MUDr. Jiří Kofránek, CSc.
INTEGROVANÉ MODELY FYZIOLOGICKÝCH SYSTÉMŮ
Habilitační práce
! "##$ %!%&! '$ ' #! (! Praha
28. února 2011
ii
)% %*#$(+ *'$+ *#,
--+ !./
#$* (* 0
*#$ (
%
(+ ((+ * , %! # # , -(+ - , -* # 1#
výzkumný grant GAUK 242/1995/C (1995 !"! #$%&')*%&'!+!, .0 . %%&%3$%&')6!+!,0# #!+!,7 7 !+!, .8:+ !+!,0# !+!, !+!, 7
2 ' #% -#
%%&%$%&')!+!,7 *$%&')*%&'!;<8=,>0. 2(#* #! - # $* *$+ + (* , +, * *&, ( $, # +#4 54 !% 6 "##$ %!%&! '$ ' #! (! *( $'(+ ! (+ ! *, # $ (+ %$ $ *#$ %#%(* & 7 89 : &+ +# - (#* $ # * # (+ *&*#$+ ((+ *, *&*#$+ ((+ * , 2(*(* &! !. (* (#* -
! * # --+ &$ %! ' $+ * ! (+ 54(+ -, ; !%(+ (#$+ %& #$ # # --+. -* * < < < - <= 8 < <= < > <& )% > "#- 2 < #$ $ %(* $ + ##$ <+ 9#$ * %( # # < 9 ?%- += *. -* * # ! $ ((+ * , '$ $ ' , + 9 ! ! ;*$* *
( $! #* *$ < @* 1 A' $ # $ ( 2 A #(* .$* ! $ #% ! (* $ (* %* B &$ CD 1-$ %& E )% =8 8 % =8 > F =8 A =8 =8G -. # $ %($ -$$ #& ! $ #% ! #$ H#$-$ % . + +$ + ((+ * , < $ #$ $ # <= :#I JK+ ( # *+ ! # * $ ! %& %!%&! ( - ## &$* '* + (-+ (* - . *+ -+ , *(+ # #$ * # +$ $ <$* *
# <= :#I + L8 ( # ! # * # '$ - C$ E &(+ #,#, * !' G # + -* # *+ (+ # - %& #% "##$ %!%&! '$ ' #! (! MMN ! ?O # $* #$! & **#* *$ # ! P <= 7* ;' =8 %!+ %! #$* -+ #+ # %!! (#! + + ##$ <$* & #
# ! <= )* :* =L ( # + # P# # * #- - 6 $ (+ ((+ * , # 0 (! 2 #$ # $ * #$ # # $* * . Q# * #% ! $ *$ ,'$
iii
iv
Motto: „Snili jsme po léta o instituci nezávis !"#
v
1 Úvod 1 2 Virtuální pacient.....................................................................................................................................2 R 8+ # R /R RR ).! ( *#$!R RS )&( # * , 6 ( *# ! (+ ! *,T RN ' ! (+ $T RN O*( !U RT O*
%
*#$M ! "# $%&%'$ ( %)"*+ S <#$ #% +! # + $ V# !BW SR <#$ #% +!
$+ !, 6! (' ! E$+ SGN SW %*! + $
V*#$B $ 8 4 N SS 2(+#!
(+#! 8 4 $ X SN 1 % $ !
+#$ #% +! # YX ST -$ +
8 4 $ E$+ NGR SX Z'$ -/ #% +! $+
#$ E$+! T
XGRS SU 2!./ %'$+ $
*0$+ *#+ +* ! $+ #$W ", $-/0,345367870( $ 459#:!: S 8* %! - *'$ '! % *#,WU SR 8* + A[8>"?>ZQ9Q[ *#$
! (+ ! *,SN SW 8* @* - ( *, *#! SN SS @* *$ E$+ UGSU SN @* V $* B \ $ -$
'$+ +,NR ST ]* @* \ * *&( *# 8*NT SX 1 8* '$NM SU "# *#
* E$+ MGT^ ;< '( => & ?@ N "# @* '% 6 (# *$ *'$+ +TW NR 8* ! - 4% &$ TW NW 9#% O+ 6 *'$ ( $!
_* 4% * !TT NS 8* !
#$ <5 ;7)TU NN ;(+#! % (+ *'$+ -,X NT "# 8*
<#XT NX <5 70 Z# 6 - % V C(+ B * !U
vi
NU -$ + $ % * , _* 8 + UN NM "# V*$B V,*!B % 4%(+ * , E$+ ^GUX N^ 8*'$ +! J% E$+ GM^ @/ A < B%<%((') '(< C'+!: *D$E?: :5 ? , ++
vii
1 Úvod ) - % *#, ! (+ ! *, --+ &(* $ -* %& %! ((+ * , 1 (#* *(+ *+ (+ / '
*(* # #! %& )% * *&(+ *#, ! (+ ! *, %(* #+#% $* ** %! +#( ' 9L @! $, E@! L* @# MXRG ( -* - #
#$+ '$ *#$! +# ;#$
+ F * # %(
$ %++ ! * 2# * +* ' * +#! * (+ !*%, )0
( ' %! %! * +( ' - ! '! ' (+ + %, '$ -$ F -* +
E00 %! +#! %.(G *$, -* *
+#! +# +* # -* + . ! +# - %! - %'! #'! * ! ! '$ %! +. * *&! -$ +# ! ! (+ ' 9 +* !-#- #! +! -$$ %+( ! * # $ %! *! E- - +!% #! * -# (* ##$! $+ &G O /* . ! *,. %(
-$* - . ( #!*( - * .$* * +$ -+ +$ *,.* !.$
'$ ' -* ' - %(
(* %*! !%&! * *&! (' $ +! < -* / . +#- $ O %+ $ + *$ & ! $# A!%#$ (' $ % !% #% '(* *(* +!%#$* '$ '* # C*! 79> ; ! -* # + ( %*& !%&! %( ( *(* C$* * * E . #,# &(+ , * ' G =+(* *(* ' * %! #JK+ ( . %!%& ##$ !
)* * * # '$ %! *# #% +! E 1 MU^G (
$ * +( *# +* ! $+ #$E ( JK+ Z# @#. ` 2 MUR6a Z# ` @#. MUSa @#. ( ` Z# MUXG 2 *# (+ + -* % +(+ *#, ! (+ ! *, ! < )% E #$ + + -* *+ #
. UMG * +#- $+ + *+ (* -* ! *#! ! (+ ! *, ( # +$ #+ * %/. E2 MUXG :%( -* %*& !./ *'$+ *#, !+#$ 6! (+ #
E < ] # $ MUUG !./* *#, ! $ *+*, ! (+ $ ! $ *+*, + ! $ E< ` R^^S R^^NG A$ %/ *+ -* , %*& &$ ! *-$$ & * -# (* ! (* ! *! # *#$ - #$* * #(* #* *.I-$$* !
(* $ -# (+ '$+ +, * 9%! (#! & %!! - %+* #(+ %$ # !
* # *+ %(
* . ' - # ,* *#$!
(* ,* -* ! $ ((+ *, %! *$ *'$+ + #! +$ #!*(+ / #*
** * 2!%# -* *%( ,'$ (* "##$ %!%&! '$ ' #! (! ! ?O 1* * # #, E% , ! * *& !$ ! + ! F2)G %+ Z*#$ *& O! ! ' # $* O + F2) :I - #$ ( $, 8 #$ * ! $ #% 2 A # '$* #*
V"#$ & !B
1
! " #" $! 6 '$ *#
-$ *#$ * #! '$ ( #! - V 6%!6# B # *-$ $ *'$ +! 8*'$ + - *. %
+$ *+ %- \
$* #* % $# (+ * , '
$+ '
+$ -# (+ ! (+ %! *, -* ! $ . (+ +, &$ '$ &(+ ##/ $ &(+ / 2 -$ *&*#$+ ((+ + # (! +$ *#$ $ # 1 9* *+ V8+ ?#B \ - V +B EL* TNTG ( # -. X / 8*'$ +! ( *#$! -
* * %$#! #! *'$+ C*2# *'$+ * , -$
! ( " # " $%. ) $# * 7L@* E+c dd444 * dG *.I- #
% $$ + *+ # #
*+* 7@ ,(+ $ E " * ` " # R^^SG ) %+ ! *+ # ,(+ $+ *.I- #
* # L*% ! E+c dd444*%#d d+d*#d+ *G EZ+e ` = R^^WG 8* ! (+ $ -, ! O# *.I-$ #
$* E+c dd* f#dG $+ !, #% * ! - * * * "89 E"0! 8 9 +*G '+ ( 0 E8 #69# < ` 8 #69# " MMNG E+c dd444 #6##G. F
(+ $/ *.I- #
*'$ * ;7Q"; [ ! E+c dd 444!#G gNRXh EA ` L R^^ L ` A R^^TG 2(( * 9>=9 E+c dd444R# dG *#- $+ #%&+ *.I- #
#$ ,(+ #+, #* $-* ! i( * %* EQ# ` ?+* R^^N ?+* ) Z# R^^XG 1#$* (#, + P$ %& - ( & # # ( - # *&*#$ ( *, # $* > !./* *'$+ *#, ! - -# (+ ! (+ ! *, $'! -! --+ + \ +c dd+!*d E < 9#$ R^^X < - < R^^U < - ` R^^M < R^^M < Q R^G
% &'!()$"' ? * ! #$ #% ! .#(* *'$* &* %-! %$# #! (+ *'$+ C* ) $# * '
9## 8*& L& !%-$$ * ! # MMW - . (- (+ * , E+c dd444#**G # * ' # &$ *&*#$ (( * *.I-$$ $* '$ ' *
! #+ * * ,(+ (+ , ' -,- $+ * ' () - $$* * #%- $ * #$+ $ ' # & # - * * (+ $ -, & , # $+ + (+ $$ '$+ ,. $ ' E % RG :#$ * # TMM 8= * $+ * ! + %*
&$ *(+ #, ES MMN 8=G ##* * - +( *# ! (+ $ -+. % # = ;) 8* + <# !+$ #! $ EO ` 8* + MUMU%a 8* + MUXa 8* + MUXa <4 O ` 8* + MUUa <4 O
2
!"#$% &$ & '&() $* &+,&+-%--%.)'-%. '-%..& &$0& 1 $% & - 2 ,$ & &%. & , % 3 4. %--+. , .+2 )&+.5)-+. %, 6-2 . , - 7 &$ +. & %. ,8&- &*& &2&.+ .)-+-9:.9
` 8* + MMa 8* + ` 8 MMNa 8* + 8 ` =# MMTG \ -+ # $ - '/ E+#* * G C*$+ 4 +4 = $* $#* *'$ C*! -$$ *&*#$ * ! - C* 9 <&*# %$$ *&*#$ (( * <7=>)7L9 E+c dd444*#* G O* -+ (- - # (+ #%(+ (+ '/ 8* - # $* ' !++ + +#$ *#$ $+ , *.I- ** - *
$ ! * E- - *#C !0 #*G $ ! +! $ ! # $ !$* ! E% * P! (* #* ,%$ $ ! -G Q+$* ((+ * , *$ %(
- % '$ ' EG + +&+ $*$ %$ $ ! $# * , ' + (+ + E? )# L! ` * R^^W = 9# 9 ` < R^^X 8 R^^U j ` ? R^^MG Q$-$ + (+ * , '(+ '$ &+ #$ (+ # (+ P, E#*$ # % #G C $ 8 $ %-- + # +#4(+ ., '(+ I '$ + +#$ EA**# Z* L+ ` + R^^W ? + + R^^X ; ! =6#4# @ R^^MG 1-+ -#* - ( *# ! (+ $ #+ * -( +#4(* * * 8 #& # (#, *(+ ! $ C&- $+ * + # #
(+ (+ * , -(+ C $ +#-$ &* #-$ '% E# -$ & * $ & ' -
3
!;"< ,&-% (=7.>?@@8-%(AB#C7.>?@@999'8D . , '-+D5-'& &$0 . ,%&')
( $ - #*$ . #$ *(+ P$ * #$ $ (+ ,G )! .! *-$ ( (* -* + + +#$ *#$ $+ , ? .! *.I-$ %#% - .! ( ,% (! #! # % %'$ *,. $ '
# & & P! ; #$ # + $ - +!%! 9 -* #
*,. #% #
,%+! +#
-,- $+ ' + - %. # * ! $ 8 #
*,. -
-
-# '$ *!'! #
#! -# (+ ! (+ %! *, -,- $ ! ## # --+ $ E. * ' $ *. + . - $+ 0* +G 8* ! *+ .
- &$ ( *, ! $ ! (+ *+*, $ #+ * 2 $ . - %#% - (+ $+ * , $ ## ' *,. #
*+
* -,- $* *(+ *$ E G - . # + +# - &$ #!. # , - * ! * ! - ##! #- $ % E#%C G # &+ &+ # , *+ *$ EL! k 8%& ` @ R^^XG 8C& %& * ! # !%-$ # $* # '& E ;G $ - ,# +' C* ?# E+c dd444#*dG - # '/ %'* ##& + 2!%$ # %&(+ * , ' * 8*Z%! P !.$+ - ( . ' - E8-
4
wyer, Hara, Thompson, Chan, & Berg, 2009). Trenažéry Laerdal se osvědčily nejen ve výuce lékařů, ale i ve výuce sester (Cason, Kardong-Edgren, Cazzell, Behan, & Mancini, 2009). Druhým úspěšným výrobcem je americká firma METI, jejíž robotizované trenažéry jsou velmi efektivní (i když nákladnou) výukovou pomůcka pro výcvik anesteziologů a zdravotnických týmů zejména v oblasti medicíny akutních stavů (Sethi, Peine, Mohammadi, & Sundaram, 2009; Ellaway, Kneebone, Lachapelle, & Topps, 2009). Pořídit si drahý simulátor k efektivní výuce samo o sobě ale nestačí. Jak, zvláště v poslední době, upozorňuje řada autorů, výuka se simulátorem klade citelně vyšší nároky na vyučujícího, než klasická výuka. Při správném využití simulátoru, je však pedagogický efekt velmi výrazný, zvláště v takových oblastech, kde je rychlé a správné rozhodování velmi důležité, například v medicíně akutních stavů a v anesteziologii (Binstadt, Walls, White, Nadel, Takavesu & Barker; Lammers, 2006; Day, 2006; Wayne, Didwania, Feniglass, Fudala, Barsuk & McGaghie, 2008; Rosen, 2008; Kobayashi, Patterson, Overly, Shapiro, Williams & Jay, 2008; Jones & Lorraine, 2008; McGaghie, Siddall, Mazmanian & Myers, 2009). Vzhledem k technologickým i personálním nárokům proto vznikla na řadě předních univerzit i mimo ně specializovaná simulační centra pro lékařskou výuku na simulátorech, např. na Harwardu existuje „Center for Medical Simulation“ - http://www.harvardmedsim.org/, v Oxfordu se problematikou lékařské výuky na simulátorech zabývá „Oxford Simulation Centre“ - http://www.oxsim.ox.ac.uk/, a v Izraeli vzniklo štětře dotované „Israel Center for Medical Simulation“ - http://www.msr.org.il/.
Obr. 3 – Guytonův grafický diagram regulace krevního oběhu z roku 1972.
5
*% "( $) +, - ()$ ' -"("', )+ "%#% - - &(* #* + * *# # #* (+ ((+ * , - # ' ( *# ! (+ ! *, #+ * 1+ #% E +# ! * ,G $ %! *'$+ ., -I ' +(* + (* 46+4 < *&( *# ! (+ ! *, (* &(* ##* & E R^^%G %* %! * *&(+ *#, - !. (+ .+ $ * . & !./ % " # " % <#! -# (+ ! (+ ! *, *$ %(
*
--+ +$ *$ ' / #$#
+$ ! + )&(* ##* (+ ., - " # " +-$$ " # " $% "%
! + (* %(-$$ #* -(+ ! (+ %! *, * %( ( + # , EL* ` 8** MMXG "%#% - & ! *$* #! .$
!$ !
(#! 0* $+ (* V &$ ! B .$ !
*( -(+ ! (+ $ !
