rozeberou, vysvětlí vám případné nedostatky a seznámí vás se správným, popřípadě i jiným řešením. Úspěšnými řešiteli školního kola se stanou ti soutěžící, kteří budou mít alespoň u čtyř úloh řešení hodnocena výborně nebo dobře. Práce všech úspěšných řešitelů kategorií Z6 až Z9 zašle vaše škola okresní komisi MO. Ta z nich vybere nejlepší řešitele a pozve je k účasti v okresním kole soutěže. Výběr účastníků v kategorii Z5 provádějí po dohodě s okresní komisí MO školy, které okresní kolo pořádají (viz níže). Okresní kolo se uskuteční pro kategorii Z9 22. ledna 2014, pro kategorii Z6 až Z8 9. dubna 2014, pro kategorii Z5 22. ledna 2014. Okresní kolo pro kategorie Z6 až Z9 se pořádá zpravidla v okresním městě, v kategorii Z5 okresní kolo probíhá na několika školách okresu pověřených pořádáním. Žáci pozvaní do okresního kola kategorie Z9 budou řešit samostatně v průběhu 4 hodin 4 soutěžní úlohy. Pozvaní žáci kategorií Z6 až Z8 budou samostatně řešit 3 úlohy v průběhu 2 hodin. Pozvaní žáci kategorie Z5 budou samostatně řešit 3 úlohy v průběhu 90 minut. Ve všech kategoriích se řešení úloh obodují a podle součtu získaných bodů se sestaví pořadí účastníků okresního kola. Účastníci, kteří získají předepsaný počet bodů (zpravidla aspoň polovinu z dosažitelných bodů), se stanou úspěšnými řešiteli okresního kola a nejlepší z nich budou odměněni. Krajské kolo pro kategorii Z9 se bude konat 19. března 2014 v některém městě vašeho kraje. Průběh soutěže a její vyhodnocení je stejné jako při okresním kole. Nejlepší účastníci krajského kola jsou vyhlášeni jeho vítězi. 2
Matematickou olympiádu pořádají Ministerstvo školství, mládeže a tělovýchovy, Jednota českých matematiků a fyziků a Matematický ústav Akademie věd České republiky. Soutěž organizuje ústřední komise MO, v krajích ji řídí krajské komise MO při pobočkách JČMF a v okresech okresní komise MO. Na jednotlivých školách ji zajišťují pověření učitelé matematiky. Vy se obracejte na svého učitele matematiky. Pokyny a rady soutěžícím Řešení soutěžních úloh vypracujte čitelně na listy formátu A4. Každou úlohu začněte na novém listě a uveďte vlevo nahoře záhlaví podle vzoru: Karel Veselý 8. B ZŠ, Kulaté nám. 9, 629 79 Lužany okres Znojmo 2013/2014 Úloha Z8–I–3 Řešení pište tak, aby bylo možno sledovat váš myšlenkový postup, podrobně vysvětlete, jak jste uvažovali. Uvědomte si, že se hodnotí nejen výsledek, ke kterému jste došli, ale hlavně správnost úvah, které k němu vedly. Práce, které nebudou splňovat tyto podmínky nebo nebudou odevzdány ve stanoveném termínu, nebudou do soutěže přijaty.
3
Na ukázku uvedeme řešení úlohy z II. kola kategorie Z8 z jednoho z předcházejících ročníků MO: Úloha Z8–II-1. Je dán obdélník s celočíselnými délkami stran. Jestliže zvětšíme jednu jeho stranu o 4 a druhou zmenšíme o 5, dostaneme obdélník s dvojnásobným obsahem. Určete strany daného obdélníku. Najděte všechny možnosti. Řešení. Délky stran obdélníku označíme a, b. Nový obdélník má délky stran a + 4, b − 5. Podle podmínky úlohy pro obsahy obou obdélníků platí 2ab = (a + 4)(b − 5). Postupně upravíme: ab − 4b + 5a = −20 ab − 4b + 5a − 20 = −40 (a − 4)(b + 5) = −40
(Odečteme 20, abychom levou stranu mohli rozložit na součin.)