--+ #+ ' - -,- $+ *$
. / ' -"("- " 1#$* $+ +(+ * *&(+ , ! (+ $ -(+ %! *, * %! *( %+ * # $ ! %! *! ( MXR % 9L @! #* ! E@! L* ` @# MXRG F -. $ +# !*! ! #% ! (+ ', #%! 1+ # '
+ +* $ 8+* ' -(+ , $ +# # *$ -+ + $$ EEG 9 *$ #, # , $ , ' -(+ +(+ ' # %!! %! - (' $ %! E%'! #'! * ! ! '$ %!G !*%! * *& # ! (* '* EIG 8! -$+ #', * %! $ +# !-#! . % -$ ! (+ ' Z! %!! ! # *& # ! -# - ! %! *! L $* %! %! * -$$ '$ #!* \ $* %!! # -#+ % ! $ %! # # I &! ! ! !$ $+ . *$ +*$ $$ +-$$ 9=A # EJG 9 /* +#! (* ,%* *$ C! !-#(+ * *&(+ !*%, ! '$+ ! * -+ $ ! &
$ %! *! * \ #! %-* ! +! - <$ !$ ! * *&(+ ' !.$ C $ * *&(+ +, *$-$$ (' $ $ (+ '$ ', ) ! 0 *. C! %
& * -# (* ! (* '* * -(+ %, -$$+ * *& - %! # ! C! !-# * *& L +*
# *( ! (+ +, %+* ! * *$ C! !-#+ * *&+ *# 2 $ *# %! ' # $* * #$+ E &$+G % * #,#$ *$ * *&(+ +, %!! * ' V%! RTT . RX^ '$ -$ %'+ "R *$ &* %$ !+& %! !$ * ' !+
%! !$ $+B "# ' !.# #*$ #$ E *-* #$ ! * *& &G +$ *!
6
&
y
#
u
³
$%
" "¦
#
!"!
!I"K &%&--&%)F & '-% &-, &&)(-&% '-%
. ! "
" !
" !
! " "
#
$
/ " " -0
, - #.%
+&!
, - " ( " !)*
+ ' "'
% &' "
!J"K &%% %&F &
7
, - *
1 2 !
*(+ +, * ! (* '* " #- MXW ! * C E@! 1 ` L* MXWG # %! # . (+ $ , ! # #%- 2 MXN @! (* $! !# # $ * C E@! )! ` @# MXNG # %! #%- ! * *& * %+ #!*! $+ &
.0)
(!!
' 2(+# # *$ * *&(+ +, - . +$ + ! * - *. #
" .
2 % (+ #+ * % ! *$ * *&(+ * ' ; #$ # % (+ # ! *(* * !$ ! %. * -. # #* + / #!. > ;4 * !$ ( ** - ,% . -% # ' (* !+$* -% *
# ' VQ!+
#-$$+ +* + %# E&G - $* P* $* '$* !+$ E)G ' EtGB )#! * *&! !-# *
v = gt # / !'$ - #+ # -% # ( ! * "'$*6 ( - #+ %# -% #
* *$ * ,#$ l
# ' !'$ * 8 '$ #* . !+
- # - #+! ' #!
v = ds = gt dt > $ -/* #+ $* + -
s=
gt 2 2
: # # !'$
' - #+ #* ( Rd
t=
2s g
"$* & ,#$ # ! - 0* ;4 !$ ! *+! *+
# - + . # &! .$(+ (' , \ # '$ $ &! %# . -$ (' ! 2 ,%+ (- !! . !+& * *$ % *
*, * $+ '& ,#$ ;4 ! ! - +! !
-! \ && *+ *
*+ # - !$ !
!-#! *$ * *&(+ (,
: %+ +# - .# +! .# *! # -+ $#$+ %- *! ( &( ; # + *# #* ' #$ * - *( %-
%# +
' (+ #*$ ; ! * (* *(* (#! \ # +#-$ *$* #
\ *# +
# (#! +#-$ *,.* . $ ' 0* $ *$ +! -$ # #%! ## - $ ' - *$ +! - %* *! &( *# + !/ - # -( m -. - &( *# !-# * -! % -! * *&! Q#$ - - ,% #$ 16 *# !-# * -! ## #* P+ * -! EV(* **BG # - *# !-# *$ * *&(+ +, ## #-$ *$ *$+ / * *&! 1 *# #C - ## #-$ --+ $*
8
/ %! #-$ ' ; $ . (+ !.$ 2(#* $ - %! ,%+! +#
-# (+ *(+ ' ) $ #%- #! *- +$ + %- +$ 0
20)
" - )$"3 2+#* . & *0& % (+ ! *, - % (+ (+ #+ * E - #$ ' %$+ $ $ +, ** -! * *&!G & ! +* ' +(* #* .# 1 . * ! ' -. #! #* * / (+ % (+ #+ +$ . !%& (' $ + < #(* -* - # '$ ' *#! ! # * *&+ % ! 2 ! *(* ! * -. # ' ! (+ #! <L+ c E<L+ ` c MSW c ` <L+ MSXG + -## ( *# 8+# E8+# MSUG # * * ( $ ( !+ $ *& 2 # (+ + A# A0! EA# ` A0! MNRG % ,- *( *# **%! Q- '$ ', # (+ + # # $ %$ !.$-$$+ *( ! ! *I* <+ * C !./
*&+ $$ ! (+ ! *+ E<+ MTTG % , @# *#-$$ E@# Z ` Z MTXG O** ! (+ ! *, - ' #% *#$ -
A[8>"<7 E+c dd444+!* G ( - * - @7;"<7 -+. (#* %! #%( #+ * L$* - A[8>"<7 - *( ! (+ $ < #(* -* - # '$ ' *#! EZ +4 + R^^^a A Q% ` ;% R^^RG.
456' $ - )7! ',48 @! , *# MXR EEG %! -#$* $+ +(+ * *&(+ , !(+ $ -(+ %! *, * # %
! + (* - # #! - V &$ ! B EL* ` 8** MMXG "%#% -
& ! *$* #! .$
!$ !
(#! 0* $+ (* V &$ ! B # 0* $+ (#, .$ !
*( -*+ -$ ! (+ $ !
--+ - -,- $+ *$ : + +# %! @! , *# ' (* *$* ( . ! *(* +#* ! +!&
#!* +, * $ %+ # #(+$ %-* + .$ $+ & *$ C! $ @! C *+ ! (+ +, +#! +- .$(* (* '$ ' # - * +# !-#$ * *&(+ ./ \ %! + $ # -$ C !*%! -# * *& #' -$ -# * @! C +! -$ \ ># E># <* ` 8+ MXMG 1 % (* 9* - E9* # $ MXXG @C( * *&+ *# # $* $ -(+ %, %! #% + +(* %(* $* \ @! , *# -+ # $ *#C E - - *#! # $+ , $ @! !-#$ -G %!! ,# ** ! O #- -! Lnn 2! $ *'$+ *#, # #I-$ 54 #$ 1#$* + - < %d8* # C*! < +4 1+ '/ - C( *'$ -! 8* *. *$ '$ ' *! -* *'$ *# -# (+ *
\ -(+ 54(+
9
u
y
'( '(
u
" "¦
³
#
u
'(
y
$%
$%
$%
"
"
#
$%
'( 1 s
$%
&
#
&
#
$%
'(
!L"1.-,&,& F &)(-% &<-
*'$+ ' --* # *'$+ $/ 8* %! - * #% ,* * !-#$ ! (+ +, . @! ELG Q#$ - - --+ C* ) #%
** - * %!+* # $* 8* $ ( ( @! , # * # + # #%! '$+ *'$+ *# E Q R^^X Q ` < R^^X ` Q R^^G 2- $ +# *+ *# -* . +
-( - ,#$* C* +* \ .$ *$ $ #', ! ' '$ %, - - 8*'$ + +* %! P # \ $* %* +* *# - &. +!%!o L+!% %! *+ \ + * #' *$ %'! + -$ * %! +!%-$$ #& ' ! # 8 '! %! *# ; +!%! %! *. #
$ +# E % & ! G \ +* - . %+ *# %! +# ' (+ + E#$! %G !+ ! ' *# %! % & ! ! * (! * +! +!%! *+! # -$
EHG #%( +!% --+ - %$+ E Q ` < R^^X Q R^G - %+* 1 2. 1 -$* . @! , # * %! - . ( % *+
& # -,- $+ %$ \ #$ #% %- EA R^^SG E2 2
` < R^^NG % # % ER^^G ;# +!%! # ! +!%! # ) %! + #% #! % +* 1 0 ! $$ *! \ % - . ( ( \ '$ $ . + ( %! # <. - . * *#
+!%! $ + \ # # ( *# % V!B #+ # %! + - * *, , #% $
10
Chyba!
Chyba! 1
AHC
185
158A
.3333 183 1
AH
+
.14 184 +
1
AHC
185
158A +
Opraveno C
.14
.3333 183 1
AH
t d
184 +
C d Opraveno
Chyba! 5 QAO 5
Chyba!
+
6 DVS 0 QVO
3.257 VVS
VIE 1.5 337
HKM
5
HM2 1600 HMK 336
Chyba!
40
QAO 5
3.257 VVS
HM
RC1
331 + 0 332
Opraveno
VIE 1.5 337
+ RCD HKM
1600 HM2
336
HMK
RC1
331
40
+ 0 332
+
6 DVS 0 QVO
0 -
RCD 40
Opraveno
40
+ HM
Opraveno !H"!&.&,& F &)
11
NON-MUSCLE OXYGEN DELIVERY
VASCULAR STRESS RELAXATION
MUSCLE BLOOD FLOW CONTROL AND PO2 260
57.14
02M
268
512
u^3
2688
lower limit 50
238
198.7
263
5
224
57.14
223
VVE
1
u^3
188
1 220
189
AHM
PDO
195
0.3
EXC
RFN
6 CNY
AM AHM
0.1005 213
207
214
CNA
142
184
lower limit 3
139 0.025
2.5 CNX
PRA
0
177
178
179
CNE 10
REK PPC
1 s
0.0007
2
AM
1
1
AHY
180
AHZ AH7
AHM
1
1.211 28
1
0.14
AH
222
0.001
1.211 RFN
AOM
0.9899
AMM
0.3333
CNR
RBF RBF
182
CN8
1.2 RFN
100
AUM
1
183 176
1
175 NOD
1.2 201
lower limit 0.35
PVO
1 s
CNZ
lower limit 0
40
AH1
u
158A
NOD
221
1
1
10
AHC
185
0.0785 187
AH2 6
AHM
GP3 upper limit 15.0 lower limit 0.4
1
249 512
HM 40
186 6
1
0.1 215
APD
202
AH4
216 1
AAR
243
122 8
VPF 0.0125
TVD 0.001003 0.009
AM
211
1.5 ARF
191
210
1
1
POM 0.08
PM5 PMO
0.5
2.86
0 190
0.01
GF3
1 s xo
VIM
196
0.5
250
244
P3O^3
233
2.8 8
7.999
GF3 197
TVD
lower limit 0
Z11 AHM
217
5 GF4
203 algebraic loop breaking
VIM
0.01095
4
Z10
219
0.301
P3O
242
200
POT
VV7
1
60
234 PVO
QO2
0.00333
232
194 STH
8.25
1.002
1000
1
GLP
31.67
VV7
VV1
62
1
OVA
40
POT
P1O
18 63
VV6 VV2 lower limit .005 251
248
193
1
STH
0.001008
1
209
PPC
51.66
33
POE
1
7.987
AAR
198
VUD 0.001
TRR
0.8
8.0001
1
BFN
272
252
P2O
241
OSA
255
HM
xo 271
1 s
0
AOM
1
8
upper limit 8
lower limit 0.0003
212
SRK 247
P2O
2400 Xo
235
RMO
192
POT
8
VUD
PFL
EVR
AAR
0.25
DVS
THIRST AND DRINKING 218
GFR
208
0.00781
61
2400 271
upper limit 8
1 xo s
206
0.125
1 s
1
253
199
-1
0.7
231
200
GFN 205
200 65
VV7
256 5
POT^3
1
PM4
1 s xo
OVA 225
DOB 264
u^3
236
QOM
BFM
MO2 265
0.15
KIDNEY DYNAMICS AND EXCRETION RR
1
64
5
OVA
P40^3
AMM 1 s xo
u^2
257 40
254
02A
246
P4O 8.0001
PM1^2
2500 230
POV
266
237 PK3
PK1
258
40
RDO 267
AU 1
lower limit .001 239
226
262
POT
245
PMO
800 229 5
RMO
5
PM3
240
PK2
227
POV
270
228
BFM
1 259
0.7
261
AOM 1
1 s xo
OSV
168
269
181
AU
AH8
1
lower_limit_0 1
NON-MUSCLE LOCAL BLOOD FLOW CONTROL
40 POV
277
278 1 s
POB
276
274
275
POD
273
ARM
AK1
1
POK
lower limit 0.2
1
40
AR1 1 s
xo
A2K
1
lower limit 0.5
1.6
VIM
1
1.014
0.495
2.86
0.00355
11520
lower limit 0.3
A3K
0.3 1
289
32
1 s
if (POD<0) {POJ=PODx3.3}
VAS
VBD
VVR
6
2.95
DVS 1 s
BFN
PGS
7
PVS
VVS
QVO
5
0
1
PLA 8 upper limit 8PA lower limit 4
293
3 298
297
EXE
P2O
EXC
Z12
0
QLO
1
A1B
when PA1<40: AUB=1.85718 AUB when 40>PA1<170: AUB=0.014286*(170-PA1) when PA1>=170: AUB=0
304
PLA
23
6
QPO 18
22 PGL
VPE
uv
316
0.21 0.85
1
314
1.001
312 AUL
AUV
VIF
1 xo s
12
3.454e-006 110
CIRCULATORY DYNAMICS
AUY
318
0.5
319
313
1
1.001
1
8 70
PPA
150
0.4667
146
AVE
1
0.55
137
AUM
0.4
151
138
0.375
PPD
0.0003
152
AU
5 0.5 1
PPI DFP 2-(0.15/u)
DFP 0 0.0125
142 VPF
PPI = 2 - (0.15/VPF)
0.01252
333
DHM
1
352
HPR 347
HM
57600
343
40
348
125
96
0.1 93
94
PGC
PGR
u^2
REK CHY^2
99
VG
1 344
VB
1
349
5 1
1 xo s
1
1
HPL
1 xo s
119 1 xo s
2130
0.1
CNA
118 NED
0.25
NAE
HMD HPR
90 CHY
HYL
-5.9
142.1
142 NID PGH PTS
89
57
CNA
116
PGP
HMD
334
117
PG2
95
PIF upper limit 1
PTC
VRC 2
0.00042
NOD
1 s
40
VRC
124
CKE
126
120
V2D
xo 1
57600
RKC
RC2
5
123
0.013332
VGD 100
0.4
100
VPF
1 xo s
75
KE
KOD
1 342
-4.842e-010
1 xo s
KID
11.4
0.00014
122 KED
140
AM
98
1600
335
0.0000058
143 PLF
1
121
0.0028
(u/12)^2
HM
141
1
HEART RATE AND STROKE VOLUME
PTT = (VTS/12)^2
0.0025
351
xo 336b
2 VRC
PFI
1
KCD
1 s
PP3^0.1
HPL
1 s
2 xo
11
40 HMD
u^0.625
1 s
144
0.0003
2850 KE1 CKE 5
xo 6
PP3
346
PA4^0.625
KIR
127
0.013
1
97
u^0.625
128
129 KIE
KCD
113
PTT
336
336c
RCD 332
PPO CPF
0 140
325
331 PLF 145
PPI 2 PRA
321
130 3550
VG
HM2
40
PLF
POS
322
323
324
xo
GPR
350
345
PPA4 341
RC1
PPC 139 32
327
10
101 85
POT
15
1
340 0.00092
POS
0
PPA
HSR 100
1
11.99 VTS
464e-7
330
7.866e-008
148
PPD
HR
337
POY
147
PPN
VIE
1 s
PTS = f(VIF)
VG
8
15
PA HSL
lower limit 0.2375
xo
AVE
100 1.5
VIC
1 xo s
KI
171 1 s
88 0
86
VTS 338
135
25
131
xo 0
12 VIM
0.333
1 s
0.000225
PCP
SVO
-6.3 112
0.9897
339 1
PO2 VPF
AUTONOMIC CONTROL
QLO
PTS
8.25
PPR
149
VIM
POT 329
PO1
CPN
CPP 28
136
15
PPC
320
VIF
GPD
xo 1 s
0 VVR
AUH
0 VID
0.01
CNA VIC
PIF 12
CCD
132
20
VVR PLA
2.949
AUH
1
1
133
CKI GP2 111
0.0005 87
VID VTD 84
2.95
0.7
1
VID 134
GPD
83
VTC
VV9
AU
AUD 315
326
IFP
VTL 0.002
1
DPI
DPL 0.1
0
VPA
3.159
0.3
0.15
0.07039
14
103
AUJ^AUZ
AU9
328
0.005
1
ALDOSTERONE CONTROL GP1
102
0
AUN calculation
SVO
15 PRA 0.09925
0.38
PTT 20
DPC
0.04
PRA
1 s
VPA
0.0048
1 s 170 AMC xo lower limit 6
104
0.30625
15
1
1 s xo
169
60
166 KN1
CNA
109
CPI
PIF 0.25
VRA
AMT
AMR
200
165
CKE
5
9
1 s
lower limit 4
20 -4 QRN = f(PRA)
0.00352 7.8
0.04 -6.328
QRO
20
21 PPA
xo
AUJ
PTC
PRA VRA
19
15.22
PLA
RPT
QPO AUZ 310
311
171
-0.017
168 AM1
AMP = f(PA)
106 PIF
142 105
PR1
Z8
309
0
1
u
AM2 AM3
00
PLD 0.004 20.15 CPI
0.1 xo
QRN
AUH 51
0.026
PPA
AU
172 19.8
167
107
lower limit 5 108 DPL
0.002 5
DRA 13
0
xo
AUN AUN
173
AM5
AMP
DPL VTL
5.038
12
QRO
PPA
AU8
317
0.001899 VTL
HMD
15
1
RVM = f(PP2) RPT
0.03826
PTC
50
1
AUB calculation
AUM
QVO
1
0
AUH
1 s
AM
10
HSR HPR
16 0
PP2
308
AUN CALCULATION when PA1<50: AUN=6 when 20>PA1<50: AUN=0.2*(50-PA1) when PA1>=50: AUC=0
1 ANM 164
RVM
52
PL1
AU2
0.0005
20.039
174
AM
PA
100
HMD
55 RPV
0.0357
20 57
DAU AUK
AUB^3 305
AUB
PA1
PA1
1.002
1
11
1
56
1
0.4 DLA 24
301 u^3
AUB CALCULATION
ANGIOTENSIN CONTROL
DPC
VP
0.002
lower limit 0 307
1
303 AU6
ANT
0.0384 20
3
PR1
AUH
50 1.4
PP1
QLN = f(PLA) xo
302
15
3.004
49
RPA
20
-4
1 s
VLA AUC
0.1
DPC
0.04 VP
1 xo s
3
RVG
1
48
sqrt
AUC
AUC calculation
1
158
AN1
CPI
71 VPD
2.738
RVM 53
QLN VLA
25
AUC CALCULATION when PA1<40: AUC=1.2 when 40>PA1<80: AUC=0.03*(80-PA1) when PA1>=80: AUC=0
PA1
CPA 54
26 1.24
PA1
PLA
1 s xo
157
4
1
0.4
CNE
152
PVS
0.6 QRF
15
VLE
0.1 295
8
296
156
155
74
VTL
10
QLO
QLN
47
28
10 ANM
44 27
8
POQ
0 260 LVM = f(PA2)
0
100 294
45
46
0.02244
POT
POQ
142
(1.2/RFN)^3
CNE 154 CNA
CP1
0 PVS
10
CPP 75
70
DFP
VRA
PLA
5.085
QLO 291
74
PC^3
VUD
5 VPA
PA2
LVM
159
ANC
(1.2/u)^3
TVD
0.001
VVS VB
VLA
58
1.4
1
HMD HPL
QLO
0.001
59
HSL LVM QLN
QAO
0.042
RFN
1.2
69.77
60 VAS PA 29
5
30
8
PPC
160 AN2
u
10
153b 153a
u^3
0.001902
VTC
3.3 161
AN3 4.0 REK
0.4
1.6283e-007 CPK
DAS
292
73
0.002
3.7
AN5 lower limit 0.7
ANM 210
CPP
PVS
VAS3
28
VTC
lower limit 0.0001 0.0825 CV
VVE
0.007
PTC
162
163
1
1.004
1 s xo
16.81
9
VV8 0.3
2.8
100
8
PPC
69
-6.3
xo
3.25
PRP VP
CFC PIF
3.781
VVS
QVO
61
CPP
72
VP PVS
5
2
RSN
1
PA
VAE
xo
0.85
POZ
AR3
1 xo s
1
33
0.33
VV7
0
QAO
BFN
31 288
0.3229
ANM
80
70
62
VRC
RBF
99.96
284b
16.81 68
2
4
0.04 DPP
0.00047
PC
5.004
VVE
100
DPL DLP
LPK
CPR 17
VB
RVS 1.2
BFM
PA
POJ
5
PC 17
284 283
286
DP0
78
77 85 PC
VB
0.007
0
67 PVS
3.7
79
PPD
PVG
BFN 2.8
2.782
1 POC
66 1.6379 0
39 17
2.9
BFM
PGS
ANTIDIURECTIC HORMONE CONTROL
RVS
1 s xo
41
CAPILLARY MEMBRANE DYNAMICS
2.9
0.2
0.0212 CN2
RV1
17
34
AUM
41A
RV1
43
1
3
PAM
AUM
287
42
CN7 1.79 RVS
RSM
37 RAR AUM PAM
30.5 RAR
0.1
1
35
ANU VIM
PON
20
AR2
ARM
38
36 ANU AMM VIM RAM 96.3 AUM RAM
1
AR3
40
1
1
1 290
279
280
AVE
lower limit 0.95
ARM
POR
0.06
1
POA
281
282
285
ANM
1
0.9457 xo
AR1
algebraic loop breaking
91
PIF 92
STH
0.1
1
VIC 0.0125
VPF
114
115 VEC
39.99 VTW
PRM 3
VP
VTW
24.2
1
12
VTS
0.0125
PULMONARY DYNAMICS AND FLUIDS
LIST OF VARIABLES
AAR-afferent arteriolar resistance [torr/l/min] AHM-antidiuretic hormone multiplier, ratio of normal effect AM-aldosterone multiplier, ratio of normal effect AMC-aldosterone concentration AMM-muscle vascular constriction caused by local tissue control, ratio to resting state AMP-effect of arterial pressure on rate of aldosterone secretion AMR-effect of sodium to potassium ratio on aldosterone secretion rate AMT-time constant of aldosterone accumulation and destruction ANC-angiotensin concentration ANM-angiotensin multiplier effect on vascular resistance, ratio to normal ANN-effect of sodium concentration on rate of angiotensin formation ANP-effect of renal blood flow on angiotensin formation ANT-time constant of angiotensin accumulation and destruction ANU-nonrenal effect of angiotensin AOM-autonomic effect on tissue oxygen utilization APD-afferent arteriolar pressure drop [torr] ARF-intensity of sympathetic effects on renal function ARM-vasoconstrictor effect of all types of autoregulation AR1-vasoconstrictor effect of rapid autoregulation AR2-vasoconstrictor effects of intermediate autoregulation AR3-vasoconstrictor effect of long-term autoregulation AU-overall activity of autonomic system, ratio to normal AUB-effect of baroreceptors on autoregulation AUC-effect of chemoreceptors on autonomic stimulation AUH-autonomic stimulation of heart, ratio to normal
AUK-time constant of baroreceptor adaptation AUL-sensitivity of sympathetic control of vascular capacitance AUM-sympathetic vasoconstrictor effect on arteries AUN-effect of CNS ischemic reflex on auto-regulation AUV-sensitivity control of autonomies on heart function AUY-sensitivity of sympathetic control of veins AUZ-overall sensitivity of autonomic control AVE-sympathetic vasoconstrictor effect on veins AlK-time constant of rapid autoregulation A2K-time constant of intermediate autoregulation A3K-time constant of long-term autoregulation A4K-time constant for muscle local vascular response to metabolic activity BFM-muscle blood flow [l/min] BFN-blood flow in non-muscle, non-renal tissues [l/min] CA-capacitance of systemic arteries [l/torr] CCD-concentration gradient across cell membrane [mmol/l] CHY-concentration of hyaluronic acid in tissue fluids [g/l] CKE-extracellular potassium concentration [mmol/l] CKI-intracellular potassium concentration [mmol/l] CNA-extracellular sodium concentration [mmol/l] CNE-sodium concentration abnormality causing third factor effect [mmo/l] CPG-concentration of protein in tissue gel [g/l] CPI-concentration of protein in free interstitial fluid [g/l] CPN-concentration of protein in pulmonary fluids [g/l] CPP-plasma protein concentration [g/l] CV-venous capacitance [l/torr] DAS-rate of volume increase of systemic arteries [l/min] DFP-rate of increase in pulmonary free fluid [l/min] DHM-rate of cardiac deterioration caused by hypoxia DLA-rate of volume increase in pulmonary veins and left atrium [l/min]
RED CELLS AND VISCOSITY
DLP-rate of formation of plasma protein by liver [g/min] DOB-rate of oxygen delivery to non-muscle cells [ml O2/min] DPA-rate of increase in pulmonary volume [l/min] DPC-rate of loss of plasma proteins through systemic capillaries [g/min] DPI-rate of change of protein in free interstitial fluid [g/min] DPL-rate of systemic lymphatic return of protein [g/min] DPO -rate of loss of plasma protein [g/min] DRA-rate of increase in right atrial volume [l/min] DVS-rate of increase in venous vascular volume [l/min] EVR-postglomerular resistance [torr/l] EXC-exercise activity, ratio to activity at rest EXE-exercise effect on autonomic stimulation GFN-glomerular filtration rate of undamaged kidney [l/min] GFR-glomerular filtration rate [l/min] GLP-glomerular pressure [torr] GPD-rate of increase of protein in gel [l/min] GPR-total protein in gel [g] HM-hematocrit [%] HMD-cardiac depressant effect of hypoxia HPL-hypertrophy effect on left ventricle HPR-hypertrophy effect on heart, ratio to normal HR-heart rate [beats/min] HSL-basic left ventricular strength HSR-basic strength of right ventricle HYL-quantity of hyaluronic acid in tissues [g] IFP-interstitial fluid protein [g] KCD-rate of change of potassium concentration [mmol/min] KE-total extracellular fluid potassium [mmol] KED-rate of change of extracellular fluid potassium concentration [mmol/min] KI-total intracellular potassium concentration [mmol/l]
HEART HYPERTROPHY OR DETERIORATION
KID-rate of potassium intake [mmol/min] KOD-rate of renal loss of potassium [mmol/min] LVM-effect of aortic pressure on left ventricular output MMO-rate of oxygen utilization by muscle cells [ml/min] M02--rate of oxygen utilization by non-muscle cells [ml/min] NAE-total extracellular sodium [mmol] NED-rate of change of sodium in intracellular fluids [mmol/min] NID-rate of sodium intake [mmol/min] NOD-rate of renal excretion of sodium [mmol/min] OMM-muscle oxygen utilization at rest [ml/min] OSA-aortic oxygen saturation OSV-non-muscle venous oxygen saturation OVA-oxygen volume in aortic blood [ml O2/l blood] OVS-muscle venous oxygen saturation O2M-basic oxygen utilization in non-muscle body tissues [ml/min] PA-aortic pressure [torr] PAM-effect of arterial pressure in distending arteries, ratio to normal PC-capillary pressure [torr] PCD-net pressure gradient across capillary membrane [torr] POP-pulmonary capillary pressure [torr] PDO-difference between muscle venous oxygen PO2 and normal venous oxygen PO2 [torr] PFI-rate of transfer of fluid across pulmonary capillaries [l/min] PFL-renal filtration pressure [torr] PGC-colloid osmotic pressure of tissue gel [torr] PGH-absorbency effect of gel caused by recoil of gel reticulum [torr] PGL-pressure gradient in lungs [torr] PGP-colloid osmotic pressure of tissue gel caused by entrapped protein [torr] PGR-colloid osmotic pressure of interstitial gel caused by Donnan equilibrium [torr] PIF-interstitial fluid pressure [torr] PLA-left atrial pressure [torr]
TISSUE FLUIDS, PRESSURES AND GEL
PLD-pressure gradient to cause lymphatic flow [torr] PLF-pulmonary lymphatic flow [torr] PMO-muscle cell PO2 [torr] POD-non-muscle venous PO2 minus normal value [torr] POK-sensitivity of rapid system of autoregulation PON-sensitivity of intermediate autoregulation POS-pulmonary interstitial fluid colloid osmotic pressure [torr] POT-non-muscle cell PO2 [torr] POV-non-muscle venous PO2 [torr] POY-sensitivity of red cell production POZ-sensitivity of long-term autoregulation PO2-oxygen deficit factor causing red cell production PPA-pulmonary arterial pressure [torr] PPC-plasma colloid osmotic pressure [torr] PPD-rate of change of protein in pulmonary fluids PPI-pulmonary interstitial fluid pressure [torr] PPN-rate of pulmonary capillary protein loss [g/min] PPO-pulmonary lymph protein flow [g/min] PPR-total protein in pulmonary fluids [g] PRA-right atrial pressure [torr] PRM-pressure caused by compression of interstitial fluid gel reticulum [torr] PRP-total plasma protein [g] PTC-interstitial fluid colloid osmotic pressure [torr] PTS-solid tissue pressure [torr] PTT-total tissue pressure [torr] PGV-pressure from veins to right atrium [torr] PVG-venous pressure gradient [torr] PVO-muscle venous PO2 [torr] PVS-average venous pressure [torr] QAO-blood flow in the systemic arterial system [l/min]
QLN-basic left ventricular output [l/min] QLO-output of left ventricle [l/min] QOM-total volume of oxygen in muscle cells [ml] QO2-non-muscle total cellular oxygen [ml] QPO-rate of blood flow into pulmonary veins and left atrium [l/min] QRF-feedback effect of left ventricular function on right ventricular function QRN-basic right ventricular output [l/min] QRO-actual right ventricular output [l/min] QVO-rate of blood flow from veins into right atrium [l/min] RAM-basic vascular resistance of muscles [torr/l/min] RAR-basic resistance of non-muscular and non-renal arteries [torr/l/min] RBF-renal blood flow [l/min] RC1-red cell production rate [l/min] RC2-red cell destruction rate [l/min] RCD-rate of change of red cell mass [l/min] REK-percent of normal renal function RFN-renal blood flow if kidney is not damaged [l/min] RKC-rate factor for red cell destruction RM0-rate of oxygen transport to muscle cells [ml/min] RPA-pulmonary arterial resistance [torr/l/min] RPT-pulmonary vascular resistance [torr/l/min] RPV-pulmonary venous resistance [torr/l/min] RR-renal resistance [torr/l/min] RSM-vascular resistance in muscles [torr/l] RSN-vascular resistance in non-muscle, n/minon-renal tissues [torr/l/min] RVG-resistance from veins to right atrium [torr/l/min] RVM-depressing effect on right ventricle of pulmonary arterial pressure RVS-venous resistance [torr/l/min] SR-intensity factor for stress relaxation SRK-time constant for stress relaxation
ELECTROLYTES AND CELL WATER
STH-effect of tissue hypoxia on salt and water intake SVO-stroke volume output [l] TRR-tubular reabsorption rate [l/min] TVD-rate of drinking [l/min] VAS-volume in systemic arteries [l] VB-blood volume [l] VEC-extracellular fluid volume [l] VG-volume of interstitial fluid gel [l] VGD-rate of change of tissue gel volumes [l/min] VIB-blood viscosity, ratio to that of water VIC-cell volume [l] VID-rate of fluid transfer between interstitial fluid and cells [l/min] VIE-portion of blood viscosity caused by red blood cells VIF-volume of free interstitial fluid [l] VIM-blood viscosity (ratio to normal blood) VLA-volume in left atrium [l] VP-plasma volume [l] VPA-volume in pulmonary arteries [l] VPD-rate of change of plasma volume [l] VPF-pulmonary free fluid volume [l] VRA-right atrial volume [l] VTC-rate of fluid transfer across systemic capillary membranes [l/min] VTD-rate of volume change in total interstitial fluid [l/min] VTL-rate of systemic lymph flow [l/min] VTW-total body water [l] VUD-rate of urinary output [l/min] VV7-increased vascular volume caused by stress relaxation [l] VVR-diminished vascular volume caused by sympathetic stimulation [l] VVS-venous vascular volume [l] Z8-time constant of autonomic response
!M"D F &-GH;.&& ,& $ &-,
#- 0 ! *, + *# *$* -! O \ . # # +
+$ *# * *
E*0* & # * O # -+ *$+ -!G ;* ! * E+G @! *# EMG - -*,* # .$ # +c dd444+!*d ! ; # - * *+* . - $ *# @! #- $+ :I - # * #%( + . (+ * *&(+ +, #,#$* E 3G @! -+ . *# . # $- E< 9# 8** L* ` @! MUMG @! , *# %! $ ##* ! $ . (+ *0$+ *#, !(+ $ .$$+ ! $ $+ , $ * -,- $ # ! +$ - ,(+ (+ , <#C( @! , *# ** - -#$* #, +( *# ! (+ $ * V= 9 B ;989 EJ+ ` + R^^TG @! ! *#! - ##* - '(+ *0$+ *#, ! (+ $ E)+* Z O # $ R^^UG * + - 2 +! A* E+c dd444+6dG
* 9$ "$ " ' ! " ! '+7! '*,:8 Q+ *#! @!