Řešení najdeme rozkladem čísla −40 na 2 činitele. Přitom musí být a > 0, b > 0, a tedy a − 4 > −4, b + 5 > 5. Jsou dvě možnosti: (−2) · 20 = −40
a
(−1) · 40 = −40.
V prvním případě dostaneme obdélník o stranách a = 2, b = 15 s obsahem S = 30. Nový obdélník pak má strany a′ = 6, b′ = 10 a obsah S ′ = 60, tj. S ′ = 2S. V druhém případě dostaneme obdélník o stranách a = 3, b = 35 s obsahem S = 105. Nový obdélník pak má strany a′ = 7, b′ = 30 a obsah S ′ = 210. Opět je S ′ = 2S.
4
KATEGORIE Z9 Z9–I–1 Petr si myslí dvojmístné číslo. Když tohle číslo napíše dvakrát za sebou, vznikne čtyřmístné číslo, které je dělitelné devíti. Když totéž číslo napíše třikrát za sebou, vznikne šestimístné číslo, které je dělitelné osmi. Zjistěte, jaké číslo si může Petr myslet. (E. Novotná) Z9–I–2 Je dán rovnoramenný lichoběžník s délkami stran |AB| = 31 cm, |BC| = 26 cm a |CD| = 11 cm. Na straně AB je bod E určený poměrem vzdáleností |AE| : |EB| = 3 : 28. Vypočítejte obvod trojúhelníku CDE. (L. Dedková) Z9–I–3 Podlahu tvaru obdélníku o stranách 360 cm a 540 cm máme pokrýt (beze spár) shodnými čtvercovými dlaždicemi. Můžeme si vybrat ze dvou typů čtvercových dlaždic, jejichž strany jsou v poměru 2 : 3. V obou případech lze pokrýt celou plochu jedním typem dlaždic bez řezání. Menších dlaždic bychom potřebovali o 30 více než větších. Určete, jak dlouhé jsou strany dlaždic. (K. Pazourek ) Z9–I–4 V pravoúhelníku ACKI jsou vyznačeny dvě rovnoběžky se sousedními stranami a jedna úhlopříčka. Přitom trojúhelníky ABD a GHK jsou shodné. Určete poměr obsahů pravoúhelníků ABF E a F HKJ. (V. Žádník ) A
B
C
D
F
E
I
J
G
H
K 13
Z9–I–5 Eva řešila experimentální úlohu fyzikální olympiády. Dopoledne od 9:15 prováděla v tříminutových odstupech 4 měření. Získané hodnoty zapisovala do tabulky, kterou si připravila v počítači: hodin
minut
9
15
9
18
9
21
9
24
hodnota
Odpoledne v experimentu pokračovala. Tentokrát provedla v tříminutových odstupech 9 měření a hodnoty zapisovala do podobné tabulky. Omylem do počítače zadala, aby se zobrazil součet devíti čísel z prostředního sloupce. Tento zbytečný výpočet vyšel 258. Která čísla byla v daném sloupci? (L. Šimůnek ) Z9–I–6 V hostinci U Tří prasátek obsluhují Pašík, Rašík a Sašík. Pašík je nečestný, takže každému hostovi připočítá k celkové ceně 10 krejcarů. Rašík je poctivec, každému vyúčtuje přesně to, co snědl a vypil. Sašík je dobrák, takže každému hostovi dá slevu z celkové útraty ve výši 20 %. Prasátka si jsou tak podobná, že žádný host nepozná, které zrovna obsluhuje. Beránek Vendelín si v pondělí objednal tři koláčky a džbánek džusu a zaplatil za to 56 krejcarů. Byl spokojen, takže hned v úterý snědl pět koláčků, vypil k nim tři džbánky džusu a platil 104 krejcary. Ve středu snědl osm koláčků, vypil čtyři džbánky džusu a zaplatil 112 krejcarů. 1. Kdo obsluhoval Vendelína v pondělí, kdo v úterý a kdo ve středu? 2. Kolik krejcarů účtuje Rašík za jeden koláček a kolik za jeden džbánek džusu? (Všechny koláčky jsou stejné, stejně tak všechny džbánky džusu. Ceny uváděné v jídelním lístku se v uvedených dnech neměnily.) (M. Petrová)
14