MXR MUT *# MMR ( 8* # ** < E< Q 4# ` 2 2
R^^G %+-$ #%-
12
+! <#-$ !$ L"2 *#! *+ %(
##* ( .! ' $ *#$ - $$ *#, %
+* ! $+ #$ %! -* *#$* #% +! $+ !, E"2 L"2G %( #%- <#$ #% +! %! * * * # '$ E 1 MU^G Q $$* *# #% +! %! +( *# $+ #$ ( JK+ Z# @#. ` 2 MUR6a Z# ` @#. MUSa @#. ( ` Z# MUXG +-$$ '$ # ' +*$+ $$ 2! ( *# %! ** - '/ $+ - !./ * *&(+ *#, #+ * * + *+ (* E2 MUXG %#%+ ** - ;989 V= 9 B # *#! ! (+ $ .! ( # +$ #+ * #$ *
*9$ "$ "'$ "! ! ;$, 5 '< 9#% + * $#$ I$* # %$ \ % 0# +' + E$$* G %$ * % !'$* (+ ! E $ #C *'G "%
! - -! '$ ! *! *$$* (+!! A $+ & 8-$ * P+ +-$ %I! *+ !*I
#$ # ! #$ ! % %'(* $! )! *+*! %!! ** - ** ! * (* * @*
: + +# - #,. (* # * #% +! '$ ! * $ Q ' # L"2 *+ % 0# +' + % ' BE=0 mEq/l # AndAL"W- *+ % * % !'$* (+ ! -$ +* +! '$* ! *
* %% (* %% (* * BE=-15 mEq/l ' 4 '7NN8#( 8 * A& * EMSUG - ( '
$ %% [HCOE-] %% (+ '$+ %$ RN5-] %! # (+ + # # 8 #69#* E8 #69# ` 7 MT^ 8 #69# MTRG ( - ! $ # -* ' 5* EZ7G #$ +# ! Ze Z # --$ - !G"
! *$ +# ! 6 6 ' 4 '7DNN8 "# $ $% NNSRT!E:UVRN5:U
& ' # () ## &*+ *& NBSNN:DNN , " % () : *$+ / - +# Z7 E ( )" ! .&& $ & & " - $ +* %G - % * (( (// ( ! # <$ '$ # & $ #! % %$ 8 # 9# !- (( 0 & " % * . %'$ & '$ ! & 12345 6 6 &$7 %#6 $ ,(* +# * pCO; $ +#
% 1834+ NN NB ,* ,(* +* * ()(( 6 ,#$ %! - # #C *. $ !- %$#$ ! ' #! \ /* * --+ NB E#$ **
13
!! *$ +# NB 6 ** #$ ** (+ %$ # +# NB **G * ! ! & (#! ! # # )!;@T ) '$ ! E * *(+ #$+ &! $*!G , ,(* +* * - +# NB /! .#! -(+ %#+ )$* * *(+ #$+ $ * * * NB NN *.! ! $
+# ! NB NN ! * EGG 8 #69# /* ,%* 0* - m
#$(+ , [HV] A +# pCO; +* % 7T8 $ (#! # ! !. (+ * *, !-#-$$+ [HVUS5-7!; NB T8
2 %! # 8 #69#, * * $ % * $ / *-$ E 8 #69# J*%! O +69# MUUG ? :# ER^^RG
(' Z7 X 0*$ ,(+ , ;-- $ (+ 0*$ 0* 2 8!! # :# EMMNG . * 8 #69# * * MU^ E MU^G -* *& !.$ *+ + *#+ 0* 8 #69#, * * - . #- % +! EWG !+#$ #%(+ + # NB L"2 - #,. . * ' L";* '$+ %$ 7NN8 +# NB pCO; +# !! +' #- %%
#$ ! - &! P ! %% '$ % gZ-h $, +#! %% , #$# -( +#! %% (+ , [HCOE-UVRN5-] #! NN NB &! *$ A# !NN NB - #! E.-*6 * G +#-
=DQGHU
1 - 0,0143 cHb >0,0304 u pCO2 u 10pH-6,1 - 24,26 9,5 1,63 cHb pH - 7.4 @
3
2.5
.RIUiQHN
2
a1 996,35 - 10,35 cHb a2 = 35,16875 + 0,258750 cHb a3 = -82,41000 + 2.01 cHb;
ro z d íl B E [m m o l/l]
1.5
a4 = -5,276250 - 5,02500 u 102 cHb a5 = 121 - cHb a6 = 2,625 + 0,025 cHb a7 = -2,556 - 0,09 cHb a8 = 13,87634 + 0,186653 cHb + 0,00534936 cHb a9 = 0,0548 - 0,0274 cHb a10 = 0,274 - 0,0137 cHb BE BEox a11u (1 - sO2)
1
0.5
2
( a7 a8 a9 BE )/a10
Y pH
0
-0.5 -25
-20
-15
-10
-5
0 BE (mmol/l)
5
10
15
20
25
(a1 a2 * Y (a3 a4 u Y) log10 (pCO2))/(a5 a6 u Y)
!W"+ % ""() $ 7 && $ 7 () " '/% 9:2;!<=>? @ 9::A!<=B?
14
pCO; E UG ) / * / \ pCO; I- 0! +* % !$* . #0! ( +* % * $ C ,* . #0! ( +* % E 0! %-- # $ %% (+ $(+ %$G $ $(+ %$ NN +* % !$* E - +# pCO; #$! Z+ G - (+# *#$ #% +! #C * ' 4 ' 7''*8 - +# NN %! %! * #* #!%! %! 0+* % ! !$* E - ^^q +* % !$*G "%#% - #C * ' 5* 7'5*8 - +# NB %! %! #* #!%! %! 0+* % ! !$* E MU^G A# '5* ! (92 92 9#% + *,.* +
*$ $! " " !" 6 * +# * '5* # $
! E MU^G )! !$ 0# +' + I-$ $ # * #$(+ , I- NBX %% , *$ NBX -&- !; E %% *,.* *#
- "A6 L"R G : (+ *(+ - *. !'$
+! # $ * ! 6 $+ ##$+ %% , +* % !$* pO; pCO;. ) *. *#
% $+ !, % %! !'$ (+ ! $ * ,
*9$ "$ "' !"! '+! , ",' -"(!/ '7! *8 1#$* &! !. (+ (#, %! !./ *# $+ !, #% +! !+#$ 6! (+ #
# $* #&C *# # *(+ (+ #
E < ] # $ MUUG 6 % - %+* :.
: #%(+ , $ *$ i$ *(+ &'$+ * , '$+ ! $+ %! #&C$ *# $ # 6! (+ * , %!! (+ ! $+ # % %!! (+ (' + /.! ' +!% <# ** ( +#! # * ** %$* '$ ' 8 8 * %! !.$ $* '$* ! $ 1#$* ,# '(+ $, %! $ # ! #%$(+ , # 2(' ! * + %-* #'$+ ' 6(+ $+ , ##-$ .
- +# * % %! L"2 %! "2 --+ (#- $-* * E / O, ('
, , # $ $+ !, --+ *+ (#-d %!G . *$ %(
.#! # . '$* ! $ *,. %(
.( ' #% >#&C *# # #
*(+ #
#
$ #% ,
*4 )' "! ! ;)$<! !# =
8 #69#, * * E!-#( * 0*'$+ G #* !+#$+ *, # % $+ * , *$ #% +! ' (* %** * !+#$ #% +! - . 0* $ *$ 8 #69# * * %! # WUrL = $ $ - *$ #% +! E$* *$$ +# ! L"2 A "2G ! -$ %! P#- * WXrL
15
:.- $* %** - . & % 0* $+ * * %! # $ * *$ *&(+ %$ EXR dG 2 $#+ #! - *&(+ %$ . $ E. &! *(+ , %( /G %# %#! * * ! (' ! # + * * %# #! +!% 8 #69# #- % ' .-$$ , *&(+ %$ E8 #69# MXX 8 #69# J*%! O +69# MUU 8#69# " ` O +69# ; MMNG # &$ 0 ! -* ! # ' 2( *$ & + $ !+#$ #% +! #! * . *# (+ + %!! +#! $ ! !+#$ #%+ ;- $- $* $ 8 4 , EMU MUWG #- # 0 ( O* $! EMUM MMW R^^^G ; #$ # 8 #69# 8 4 , *- $ * 8 4 ! !+-$ *% ! +*(+ #-$$+ -##+(+ ##, <$ &
#! E# ‘4 - ( ' #!G [HV] [OH-USY‘9 R 8'
$ %(+ ! RTN5U --+ #(+ '$+ %$ RN5-], # '( -RN5 Tot] E8 4
+ '- - AtotG '$+ $+ *$ *$ %(
( RN5 -UVRTN5USRN5 TOT] W ='$ + ! %% + E# YN6_- #'$ G RN5 -] [HVUSYN6_`RTN5U S ='$ + ! %% + E# A - #'$ G [HV] [HCOE-USA × pCO; N ='$ + * %% * % * E# D - #'$ G [HV] [COE;:USD× [HCOE-] T 7
#$(+ , & 8>= %(+ ! --+ '$+ %$ RN5 TOT] pCO; E - * ' # .$* ' % * - !'! ' *#G [HV]I V7SIDVYN6_8× [HV]EV7YN6_`7SID - ;' # <9<]8:Yb9"A× (928`[HV];:7YN6_ × 7Yb9; VA` (928 - D`A` (9;8` [HV] - Yb9×D×A× (92 SW t $* # * #$(+ , - '$ . #% +! \ - pCO; # (+ * %(+ * + 6 - 8>= %% (+ %$ ! RN5 TOT] pHS5-7pCO;,
pH E # $ * - - %% , -G +#
L"2 8>= (+ $ , RcU *&(+ %*, [AlbTOT] E $# J MMMG
16
pH S5-7pCO;,
MMRG - 0 #+ gL h #%$* *! % $ ! $ pH S5-7pCO;,
**($' ($'# = ! ! < *& +! * *(* # & &$ ! +* (! *.I-$ *(+ E - pCO;
* \ pH
$ # $ * - - %% , - 8 4 , $ *.I- -
! ! E +!6 +!%** #% + #'$ #i '$ iG $ +# # ,*
$+ +# # & #% +! '$ V(+B *(+ +. !'$ -$ # $ #% * ! - &. % 0 *
, ;n L- AL"W6 -(+ , (* - # & ;& * (+#* 8 4 ! $ . - $ * * + $ #$ 8 4 $ /* . #% * ! 6 A E $ %% , % , %% (+ !G !'$
(+ *(+ EL"2 8>= g9%TOTh ghG $# #+-$ --+ (* ,* 6 " !" # $* SID - (' *$ = ! " * 6! 0 *$ . ' # * (# $+ $' #%(+ +
* *&(* +,* # 8 4 (+ #$, E E O ` Q MUM O = ) 8 ER^^G # #$ ..& -&+. , 7-& -&%--8&&.- - c % TV .- . $%&%% $. - [HVUe&&$&&&&-%-f- &- RTVU$ &2 +&+&- TV # X .
E G
*.> ! !'$" "$ "'$ 5? : (+ #% # $ + $ # ! 8 $ * #%* & E * R^^N =% R^^X =% < < R^^X R^^X R^^U * R^^MG %! *+ # . % - # ' . + - 2 '& % #I-$ # - ##.! %#% #*$! --+ & E - .-* * *$ $ %*, ,G - (#! &! +# #$(+ $+ %* , *$* .
( $ # 2 8!! E8 #69# J*%! O +69# MUU 8 #69# `
17
plazma
9]HVWXSY,iGX PLOLPRO: HCO3 -
H2O
9]HVWXSY,iGX QDQRPRO:
H2CO3 H+
CO2
HBuf
%%S >+&2 @S>%XI @S
Buf -
%(S %%S1%%S
3RNOHVY,iGX PLOLPRO:
G>+&2@S G>%XI@S %%S%(S D6,'VHQHP Qt HCO3 -
H2O H2CO3
H+
CO2
%%H >+&2@H>%XI@H %(H %%H1%%H
Cl HBuf
Buf -
erytrocyt plazma
Cl -
HCO3 -
H2O H2CO3
H+
CO2
HBuf
%%S >+&2 @S>%XI @S
Buf -
%(S %%S1%%S
!"+ % $ 7"(( ((e&//& $&//& C0(( 0((e &//& $ &//& C() ()e& " $& " !+ $ $ & & % %
&& %&$C * &//& C& " DE+ 7%$ * * $&& % &% * C DE $* * 4.2 7* 5 7 DE 4.2 # $%# * $% 7
18
O +69# MMNG % # + *# 6 +c dd+!*d#%. ) $. +# *&(+ %$ #$# #*$* %! 0* 8 #69#, * * # # + * * , +!%**$ !+#/* +# NB # + 8 #69# * * # # * +# ! ./ 8 4 ! * #! * $# *,. +
# (* # &(* * ; #+ 8 4 , $ - * ('+ $+ (* - +* % + .-*6 * *! +# pCO; # **
= - -* '! 1 * - E G #! pCO; # (* AL"W- L- **% ! ! , #$. *
I '$ $ * #% +! # &* .$ ,. *+ - +# .
% #*
--+ (+#! *$ E* R^^NG #$-* +#! #$! % $ , #%- 1 8 4 8 #69# .$-$ - * -$$ '$ . #% +! pCO; < % . -/ V# !B - +# NN --$ #+! # *! \ Z7
2 8 4 -/ * % . -
%%AL"W (* %$* * $ ! *">? BB & %$! \ + Nan ! -* %* E A"42-nA2PO4%, #%8"42^^ + - !*(G 2 %* #$(
*,.
#-$$ Nan L*!! *-$ &$ ( %- EO R^^MG
N^ ! * !
! %0!( %$+ !* "'$*6 @%)6 *B%)6 + % *$ - Alb !;"DE((# , 7@, 7# $* DE((< % #$(+ , DEG((
19
*,.
( %- E - ## 8 4 G Alb-VTVSTg 2#$ ! *+
*# -# + ! 6;AR %* *! "'$*6 % *$ + - Alb % #$(+ , # #+ + %- gVTVSTgV "'$*6 *$ %% (+ %$ # 8 4 - RN5st-] %% (+ %$ # 8 #69# - RN5sa-] #$* *( #$ E - .! * +G RN5st-USRc!IE:UVRTc!I;:UVRT;c!I-UVRg-U"RTgV] RN5sa-USRc!IE:UVRTc!I;:UVRT;c!I-UVRg-UVRgU %% (+ %$ # 8 #69# - $ . ! (+ #*$ g9%h{gA9%nh : + -* *$ #$ *$ +# ! 8>= E* WU **dG
*$ +# ! ZZ *! E# - SX **dG . / . * $ [Alb] $ * $ [HAlbV] RgUS:RTgV] %# * %% (+ %$ # 8 #69# . * %% (+ %$ # 8 4 RN5st-USRN5sa-]
#! * NN NB - - - * 8>= Korekce Siggaard-Andersenova nomogramu na 37°C BB BE BB BE
100 90 80
38°C 38°C 37°C 37°C
70 60 50
BB 40
PCO2 [torr]
30
BE
20
10
6.8
6.9
7
7.1
7.2
7.3
7.4
pH
7.5
7.6
7.7
7.8
!E"' ()(( * 7 1234! 1834
20
NNS/ < %! #! P'! *! '$
, +# ! +#! *&(+ %$ , >/ 6>/?# 7;&$<9<@= ;A @8 %#% - 8 #69# '$ ;ZZ - ' +* % D
+#
*+ , E[POIE:UVRTc!I;:UVRT;c!I-]G *+ *&(+ %$ E%*, $# %,G
*2!@ " # = ! !7! .8 %* * - . $+ + - * * * ! - $ & &$ ( - .
$ . )* %! E R^^MG - %+* B 2(+#* -$ - -# # ' #% &C( O 6O, *# *! EO R^^MG #+ 0* $ # %. 8 69# * * . 0* ! # 8 #69# WUrL E8 #69# MTRG /* O !+ #
WXrL - %! '$
0* $ (#! 8 69# WUrL WXrL !
( 8 69#, * * WXrL E EG . #$! - *$ !+-$$ # $ +# Z7 * $ . 6N **d EIG ##$ *. *%
0* $ # + *# #% +! *! # O + O # ! !+-$$* #
8 #69# * * + WXrL ) %! $ *# #% +! *%-$$ F+% JPO pCO2110 100 90 80 70
60
50
0 40
5 10
-5 15 -10
20
30
%H]NRUHNFH WHSORWD°&
-15
20
-20
6NRUHNFtQD WHSORWX°&
BE
%( [mmol/l] >PPROO@
10 6.8
6.9
7
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
pH
!I"+ % 7
21
*# *! * $ %*, %, , -( *#* <# %! # $ %, #% + E ( - (G 6'$ -* + # +# ! V%e B %! .$ 8 #69# #$ 8!! E8 #69# O +69# MMNG A# ! NN NBDNN I-$ - +* % , %*, %, * . NN E G $ pCO; $ +* % !$* *# '$ * ( *$ ## 0!+# Ze Z 6 ''* ## 0!+# '5* - +# ZZ Z7 %! %! * #*
A2O
| | | | | | | | | |
! ! ,
|
"2
L"2
AL"W An
*!
%*,
%,
,
| | | | | | | | |
, &(('%&%'$ %)
"%-* A*
+* % 8 +* % !$* L E%+G "2 L E%+G L"2 "2 * L"R * A * AL"W- E $+ %% ,G * ##$+ %% ,- * L %*, * L %,
* L , * 8>= * ;8>= E*$ +# 8>=
*G Z7
Z70
An
An0
!J"H&$7 %
0$I #$
DE $% *
!C # *# %
J $ # % DE $*C#% DEC& 4.KGL;& MG8L 5 # %7 , ,# & 7667 N *C# %7 & 7! $ % & 7! J $ #%C,# 7,O#P &$ %
22
#!%! %! 0+* % ! !$* E - ^^q +* % !$*G
2 ' .$ NB %+* ! ! ! $ #% +! '$ -$ # , .(+ # + ,#$+ 8 #69# ** ##* *$ +#! *&(+ %$ )$* #+$ ' (* * ,* 9%! # -#'& 8 #69# #$ #% $ ( -* 2!+$ + . +# NB *,.* +
- - #$ NN # *$ +# ! DNN $* -/ $ +* % , %*, , NBSNN:DNN - *. $ **, #! E$# !!G - #
-#* %!+* +# L"2 S^ # A *! XS 8 #69# E8 #69# MMN R^^S R^^TG *$ Z7 $ -* + , 7 # $ 8 '- -- - C+ ) +# - *! . +# Z7 E '(* **G ctHVS:NB 1 %+. . ( -* +-$$ ,#$ -* Z 70 %+. 0 /* $ # "%#% - - Z70 E G - L"R +* % !$* *,.*
0!+# C+* ctHVXS:NBX 2 * # + *# %! * - ! E$+ !, An AL"W- # $ 6 % NG ( * - +#! $+ !, +# ! + -$$ #%( - A $+ ##$+ %% , Z7 Z70 An An0 8>= *$ +# 8>= . * - ! E ! # *#G ' $! # * $ E( ! *#G *,.* *# # '
- %! * # *# ! $ ++
!L"g-&&.&+ & +.52 %" &&2& X.2 %. &&2& +.-c52 - - c ,- . -'&$- - ,& -&+. ,&$&- . ,
23
P <# %! ! $* -+ -$ # $+ *# #% +! * * - *. *#
+ #% +! # $* %'$* $ * + 9ZQ
*:A /!@ - " "$ "' ! $ 7! '2 :8
2 * %'$* -/ #% $+ #$ E < ` 9#$ R^^X 6 % - %+* FG !+$* + . #% + - (#* # %$ -(+ '$ ! *! E LG 6 %$ * * % % 0# +' + -+ *$ '$* * %$ * % (+ ! --+ !'$* # $* # ?#! .#( 0 ( #$(
E( %+ ! % *G # 0 $ &! -$
%% ! % %% , (+ #* - ! $ #$(+ , - '/ * %
%! (+ ! '$ - .#! $ E P+! #%(+ ++ #,#, +$ ! *. #! * *-$ $ #,#$G ! , * -# (* * * ! $+ & - & $+ +#
!H"g)-&C -'& .&+-&%.- !M"!& -&&& 52 . % 1+ - . - .& . - &2 - !;-* . - c2 2 & & -&+. , $
!G"<'- 2
-c52 -& - !;W"k &+ 7,& $8 & .-%&&.&52 % . - !;,& . ;@c & &%.-%&&.- T&0. HI & -&+. ,&+ T $
24
$ E**6 %'$+ +# #$! -$$ #$ , %'* +$G ! #$(+ , %% , * ##$! (+ & - .#! ! * ** $+ , ) * % % (+ ! - #$(
* E *G !! \
E L '( - }9-G - .* #* !' * /* *$ - # 0 $ &! +$ %% ! ( #* #C *' * % % #$! $ 0 $ & +*#$ %% E ( $+ %I+ .# !! G $ *$ *. $ #$(+ , \ #,#* - +!+* i ,-*+ 0 $ &! $ %% ! !*I +#! #,#* - +!+* #i Z'$ $ #. E
!./* *'$+ *#,G !
$ #! + $+ #$ -$$+ + #% +! " (+ + #% +! +# $ -#* ' E< ` Q R^^MG ( - %+* G.
- $* ! $ + #% +! $+ !, $-$ ( *#! ) -# '/ + + 9 ! ! E+c dd+!*d G - $ # - '$ ! *! . * +$ ! - - #%! %-$$ * * ! -# (+ <# - '/ - # ( ' # +c dd444+!*d d#%d^Rd9ZQ~~*~R4. 2( V+#!B + #%+ - L+* - ! - V$ &!B * #%* -# (* .* '$+ ! *, = + #% *+ V B % V# B ! d# * %* '$+ ! * % # *$ *'$+ + /* *#* *,.* !
(- ,(+ + #% +! ; H:;W - # !./ + * *'$ + ! -$$ H 8&* '$ V2 *-B # * ! * # (+$+ *$+ ! + EHG :#$ -# (+ *
, $ - $$ $ (+ #% \ . *. $ *
#%+ , - +# E -$$ G $.$ 8$.$ +# #$(+ , EMG 8&* '$ V'$ %B /* +* '$+ ! *+ - V$B -# (+ * %+ # !! +' %(+ '$+ ! E *# '(+ - AZO \ (+ # $* %** !G +# #$(+ , $
,#$ +# EGG ;* +# !! +' - - +# L"2 , #$! # $. 2 * #.- +# L"2 $ P E# # $* +# $ &G 8&* '$ VQ'$ B E VQ ! B G +# L"2 ( $ ,#$ +# # #$ 8&* '$ V'$ %B EVZe s%&B G %+ +* $ +* + ( $ #$(+ , E;WG Z'$ $ E #$ # 8 4 ! G % P+ - 0# +' ( !$ *- +! * #% + * $+ !, ) * *. !
*#! #% +! $+ !, -$ #$ *'$+ + !.$(+ - &$ ( *,! $#* - %= ( - !.$ (# ! ! !$ 0# +' + 1 . ( + 9 - . ! ' $# !./ + * (# * $ +!& +!P #% * ! +# ! $+ , $+ !, ,(+ ' + $+ ' #-$ -;:;I
25
!;"<2 .-& .,$* & &&& .5- ,7 5-%. - .- -&&.&%&.8&&))&+.&27 -2 . &'2 . -+. -+. ,8-&&.-& &,+.2 .-& .2 1+. & $;! <<! ( !!!
=!!=>! !;!>>= (! ( !>! !! !? ! @=DG!?I&J!?!K! =!=LQ! =!? !?I&!!<! G%! ( % SQ?!?I&!=!! =!=>!
=Q? ?I& =
!=Q?!?I&!=!
( %J!=Q?!?I&!!>W!? ! ?U S! <=D!?<! ?! =!X>D K<! Q!?<
<!G%! ( %!!=Q?! ?I&J! W!=>! !<>Z <! =! X;!?UY
Vstup: (simulace alveolární hypoventilace) $;%!>
!;;"<& .&'
26
$;!>>= (! ( !>! ! =>! !? ! @=DG!?I&J! > @ DG I& ?!K!=!=LQ! =!? !?I&! !<!G%! ( % ?I&!!?U!K!? < (!Q% ? ? K ? (
\<<! = (!&_! ?==W
<=D!?<! ?! =! X>D K< Q ?<D K<!Q!?<
Vstup: V t (simulace anémie) ;%! <<! G%
!;E"<%
$;!>>= (! ( !>! !=>! ! ? ! @=DG!?I&J!?!K!=! =LQ = ? ?I& < =LQ! =!? !?I&!!<! G%! ( % bW!=Q?!?I&!!>W!? ! ?U!> (!G%> !I&!=!
( %Y!> (!&_!?==WD K<!Q!?<
("& " "!
$;%!%=W!K%!>
!;I"< $ &%.2 .
27
!;J"<2 .-& .,-&& -,.&'&':543& &'& ,c2 2 &
!;L"D & % &'& % -&!; $ !;&+
28
!;H"D +&+ .&%5-&.c!;& % -& c!; & -, & -%c 2& % &2 .-&-!;m!;: -
!;M"c& -&+.- . -,!; a CO;&.&'&+..&'&+. &.& % -&
29
!;G"! 54 &'&+& .X)&%-&.&'&+.&, & % -& -- -&+ a,- -%&+ .-& .2 &- .
!EW"< 1$ & . $ $* & 2 X $ &':54'&'2 .54 .) ,1+. &
30
!E"c &':54,&+- 54& 0 2 & %) 70 8c + -T - X.2 %. .. . % &':54&-- .!;K-,$& -& - ,$ &+ ) - ) -&':54$7&& . ) . &.-&+ %54.&'&%. c!; .)- -&- -& %- . ) , -%8
8* !.$* ( ! ! $ ! + * +! * $+ !, % #, + &' ,$+ , > &$ +! # , *#* $-$ $* +$ $' #, - #! (+ , ) *#! $ $ + ' *& &6P % &$ * + % '$ +%! $ #! #+$ $ &'6P$+ +, - * +
$ 0# +' + $ "R 2!./ * (# #, + &'6P$+ +, %-$ -;J:;L 2!./ * (# #, $ *% $+ !, -$ EW:E.
*B '& / ! ! )! C" )$ " ) ' ! $ Z'$ $ - $* (+#* *#$ #% $+ #$ $+ !, . $ # 8 4 -* -# '
. - $+ *# +/* # %* *#$ #% +! !+-$$ 8 4 -/ '$ * . - *#
+# 8>= I %$ #(+ & , , \ 0 * .
*#$ A * $ & *#$ % #(+ & , P E - # $* , #$(+ #(+ +#(+ -
31
gAnh EAG -$$ *
O M @>) = ) L
( M
g8>=h g8 L" L L R gZ h gZ
L M ?#! ?
L Q - -
K N M K 7! ! ! 7 > & $ &
$
> $ &
!E;"$ &$7 % . # $%-
7 *
7C ,$% $% *
% M $.&%$ $$I QI 9:29!@% *# 7 76 %6 &7" %
&$7 % 0#*6 &7 % , DER % Q # % C % DE+#$ & % 6 ! 6 ! % , #&&$7
(+G \ --+ $-* # $* !'$ #+ =% & -$ *#$ $-* !'$ #$ #$ +#, #.-$ + *#$ #%+ EE;G ) $ +* (* * J ( A 7J(A8 E9%* R^^XG ; * *# kL - ( *# ! (+ ! *, J C A E #$ -*( C K 6 +c dd444+**# G . -+ -
32
gAnh EAG L"R L"R 8"R gAL"W6h gAL"W6h ## 8>= ZZ Z7 An
( M ( M
O M @>) = ) L
!')*M%F@PM@F*P' QRQ<0
Z70 E An0G $ P' 8'I$@*OHM@F*P' < < "R
L"R "
L M
?#! ?
L Q Q - -
;S6 ! ! %*! +*%%
K N M > & $ & &
& > $ &
!EE"$ &$7 % & #
& & C%# # / 7H&& &% MBPM4.1-!$# $ % %$ &$()" * $ % MB% * *" 7!R & $# 7 "7.24.2!C / %$ O# & C/ /% $&
@6 &* $% *
#, .KC 4.KC MC % $ && % C & ()DE
EA R^^U R^^M R^^ L* R^^M R^^G * #
*#$ $-* !'$ #$ #$ +#, #+ *#-*6 #+#%( E#! $* * #-G * $
' *# *$ *+ ' # #
# + * % i! ; %'$ $ EEEG #$ # 8 4 $ *#- $ 8>= ' * % % %! !'$ (+ ! E' #C'$+ , #+G
33
!EI"A& -% &&2& +.-& nTc@TA :FB'1.% &. TV:& $& %-'- &%K&$& - &+.-7LW@;I.8 &-%2%& - . &+& -&+. ,%*-C<#C ' -'&-& %- -& - 6& -g('& (-2
8 *(* ! -* --+ *# -* *#C ** -! <# #%- %*& *#$ ++ + *# C K /* # $ # - *$$* !./ %'$+ $ ( *.
+$ *# * #%(+ + E < ` < - R^^G ; #$ # *(+ , $ ** *# JCAPC K Q R 5 *#-* ' * % % %! !'$ (+ ! EEIG 1 *# * % # (+ ! E * \ ( # !! *' ' !G $+ \ # * % & - . R ,(+ $+ :I - *# #C #+ EEJG # .- % & # ! !'$ *(+ , ##! -* ' ' *# >#! EMXMG
+ $+ * R E 9+ 2 8 R^^G
34
busConnector
so…
CD_NH4
YNH4
CD_KA_Outflow Y…
Y…
Y…
YTA
CD_PO4_Outflow Artys_pH
Y… DT_AldosteroneEffect
PHU
Renal
acidificat…
so…
CD_cTH
YTA
kidney_BloodFlow
vein
tissueFlow
arty
!EJ"A& (-&&.K&&2& ' & % +. , 7&2 2 . & % - 2 . . -% &&. -- -+..-%
!EL"A& -%&&.& %- -& &+. -
35
!EH"A& -%&&.& ' -'7C<#8 &+. - T- ,&C<#-&&.- ,& %- &q -&a&+.&&.
!EM"A& -%&&.&*-. &+. -
36
!EG"A& &+!;& .72 $--%&&.8
!IW"A& &+!;& .7 .)- -&&*-&&.8
37
!I"1)&+.2
2 . & 5-+& &+2 .-, % & 6$ +.,& - %- -D-)&2 . .2
2BgC - +2 - +. &%--%5- ',& & -+.- .
"# -$$ $ E ELG - % +#* ! , &$ & >8) # =(+ + )$* ,%* - '$ %% , >8)
$
+# ! L"2 E - - - i$ # -$$ $G - '$ A &$ &! EEHG 1 '$ #%( %I+ EEMG ( * *# I- +# !! *' (* #(+ , #$ ! Q'$ . #% +! - '$ # L"2 I $ '$* * EEG IWG :#-( 0
+ + *# - # +c dd+!*d+**#.
* #) DE#FGFAHIHE ) 6, GJ97! 'B,K8 *#) '@ ) //!'! )$ + @! C E%'! #'! * ! !G +* %* +* $$ $+ %+ E@! L* ` @# MXRG *$ * %! .$ (-* #$ < %d8* # C*! < +4 8* @! -+ $ * MXR *# ** -! O \ 8* %! # . + . *
#- E MM^G @C %! * (+ '$ ', #% *# %!! -#$* &$+ -, *#$ #!*(+
38
100
RAP GFR
227 .1
FF
0.3411
GP
88 .11
Renal artery pressure
100
AffC
Afferent artery conductance
6.25
GLOMERULUS
TubC
Normal proximal tubule conductance [ml /min /torr] 1189
RBF
INPUTS : RAP - Renal artery pressure [torr] Affc - Afferent artery conductance [mll /min /torr] TubC - Proximal tubule conductaqnce [ml /min /torr] RBF - Renal blood flow [ml /min ] RPF - Renal plasma flow APr - Plasma protein concentration (in afferent artery ) [g/ml ] GKf - Glomerular filtration coeffitient [ml /min /torr]
Reanl blood flow rate
665 .8
RPF
Renal plasma flow rate
0.07
OUTPUTS : GFR - Glomerular filtration rate [ml /min ] FF - Filtration fraction [relative number ] GP - Glomerulal pressure [torr] PTP - Proximal tubule pressure [torr] AVeCOP - Average colloid osmotic pressure [torr] NETP - Net pressure gradient in glomerulus [torr]
PTP
36 .33
AVeCCP
37 .58
NetP
14 .19
APr
Plasma protein cnoncentration [g/ml ] 16 Normal glomerular filtration coeffitient [ml /min /torr]
GKf
Glomerulus
!I;"6--2 .2F=!ABk6=6<7&%.-&+-82
.) ( < - &+2 $& - 1 <-$ & . .& "- &+& ,&% & . 7,.. 8&+ . ,& . .2-.2
&+ 2&%,.&+ ,
! *, EIG -$ (' $+ %, (+ '$ '$+ %! !(* -$* $ (+ '$ $+ -# 9 '$ ' #*! % (+ *'$+ -!, Z *'$ -!! --+. !(* # * - 8* *.I-$
'$ ' *#! -# (+ %, #C(* ! ( ! Z! - ! ++ *$ '$ ' *! % *# ! -$ --+ -# --+. ! ( ! --$ *$ #', (* V#$B * 8* $m - *. ++! # Z! - *.
# -# (+ %! *, --+ - $* $* *-$ # $* #C(+ $+ ( $+ , # -$ -2 2 8*'$ ' E( *(* %! *(* %*G ( # . * *'$ $ %#% - ( ' ( # . * -$ -# (+ , # $+ (+ , . *,. -$*
+$ ' *$
$ * (' L+$ *'$+ ' E*+ %G *,.
*$ #$ ( , -(+ $+ #-$+ ' $+ + EI;G *$ *'$+ ', #-
+$ *# -* +#- !-#
-* / * *(* *#+ ! * L( . ( *# *,.* %
- - *'$ '! ! --+ -$ - - - ! -(* ,%* *# .-$ EIEG ) - * (+# *% \ -* +'$+ % + -(* - *#$ %*#$(+ ! *, E 9#$ ` < R^^RG 70* $ ! *$ ##% * - * *& +! - ! ! V B *'$+ ' -$ -# (+ *'$+ ', * % +$ *# -+ +$
39
125 RAP
INPUTS : RAP - Renal artery pressure [torr] Affc - Afferent artery conductance [mll /min /torr] TubC - Proximal tubule conductaqnce [ml /min /torr] RBF - Renal blood flow [ml /min ] RPF - Renal plasma flow APr - Plasma protein concentration (in afferent artery ) [g/ml ] GKf - Glomerular filtration coeffitient [ml /min /torr]
AffC
TubC
6.25 Normal proximal tubule conductance [ml /min /torr]
GFR
GLOMERULUS
29 .89
RBF
1189
3.643 0.1904
FF
NA TRIUM
MDNaFlow
OUTPUTS : GFR - Glomerular filtration rate [ml /min ] FF - Filtration fraction [relative number ] GP - Glomerulal pressure [torr] PTP - Proximal tubule pressure [torr] AVeCOP - Average colloid osmotic pressure [torr] NETP - Net pressure gradient in glomerulus [torr]
RPF
APr
0.07 Plasma protein cnoncentration [g/ml ]
16
GFR
20 .29
100 .1
NetP
OUTPUTS : MDNaFlow - Sodium outflow [mmol /min ] PdxNaReab - Proximal sodium reabsorbrtion [mmol /l] PrxFNa - Proximal fractional sodium reabsorbtion [relative number ]
PrxFNaNorm
0.8 Normal Na proximal fractional reabsorbtion
Glomerulus
14 .37
LogA2
32 .21
AVeCCP
GKf
Normal glomerular filtration coeffitient [ml /min /torr]
INPUTS : PNa - Plasma sodium concentration [mmol /ml ] GFR - GLomerulal filtration rate [ml /min ] LogA 2 - Logarithm of plasma angiotensin concentration [pg / ml ] PrxFNaNorm - Normal value of sodium proximal PdxNaReab fractional reabsorbtion [relative number ]
60 .31
GP
PTP
665 .8
- P R O XI M A L T U B U L E
PNa
PrxFNa
0.7977
Calculation of proximal tubule sodium reabsorbtion
7.811 MYOGENIC RESPONSE
RENAL PERFUSION
AffC EffC
200 RenVenC
Venous conductance [ml /min /torr]
AP
7
VP
RAP
INPUTS : AffC - Afferent artery conductance [ml /min /torr] EffC Efferent artery conductance [ml /min /torr] RenVenC - Renal venous conductance [ml /min /torr] AP - Arterial pressure [torr] VP - Vena renalis pressure [torr] Hct - Hematocrit [relative number ] Clamp - Renal artery pressure drop caused by renal artery clamp [torr]
INPUT : RAP - Renal artery pressure [torr]
RAP
OUTPUT : AffC - Myogenic effect [ x Normal ]
Calculation of the myogenic response to changes in renal perfusion pressure (afferent conductance responds to changes in perfusion pressure , with pressure increases causing vasoconstriction )
RBF
1189
Vena renalis pressure [torr] OUTPUTS : RAP - Renal artery pressure [torr] RBF - Renal blood flow rate [ml /min ] RPF - Renal plasma flow rate [ml /min ]
Hct
0.44 Clamp
Hematocrit
0.9997
AffMyo 1
= _,` = _5
7 , #9 54 ^
RPF
665 .8
Calculation of renal artery pressure and renal blood flow rate
0 Renal artery pressure clamp drop [torr]
A F F E RE NT A RTE RY
29 .89
AffMyo
INPUTS : AffMyo - Myogenic effect [ x Nomal ] MDSig MDSig - Macula densa feedback signal [ x Normal ] AffNorm - Normal conductance in afferent artery [ml /min /torr]
AffC
OUTPUT : AffC - Vascular conductance [ml /min /torr]
AffNorm
30 Normal conductance of Afferent artery [ml /min /torr]
Calculates conductance of afferent artery
E F F E RE NT A RTE RY
AP
EffC
EffC
OUTPUT : EffC - Vascular conductance [ml /min /torr]
25 .1 A RTE RIA L P RE S S URE
ZNAE
INPUTS : ZNAE - ECF sodium content [mmol ] logA 2 - Logarithm of plasma angiotensin concentration [pG /ml ] APNorm - Normal value of arterial pressurel [torr]
LogA2
100
logA2
INPUTS : logA 2 - logarithm of angiotensin concentration MDSig MDSig - Macula densa feedback signal [ x Normal ] EffNorm - Normal conductance in afferent artery [ml /min /torr]
EffNorm
AP
25 Normal conductance of Efferent artery [ml /min /torr]
Calculates conductance of efferent artery AP
1.003
100 .1
OUTPUT : AP Arterial pressure [torr]
APNorm
MACULA DENSA
MDNaFlow
APNorm [torr] INPUTS : MDNaFlow - Macula densa sodium flow [mmol /min ] logA 2 - Logarithm of plasma angiotensin concentration [pG /ml ] MDNorm - Normal macula densa feedback signal [ x Normal ]
Control of arterial pressure by angiotensin and extracellular sodium content MDSig
OUTPUT : MDSig - Macula densa feedback signal
LogA2
0.9451 Scope 1
A2
MDSig
PRA
INPUTS : PRA - Plasma renin activity [ Units /ml ] CEAct - Converting enzyme activity [x Normal ] A 2Inf Angiotensin 2 infusion rate [nG /min ]
1.276 LogA2
logA2
Macula densa feedback signal calculation based on macula densa sodium flow and angiotensin concentration
RENIN
Scope A NGIOTE NS IN
18 .9
PRA
CEAct
OUTPUTS : A2 - Plasma angiotensin 2 concentration [ pG/ml ] LogA 2 - logarithm of plasma angiotensin concentration [ pG /ml ])
OUTPUT : PRA - Plasma renin activity
1 Converting Enzyme Activity
A2Inf
A LDOS TE RONE
logA2
INPUTS : logA 2 - Logarithm of plasma angiotensin concentration AldoInf - Aldosterone infusion rate [nG /min ] VTW - Total body water content [ml ] OUTPUT : Aldo - Plasma aldosterone concentration
1
INPUTS : MDSig - Macula densa feedback signal [ x Normal ] VECml - Ectracellular fluid volume
Normal macula densa feedback signal
VECml
[ Units /ml ]
Calculation of plasma renin activity
0 Angiotensin Infusion Rate
Calculation of plasma angiotensin concentration and logarithm of plasma angiotensin concentration (most of the action of angiotensin are logarithmic in nature : concentration changes at higher concentrations produce less of an effect than changes of the same size at lower concentrations )
Aldo
LogA2
MDNorm
[ x Normal ]
VECml
LogA2
[pG /ml ] AldoInf
0
1.789
Aldosteron Infusion Rate
NA TRIUM
- DIS T A L TUB ULE
VTWml
Calculation of plasma aldosterone concentration
-CTotasl body water content [ml ] Aldo
INPUTS : MDNaFlow - Sodium inflow [mmol /min ] Aldo - Plasma aldosterone level [pg /ml ] DisFNaNorm - Normal value of sodium distal fractional reabsorbtion [relative number ] DisNaReab
Aldo
6.867
0.5
DisFNaNorm
Normal distal fractional reabsorbtion for Na
DistNaFlow
DisNaFlow
MDNaFlow
[ nG/dl ]
OUTPUTS : DisNaFlow - Sodium outflow [mmol /min ] DisNaReab - Distal sodium reabsorbrtion [mmol /min ] DisFNa - Distal fractional sodium reabsorbtion [relative number ]
1.854
0.509
DisFNa
Calculation of distal tubule sodium reabsorbtion
2162 SIMPLE SODIUM BALANCE NaDiet ZNAE
0.1441
PNa
INPUTS : NaDIet - Dietary sodium intake [mmol /min ] NaUrine - Sodium urine outflow [mmol /min ] VECml - Extracellular fluid volume [ml ] OUTPUT : ZNAE - ECF sodium content [mmol ] PNa - Plasma sodium concentration [mmol /ml ]
Extracellular sodium quantity is the integral over time dietary sodium intake minus urinary sodium loss
0.125
0.1243
NaDiet [mmol /min ] NA TRIUM NaUrine
VECml
- COLLE CTING DUCT
NaUrine
INPUTS : DisNaFlow - Sodium inflow [mmol /min ] CDFNaNorm - Normal value of sodium distal fractional reabsorbtion [relative number ]
15000 1.664
Extracellular fluid volume [mmol /min ]1
0.9305
DisNaFlow
CDNaReab
CDFNa
OUTPUTS : NaUrine - Sodium urine outflow [mmol /min ] CDNaReab - Collecting duct sodium reabsorbrtion [mmol /min ] CDFNa - Collecting duct fractional sodium reabsorbtion [relative number ]
CDFNaNorm
0.93 Normal collecting duct fractional reabsorbtion for Na
Calculation of collecing duct sodium reabsorbtion
!IE"3 2 .2F=!ABk6=6<. .-&.%&c &+.-&+.-,72 .2,8 %X .5)
40
NON-MUSCLE OXYGEN DELIVERY
THIRST AND DRINKING
KIDNEY DYNAMICS AND EXCRETION
MUSCLE BLOOD FLOW CONTROL AND PO2
7.997
99.95 0.01251
40.01
HM
8
NON-MUSCLE OXYGEN DELIVERY OVA
40
POT
HM
INTPUTS: HM-hematocrit [% ] OVA-oxygen volume in aortic blood[ml O2/l blood] BFN-blood flow in non-muscle, non-renal tissues [l/min] AOM-autonomic effect on tissue oxygen utilization
200 OVA
1.01 BFM
OUTPUTS: POT-non-muscle cell PO2 [torr] POV-non-muscle venous PO2 [torr]
BFN
0.001
VVE
0.3
VIM
VV7
1
0
1.001
INTPUTS: PA- aortic pressure [torr] PPC - plasma colloid osmotic pressure [torr] VIM - blood viscosity(ratio to normal blood [torr min/ll] REK- percent of normal renal function [ratio to normal] CNE- sodium concentration abnormability causing third factor effect [mmol/l] AUM - sympathetic vasoconstrictor effect on arteries [ratio of normal effect ] AHM - antidiuretic hormone [ratio of normal effect ] AM - aldosterone multiplier [ratio of normal effect ]
0.9993
INTPUT: VVE - VVE - excess blood (stressed ) volume in the veins [l]
8 P2O
OUTPUT: VV7 - increased vascular volume caused by stress relaxation [l]
VIM
1 0.3 REK
1
REK
Vascular Stress Relaxation 0.9834
POV
AMM
AU
10
1
AU
1
1 STH 0.0009993
0
AHM
TVD
1.2 Thirst And Drinking
RBF
1.2 RBF
OUTPUTS: VUD - rate of urinary output [l/min] RBF- renal blood flow [l/min] RFN- renal blood flow if kidney is not damaged[l/min] NOD - rate of renal excretion of sodium [mmol/min]
CNE
1
AOM
1
AHM
9.843
40
CNE
AMM
AOM
VUD
KIDNEY DYNAMICS AND EXCRETION
0.01011
AOM
1.007
0.9987
PPC
VASCULAR STRESS RELAXATION
0.3213
EXC
1 EXC
28
7.973 P2O
OUTPUTS: OVA- oxygen content of arterial blood [ml O2 STPD/l blood] AOM P2O - muscle cell PO2 [torr] AOM - autonomic effect on tissue oxygenation AMM - muscle vascular constriction caused by logical tissue control [multiplifier, ratio to normal]
40
POV
1.001
VUD
PPC
1 BFM
2.862
2.8 BFN
1.012
STH
INTPUT: POT - non muscle cells PO2 [torr] AHM - antidiurectical hormone effect to non renal vascular resistance , multiplifier (ratio to normal effect ) OUTPUT: STH - salt appetite multiplifier factor [ratio to normal] TVD - rate of intake of fluid by mouth TVD or otherwise [l/min]
8 POT
27.97
OVA INTPUTS: VPF - volume of free fluid in the pulmonary interstitium HM - hematocrit [% ] BFM - blood flow in muscles [l/min] EXC - Effect of excercise on the metabolic usage of oxygen by the muscles[ratio to resting state ] AU - overall activity of autonomic system
POT
0.00095
PA
VASCULAR STRESS RELAXATION
200
MUSCLE BLOOD FLOW CONTROL AND PO 2 40.01
POT
198.8
PA
100 OVA
0.0125 VPF
7.997
THIRST AND DRINKING
198.8 VPF
HM
40 HM
Muscle Blood Flow Control And pO 2
1.2 RFN
1.006
NON-MUSCLE OXYGEN DELIVERY
1.2
AAR - afferent arteriolar resistance [torr min/l] EVR - postglomerular resistance [torr min/l] RR - renal resistance [torr min/l] GLP - glomerular pressure [torr] GFN- glomerular filtration rate of undamaged kidney [l/min] GFR- glomerular filtration rate [l/min]
AUM
1 AUM 0.9987
RFN
ANTIDIURECTIC HORMONE CONTROL
AHM
1
1.007
0.09615
AHM
NOD
AU
0.9943 AM
0.1
1
NOD
AU
ANTIDIURECTIC HORMONE CONTROL
1
0.09019
AM Kidney Dynamics and Excretion
PRA
0
INTPUT: AU - overall activity of autonomic system, ratio to normal PRA- right artial pressure CNA- extracellural sodium contrentration
0.9987 AHM
1
PRA
OUTPUT: AHM - antidiurectic hormone multiplifier, ratio of normal effect
142.2
AHM
CNA
142
NON-MUSCLE LOCAL BLOOD FLOW CONTROL
CNA Antidiurectic Hormone Control
CIRCULATORY DYNAMICS 0.9331
NON MUSCLE LOCAL BLOOD FLOW CONTROL INTPUT: POT - non-muscle cells PO 2 [torr]
40 POV
POV
ARM
0.9331
1.01
1.6
ARM
OUTPUT: ARM - vasoconstrictor effect of local blood flow autoregulation in non-muscle tissues [ratio to normal]
40
ARM
BFM
0.9993
1
1 VIM
ARM
BFM
1 VIM
Non-Muscle Local Blood Flow Control
ANGIOTENSIN CONTROL
1.006 2.789
1
AUM
1
RVS
2.9
AUM 0.9996
CAPILLARY MEMBRANE DYNAMICS
RVS
0.9996
REK
1 ANGIOTENSIN CONTROL
REK
ANM
1
0.00095 3.772
ANM 0.9834
16.84
VUD
0.001
PVS AMM
VUD
3.7
1
PC
RFN
2.789
PVS
AMM 1.003
RVS
17
1.2
PC
RFN
CIRCULATORY DYNAMICS
AVE
RBF
RBF
AUTONOMIC CONTROL
16.84 PC
17 PC
2.947
1.007
VVR
99.95
2.95 VVR
AU
0.01011
1
PA
100
AU VV7
1.002
2.947
POT
7.973 P2O
8 P2O
AUH
VVR
1 2.95
AUH
1
VVR
HMD
1
-6.337
-6.3 PIF
5.063
QLO PTC
5 99.95
PTC
1.289e-008
PA
2.999 VP
3 VP
0.03864 DPC
0.04 DPC
DFP
0
100
DFP
0.001
HPL
TVD
0.9996 70 CPP ANM
VTL
0.002
PPC
HSL
PPA
PA
PPC
PPD
20.25
15
5.001
PPA
HSL
0.03788
0.04
0
142.2
VTC
DPL
1 HPR
0.9943
1 AM
CKE 0.002
DPL
HPR
Autonomic Control
5
VTC
1 PLA
OUTPUT: AM - aldosterone multiplier, ratio of normal effect
CKE
0.001913
CPI
0.006167
AVE
1 AVE
AM
CPI
20
EXC
EXC
INTPUT: ANM - angiotensin multiplier effect on vascular resistance , ratio to normal PA- aortic pressure [torr] CKE- extracellural potassium concentration CNA- extracellural sodium concentration
PA
100
28
PPD
0 HSR
ALDOSTERONE CONTROL
-4.386e-006
15.18
1
1
99.95
27.97
VTL
1 HSR
ANM
1
2.8 BFN VB
1.003
ALDOSTERONE CONTROL
69.92 CPP
0.001871
BFN
4.999
OUTPUTS: PC - systemic capillary pressure [torr] PPC - plasma colloid osmotic pressure [torr] VTC - toral rate of movement of fluid out of systemic capillaries [l/min] VB - blood volume CPP - plasma protein concentration DPC - rate of loss of plasma protein through systemic capillaries
0.0009993 TVD
2.862
5 VB
AUM
CAPILLARY MEMBRANE DYNAMICS INTPUTS: PTC - colloid osmotic pressure of the tissue gel [torr] VTL - rate of return of fluid from the interstitium to the blood through the lymph[l/min] TVD - rate of intake of fluid by mounth or otherwise [l/min] RVS - venous resistance BFN- blood flow in non-muscle , non renal tissues PVS - average venous pressure VRC - volume of red blood cell VUD - rate of urinary output DFP- rate of increase in pulmonary free field PIF - intersticial fluid pressure PPD - rate od change of protein in pulmonary fluids CPI - concentration of protein in free intersticial fluid VP - plasma volume [l] DPL - rate of systemic lymphatic return of protela
VRC
2 VRC 5.072
5
1 HPL
AUM
1
2
0 PRA
1
1.006
Angiotensin Control
3.7 PVS
PRA
AUH
AUH
CNE
CNA
5 VB
3.772 PVS
PA
HMD
10
CNA
142 VB
1
1.002
OUTPUTs: AU - overall activity af autonomic system [ratio to normal] AUH- autonomic multilier effect on the heart output [ratio to normal] VVR - basic volume of venous tree(maximum volume at zero pressure ) [l] AUM - autonomic multipllier effect on arterial resistance [ratio to normal] AVE- autonomic multipllier effect on venous resistance [ratio to normal]
9.843 CNE
4.999 2.8 BFN
0.09019
PIF
AUTONOMIC CONTROL INTPUTS: PA- systemic arterial pressure torr POT - non-muscle cell PO2 [torr] P2O - muscle cell PO2 [torr] EXC - Effect of excercise on the metabolic usage of oxygen by the muscles [ratio to resting state ] AUZ- overall sensitivity of autonomic control [ratio to normal]
7.997
8
142.2
2.862 BFN
0.3 VVE
OUTPUTS: BFM - muscle blood flow [l/min] RVS - venous resistance [torr/l/min] PVS - average venous pressure [torr] VVE - excess blood (stressed ) volume in the systemic veins [l] PRA - right atrial pressure [torr] QLO - output of left ventricle [l/min] PA- aortic pressure [torr] BFN- blood flow in non-muscle, non-renal tissues [l/min] PRA- right atrial pressure [torr] PLA - left atrial pressure [torr]
0
POT
RVS
VVE
QLO
VV7
PA
0.3213
INTPUTS: ARM - vasoconstrictor effect of all types of autoregulation VIM - blood viscosity(ratio to normal blood) AUM - sympathetic vasoconstrictor effect on arteries ANM - angiotensin multiplier effect on vascular resistance , ratio to normal AMM - muscle vascular constriction caused by local tissue control, ratio to resting state AVE- sympathetic vasoconstrictor effect on veins RBF- renal blood flow [l/min] PC - capillary pressure [torr] VVR - diminished vascular volume caused by sympathetic stimulation[l] VV7 - increased vascular volume caused by stress relaxation [l] AUH- autonomic stimulation of heart, ratio to normal HMD - cardiac depresant effect of hypoxia HPL - hypertrophy effect on left ventricle [ratio to normal] HPL - hypertrophy effect of left heart [ratio to normal] VB - blood volume[l] HSR - basic strenght or right ventricle [ratio to normal] HPR - hypertrophy effect of right heart [ratio to normal]
1.2
1.2
1 ANM
OUTPUTS: ANM - angiotensin multilier factor on vascular resistance [ratio to normal] CNE- sodium concentration abnormality causing third factor effect
2.9 1 AVE
ANM
INTPUTS: REK- percent of normal renal function [ratio to normal] RFN- renal blood flow if kidney is not damaged[l/min] CNA- extracellural sodium concentration
1.2
CNA
PLA
142
Capillary Membrane Dynamics
CNA Circulatory Dynamics Aldosterone Control
TISSUE FLUIDS , PRESSURES AND GEL
ELECTROLYTES AND CELL WATER
HEART HYPERTROPHY OR DETERIORATION
0.001871
PULMONARY DYNAMICS AND FLUIDS RED CELLS AND VISCOSITY
15.18
1.007
1
1.289e-008
PPA
PA 0.9993
DFP
0.006167 1
0
INTPUTS: AUR- overall activity of autonomic system [ratio to normal] HMD - cardiac depresant effect of hypoxia, shock and other factors [ratio to normal] PRA- right atrial pressure [torr] QLO - output of left ventricle [l/min]
PLA
27.97
PPC
INTPUTS: PA- systemic arterial pressure [torr] PPA- pulmonary arterial pressure [torr] HSL - basic strenght or left ventricle [ratio to normal] POT - Non muscle cells PO2 [troo] HSR - basic strenght or right ventricle [ratio to normal]
40.01
VB
7.997
HM
1.012 STH
1 20.25
8
HM
POT
STH 0.01251
CPI
20
VPF
VPF 11.97 1
5 CKE
142.2
CNA
142 CNA
VP
12
3
VTS
VP
VID
1
0
HMD
CKE
2.999
VTS
8.074e-006 HMD
HSR
5.001
OUTPUTS: VID - rate of fluid transfer between interstitial fluid and cells [l/min] CKE- extracellular potassium concentration [mmol/l] CNA- extracellular sodium concentration [mmol/l] VTW - total body water [l]
0.0125
CPI
POT
40
Red Cells And Viscosity 0 PPD
0.1
5
OUTPUTs: PTC - total colloid osmotic pressure of the tissue gel] VTL - lymph flow rate [l/min] DPL - rate of return of protein to the circulatin by way of the lymph [g/min] CPI - concentration pf protein in the interstitium [g/l] VTS - total interstitial fluid volume [l]
DPC
HPL
INTPUTS: AM - aldosterone multiplier, ratio of normal effect REK- percent of normal renal function [ratio to normal] NOD - rate of excretion of sodium in the urine [mmol/min] STH - salt appetite multiplier factor [ratio to normal] VTS - systemic interstitial fluid volume [l] VP - plasma volume [l] VPF - pulmonary interstitial fluid volume [l]
NOD
PTC
PTC
DPC
0.04 1
5 VB -4.386e-006 PPD
CPP
70 CPP
INTPUTS: VTC - rate of fluid transfer across systemic intersticial fluid DPC -rate of influx protein into the interstitial fluid from plasma [g/min] VID - rate of fluid transfer between interstitial fluid and cells
0.03864 1 HPL
OUTPUTS: HPR - hypertrophy effect of right heart [ratio to normal] HPL - hypertrophy effect of left heart [ratio to normal] HMD - cardiac depresant effect of hypoxia, shock
ELECTROLYTES AND CELL WATER NOD
5.063
HEART HYPERTROPHY OR DETERIORATION
HSL
2 VRC
69.92 QLO
0.09615
DPL
PPA 2
OUTPUT: VIM - blood viscosity [ratio to normal] HM - hematocrit [% ] VRC - volume of red blood cells []
4.999
VPF
PPC
5.072
5 QLO
15
VIM
VRC
0.0125
72.48
HR
RED CELLS AND VISCOSITY INTPUT: POT - non-muscle cell PO 2 [torr] VB - volume of blood[l]
0.01251 VPF
OUTPUTs: DFP- rate of change of free fluid in the lungs [l/min] VPF - volume of free fluid in the pulmonary interstitium [l/min] PPD - rate of loss of protein through the pulmonary capillary membrane [g/min]
28
OUTPUTS: SVO - stroke volume [l] HT - heart rate
PRA
0 PRA
POT
8 POT
INTPUTS: PPA- pulmonary arterial pressure [torr] PLA - left atrial pressure [torr] PPC - plasma colloid osmotic pressure [torr] CPP - plasma protein concentration
PLA
0.09019
0 VID REK
0.04
TISSUE FLUIDS , PRESSURES AND GEL
PPA
1
1 REK
DPL
HPR VIM
PULMONARY DYNAMICS AND FLUIDS
0.06998
SVO
HEART RATE AND STROKE VOLUME
HMD
1 HMD
8.074e-006 VID
VTC
1
15.18
7.997
0 DFP
AM 0.03788
HPR
15 PPA AU
1
AM
1
0.002 VTL VTC
0.002
PA
100
AU
0.9943
VTL
0.001913 99.95
HEART RATE AND STROKE VOLUME
11.97
-6.337
39.95
VTW
VID
VTW
VTS
Heart Rate and Stroke Volume
12
PIF
Pulmonary Dynamics and Fluids
-6.3 Heart Hypertrophy or Deterioration
VTS
PIF Electrolytes and Cell Water Tissue Fluids, Pressures and Gel
!II"AgF -GH;))&++.-&+.-,A 5- - ruv 5) ..& &%5)-%&' 195.5
NON MUSCLE O 2 DELIVERY OVA
INTPUTS: OVA- oxygen content of arterial blood [ml O2 STPD/l blood] BFN- blood flow in non-muscle and non-renal tissues [l/min] HM - hematocrit [% ] AOM - autonomic effect on tissue oxygenation [ratio to normal] O2M - basic oxygen utilisation in non-muscle cells [ml O2 STPD/min]
2.869 BFN
40 HM
OUTPUTS: OSV - non-muscle venous oxygen saturation[% ] POV - non muscle venous PO2 [torr] POT - non muscle cell PO2 [torr] DOB - rate of oxygen delivery to non-muscle cells [ml O2 STPD/min] MO2 - rate of oxygen utilisation by non-muscle tissues [ml O2 STPD/min] QO2 - non-muscle total cellular oxygen [ml O2 STPD]
1.001 AOM
164.5
O2M
0.6903
OSV
POT
164.8
DOB
PC
0.02556 240
164.7
QO 2
2425
1
0.01182
195.5
0.9775
INTPUTS: OVA- oxygen content of arterial blood [ml O2 STPD/l blood] BFN- blood flow in muscles [l/min] HM - hematocrit [% ] AOM - autonomic effect on tissue oxygenation [ratio to normal] OMM - basic oxygen utilisation in muscles [ml O2 STPD/min] EXC - Effect of excercise on the metabolic usage of oxygen by the muscles [ratio to resting state ]
BFM
PULMONARY O2 DELIVERY
40
DOB
OSA
INTPUTS: VPF - volume of free fluid in the pulmonary interstitium [l/min] DOB - non-muscle oxygen usage[ml/min] RMO - muscle oxygen usage [ml/min] PO2DEF- normalised difussion coecficient for oxygen through the pulmonary membrane [at norma PO2DEF=1] PO2MAB - ambient oxygen pressure [torr] HM - hematocrit
RMO
1 PO2DFF
PO2DEF
150 PO2AMB
PO2AMB
HM
1.001 AOM
60
OUTPUTs: OSA - arterial oxygen saturation OVA- arterial blood oxygen content [ml O2/l blood]
OVA
OUTPUTS: OVS - muscle venous oxygen saturation [% ] PVO - muscle venous PO2 [torr] PMO - muscle cell PO2 [torr] RMO - rate of oxygen delivery to muscles [ml O2 STPD/min] MMO - rate of oxygen utilisation by muscles [ml O2 STPD/min] QOM - muscle total cellular oxygen [ml O2 STPPD]
OMM
OMM
1
HM
EXC
EXC 40
Pulmonary O2 Delivery
OUTPUT: MYOGRS- myogenic autoregulation effect on vascular resistance in muscle and in non-renal tissue [multiplier, ratio to normal]
INTPUTS: AUR- autonomic stimulation of heart rate [ratio to normal] HMD - cardiac depresant effect of hypoxia, shock and other factors [ratio to normal] PRA- right atrial pressure [torr] QLO - output of left ventricle [l/min]
QLO
OUTPUTS: HR - heart rate [beats/min] SVO - stroke volume [l]
72.45
HR
PPA
-0.1045 PLA
1.616
RPA
INTPUTS: PPA- pulmonary arterial pressure [torr] PLA- left atrial pressure [torr] QPO - rate of blood flow into pulmonary veins and left atrium[l/min]
1.408
RPV
3.024 RPT
OUTPUTS: RPA- pulmonary arterial resistance [torr min/l] RPV - pulmonary venous resistance [torr min/l] RPT - total pulmonary vascular resistance [torr min/l] PVP - pulmonary venous pressure [torr]
0.06768
SVO
QPO
PPA
TENSGN
11.24
PVP
Heart Rate and Stroke Volume Resistances in the Pulmonary Circulation and Pulmonary Venous Pressure
Myogenic Autoregulation 1.003
INPUTS: PRA AH7 PRA - riight atrial pressure [torr] ATRVHBM- sensitivity controller of volumereceptor feedback effect on change of basic of venous system [ATRVFB=AH7*ATRRVBM, no effect = 0] ATRRFBM- sensitivity controller of volumereceptor feedback effect on nonmuscle arterial resistance [ATRRFB =AH7*ATRRFBM , no effect = 0] ATRVFBM ATRVFB
MUSCLE O2 DELIVERY OVA
1.038 VPF
TENSGN
THE VOLUME RECEPTOR FEEDBACK MECHANISM
Delivery of Oxygen to the Non-muscleTtissues
60.09
PRA
HMD
MYOGRS
MYOGTAU
MYOGTAU
Non-muscle Local Blood Flow Control MO 2
INTPUTS: PA- systemic arterial pressure [torr] PC - capillary pressure [torr] MYOGTAU- time delay factor of myogenic response (in normal condition TENSTC = 240 min) TENSGN- factor of effectiveness of myogenic response
17.82
ARM
OUTPUT: ARM - vasoconstrictor effect of local blood flow autoregulation in non-muscle tissues [ratio to normal]
RESISTANCES IN THE PULMONARY CIRCULATION AND PULMONARY VENOUS PRESSURE
AUR
MYOGENIC AUTOREGULATION PA
1.026
INTPUT: POT - non-muscle cells PO 2 [torr]
8.075 POT
O2M
164.8
14.72
HEART RATE AND STROKE VOLUME 99.79 NON MUSCLE LOCAL BLOOD FLOW CONTROL
39.44
POV
OVS
0.6881
PVO
39.32
0 ATRVFBM
MUSCLE LOCAL BLOOD FLOW CONTROL INTPUT: PMO - muscle cells PO2 [torr]
8.143
ATRRFBM
1.051
AMM
OUTPUT: AMM - vasoconstrictor effect of local blood flow autoregulation in muscles [ratio to normal]
60.09
ATRRFBM
0
PMO
PMO
OUTPUTS: AH7 - effect of right atrial volume receptor reflex on ADH secretion [relative additive factor, normal value = 0] ATRVFB- change in basic volume of venous system caused by atrial volume receptor feedback ATRRFB- multiplier factor for the effect on muscle and non-renal vacular resistance of feedback from the atrial stretch receptors [multiplier, ratio to resting state ]
0.2582
OSA
0 PA 14.72
0.02556 4.903 PPA
1
PPA
AUH
The volume receptor feedback mechanism
OSA
RMO
HSR
Muscle Local Blood Flow Control
HEART HYPERTROPHY OR DETERIORATION QAO
2402
QOM
HSR
PA
60.09
MMO
PPA
Delivery of Oxygen to the Muscles HSR
1 HSR 1
HSL
HSL
HSL
RIGHT HEART PUMPING
PRA ATRRFB
HPR
HPR
INTPUTS: PA- systemic arterial pressure [torr] QAO - blood flow in the systemic arteriel system [l/min] PPA- pulmonary arterial pressure [torr] HSR - basic strenght or right ventricle [ratio to normal] HSL - basic strenght or left ventricle [ratio to normal] POT - Non muscle cells PO2 [troo]
HPR
HMD
1
HMD
QLO
1
HPL
INTPUTS: QRO PRA- right atrial pressure [torr] PPA- pulmonary arterial pressure [torr] AUH- autonomic stimulation of heart [ratio to normal] OSA - oxygen hemoglobin saturation HSR - basic strenght or right ventricle [ratio to normal] HPR - hypertrophy effect of heart [ratio to normal] HMD - cardiac depressant effect of hypoxia. shock QRN and other factors [ratio to normal] QLO - output of left ventricle [l/min] QLN - normalised output of the left heart [l/min]
LEFT HEART PUMPING
PLA
PA
INTPUTS: QLO PLA - left atrial pressure [torr] PA- systemic arterial pressure [torr] AUH- autonomic stimulation of heart [ratio to normal] OSA - oxygen hemoglobin saturation HSL - basic strenght or left ventricle (ratio to normal) HPL - hypertrophy effect of left heart [ratio to normal] QLN HMD - cardiac depressant effect of hypoxia, shock and other factors [ratio to normal]
PA
AUH
4.885 OSA
HSL
OUTPUTS: QRO - actual right ventricular output [l/min] QRN - normalised right ventricular output [l/min] RVM RVM - depressing effect on right ventricle of pulmonary arterial pressure [ratio to normal]
4.903
4.897
HSL
OUTPUTS: QLO - actual left ventricular output [l/min] QLN - normalised lwft ventricular output [l/min] LVM - depressing effect on left ventricle of pulmonary arterial pressure [ratio to normal]
HPL
1.004 HMD
0.9982
LVM
QLN
Left Heart Pumping
Right Heart Pumping
OUTPUTS: HPR - hypertrophy effect of right heart [ratio to normal] HPL - hypertrophy effect of left heart [ratio to normal] HMD - cardiac depresant effect of hypoxia, shock
HPL HMD
HMD
4.897
POT
1
4.903
Heart hypertrophy or deterioration
HM 99.79
2.948
DFP
UNSTRESSED SYSTEMIC VENOUS VOLUME
VVR PPA
AUTONOMIC CONTROL OF THE CIRCULATION
VPF
PULMONARY FLUID DYNAMICS
PLA
PA
-0.04597
PCP
8.075
INTPUTS: PPA- pulmonary arterial pressure [torr] PLA- left atrial pressure [torr] PPC - plasma colloid osmotic pressure [torr] CPF- pulmonary capillary filtration coeffitient [l/min/torr]
OUTPUTs: DFP - rate of change of free fluid in the lungs [l/min] VPF - volume of free fluid in the pulmonary interstitium [l/min] PFI PCP - pulmonary capillary pressure [torr] POS - osmotic pressure in pulmonary interstitial fluid pressure [torr] PPI - pulmonary interstitial fluid pressure [torr] PLF PFI - rate of fluid filtration out of pulmonary capillary [l/min] PLF - pulmonary lymph flow rate [l/min] CPN - concentration of protein in pulmonary interstitial fluid[g/l] PPN - protein leakage rate through the pulmonary capillary membrane [g/min] CPN CPP PPR - total quantity of protein in pulmonary interstitial fluid[g] PPD - rate of loss of protein through the pulmonary capillary membrane [g/min]
72
AUH
1 9.409e-005
-0
50.84
0.00476
PPN
0.6012
PPR
1
OUTPUTs: AU - overall activity af autonomic system [ratio to normal] AUH- autonomic multilier effect on the heart output [ratio to normal] AUR- autonomic multilier effect on heart rate EXC [ratio to normal] VVR - basic volume of venous tree(maximum volume at zero pressure ) [l] AUP - autonomic multipllier effect on ADH hormone excretion etc. [ratio to normal] ANUBR AOM - autonomic multipllier effect on tissue oxygen utilisation [ratio to normal] AUM - autonomic multipllier effect on arterial resistance [ratio to normal] AVE- autonomic multipllier effect on venous resistance AUZ [ratio to normal]
AUZ -2.404e-005
PPD
-0.2
VV 6
INTPUTS: VVE - excess blood volume in the veins [l]
1.003
ANY
ANY VV6
AUR
VVE
1.01
VVR
OUTPUTS: VV6 - increased venous vascular volume caused by long time stress realaxation [l] VV7 - - increased venous vascular volume caused by short time stress realaxation [l]
99.79
INPUTS: VVR - normal maximum volume of blood in the venous system at zero pressure [l] ANU - nonrenal effect of angiotensin [ratio to normal] ANY- sensitivity of large veins to effect of angiotensin [normal value = -0.2 l/unit of angiotensin] VV6, VV7 - changes in basic volume of venous system cauused by stress relaxation [l] ATRVFB- change in basic volume of venous system caused by atrial volume receptor feedback
ANU
0.0003989 VENOUS STRESS RELAXATION
PMO
CPF
CPF
0.9018
1.01
AU
2.948
9.421e-005
PPC
0.0003
8.143
-10.69
PPI
CPP
POT
20.34
POS
INTPUTS: PA- systemic arterial pressure torr POT - non-muscle cell PO2 [torr] PMO - muscle cells PO2 [torr] EXC - Effect of excercise on the metabolic usage of oxygen by the muscles [ratio to resting state ] ANUBR- direct effect of angiotensin on vasomotor center ["virtual" torr] AUZ- overall sensitivity of autonomic control [ratio to normal]
0
VV 7
QLO
VVS 0
OUTPUT: VVS0 - the maximum volume ov venous system at zero volume (so called unstressed venous volume) [l]
0.495 RESISTANCES IN THE SYSTEMIC CIRCULATION
Effect of stress relaxation on basic venous volume
96.3
0.003467
RAM RAR 1.008 1.008 AUM
1 1.002
AVE
0.9018
Autonomic Contorl of the Circulation
1
Pulmonary Fluid Dynamics 1 1.051
1.026 3.677 1
SYSTEMIC CAPILLARY PRESSURE
BFN
INTPUTS: PVS - average of systemic venous pressure [torr] BFN- blood flow in non-renal and non-muscle tissues [l/min] RVS - resistance in small veins [torr min/l]
VPA0
VPA0 RSN
0.4
VLA0
VLA0 0.00355
CAS
CAS 0.0825
CLA
0.01 CLA
RSN
RSM
3.024 RPT
2.754 RR RVS
OUTPUTS: RSN - vascular resistance in non-muscle and non-renal tissues [torr min/l] RSM - vascular resistrance in muscles [torr min/l] RVS - resistance in small veins [torr min/l]
VIM
0.8492 VAS
3.275
VVS
0.3033 VVE
VRA
VPA
0.1001 0.3769 0.399
VLA
FIS
0
4.903 4.903 2.869 1.038
0.9963 0 20.35 4.273 0.7273 6.871
MCP
FIS
PC
-0.1045 PLA
4.903
CPA
CPA
ANUVN
1 OUTPUT: PC - systemic caplillary pressure [torr]
14.72 PPA
OUTPUTS: QAO PA- arterial (aortic) pressure [torr] PVS - average venous pressure [torr] QVO PRA- right atrial pressure [torr] PPA- pulmonary arterial pressure [torr] QPO PLA- left atrial mpressure [torr] VAS - volume in systemic arteries [l] VVS - systemic venous vascular volume [l] BFN VVE - excess blood volume in the veins[l] VRA- right atrial volume [l] BFM VPA- volume in pulmonary arteries [l] VLA- volume in left atrium [l] RBF QAO - blood flow in the systemic arteriel system [l/min] QVO - rate of blood flow from veins into right atrium [l/min] QPO - rate of blood flow into pulmonary veins and left atrium[l/min] FISFLO BFN- blood flow in non muscle and non renal tissues[l/min] BFM - blood flow in muscles [l/min] RTP RBF- renal blood flow [l/min] FISFLO- blood flow through a fistula[l/min] VT0 RTP - total systemic peripheral resistance [torr min /l] VT0 - total unstressed blood volume [l] VE0 - total excess volume of blood in the vasculature [l] VE 0 MCP - mean circulatory pressure [torr]
CRA
CRA 0.0048
RSM
3.677 0.02556 PRA
CV
CV 0.005 92.6
AVE
1.002 17.82
PC
2.754 RVS
VRA0
VRA0 0.30625
RVSM
PVS
2.869 BFN
33.5
INTPUTS: PA- systemic arterial pressure [torr] RAM - basic vascular resistance of muscles [torr min/l] RAR RAR - basic vascular resistance of non-muscle and non-renal tissues [torr min/l] MYOGRS MYOGRS - myogenic autoregulation effect on vascular resistance in muscle and in non-renal tissue (multiplier, ratio to normal) AUM - sympathetic vasoconstrictor effect on arteries AUM in muscle and non-renal tissues [multiplier factor , ratio to normal] VIM - blood viscosity[ratio to normal] VIM ANU- nonrenal effect of angiotensin [ratio to normal] AHM - antidiuretic hormone effect to non renal vascular resistance , multiplier (ratio to normal effect ) ANU ATRRFB- multiplier factor for the effect on muscle and non-renal vacular resistance of feedback from the atrial AHMR stretch receptors [multiplier, ratio to resting state ] AMM - muscle vascular constriction caused by local tissue control [multiplier, ratio to resting state ) ATRRFB ARM - the degree of vasoconstrictor effect of autoregulation in non-muscle and non-renal tissues [multilier, ratio to normal] RVSM - basal systemic venous multiplier causes basal vascular AMM stretch in the venous system [ratio to normal] AVE- multiplier factor for the effect of the autonomic nervous system ARM on venous resistance [ratio to basal effect ] ANUVN multiplier factor for the effect of angiotensin on venous resistance [ratio to normal] RVSM PC - systemic caplillary pressure [torr] RAM
30.52
1.003
1.001
AOM
0.1
Unstressed volume in systemic venous tree
1.01
AUP
VAS0
VAS0
PA
PVS
INPUTS: VB - blood volume[l] QRO - actual right ventricular output l/min] QLO - output of left ventricle [l/min] VVS0 - unstressed venous systemic vascular volume [l] VVE - excess volume (stressed volume) in systemic veins [l] VAS0 - unstressed volume in systemic arteries [l] VRA0 - unstressed right atrial volume [l] VPA0 - unstressed volume in pulmonary arteries [l] VLA0 - unstressed volume in left atrium and pulmonary veins [l] CAS - capacitance of systemic arteries [l/torr] CV - capacitance of venous systemic volume [l/torr] CRA- capacitance of right atrium [l/torr] CPA- capacitance of pulmonary arteries [l/torr] CLA- capacitance of left atrium and pulmonary veins [l/torr] RSN - vascular resistance in non-muscle and non renal tissues [torr min /l] RSM - vascular resistance in muscles [torr min /l] RPT -pulmonary vascular resistance [torr min /l] RR - total renal resistance [torr min /l] ( VIM - blood viscosity(ratio to normal blood) FIS - conductance fot the fistula [l/min/torr]
QRO
ATRVFB
PA
CIRCULATORY DYNAMICS - FLOWS AND PRESSURES
VB
PA 2.971
VVS 0
VV7
Circulatory Dynamics - Flows And Pressures
17.82 Resistances in the Systemic Circulation
Systemic Capillary Pressure
99.79
GBL
PVS
30.17 AAR
PAR PAR
INTPUTS: PA- systemic arterial pressure [torr] GBL - pressure drop in renal artery caused renal arterial constriction [torr] PVS - average systemic venous pressure [torr] AAR - resistance in afferent arteriole [torr min/ll] EAR - resistance in efferent arteriole [torr min/ll] REK- percent of normal renal function [ratio to normal]
AAR
40 HM
30.66
RR
RR
REK
GFR RFN
30.17
96.47
PPC
MACULA DENSA
142.4 GLOMERULUS
0.9963 0.9963 RFN
41.21 EAR
74.79
74.79
RENAL PERFUSION PA
25 GBL
INTPUTS: PAR - renal perfusion pressure[torr] RFN- renal blood flow if kidney is not damaged[l/min] AAR - resistance in afferent arteriole [torr min/ll] HM - hematocrit PPC - plasma colloid osmotic pressure [torr] PXTP - back pressurein proximal tubule [torr] GLFC- glomerular filtration coefficient [l/torr/min] REK- percent of normal renal function [ratio to normal]
0.1238
INTPUTS: CNA- Extracellular sodium concentration [mmol/l] GFN- glomerular filtration rate if kidney is not damaged [l/min]
CNA
0.1238
8
PXTP
PXTP
0.9963
RBF
0.0208
GLFC
GLFC
Renal Perfusion
OUTPUTS: RNAUG1 - macula densa feedback signal [ratio to normal effect ] NAPT1 - delivery of sodium to the macula densa area [ratio to normal value]
GFN
REK
ANXM
INTPUTS: NAPT1 - delivery of sodium to the macula densa area [ratio to normal value] REK- percent of normal renal function [ratio to normal] ANXM - controls of degree of hypertrophy of the juxtaglomerulal apparatus [0 = no hypertrophy] ANG- excess of angiotensin concentration caused by infusion [ratio to normal level of angiotensin] ANUBRM- sensitivity contoller for the effect of angiotensin of the baroreceptor system ANUVM- sensitivity controller for the multiplier factor of the systemic veins
1
0.9673 ANM
GLPC
PTC
SODIUM EXCRETION INTPUTS: NAPT1 - delivery of sodium to the macula densa area [ratio to normal] RFAB- the multiplier factor for the effect of renal hemodynamics on reabsorbtion of sodium and potassium in the distal tubule collecting duct [ratio to normal] VUDN- rate of urinary output if kidney is not damaged [l/min] AMNA- aldosterone for control of sodium reabsorbtion [ratio to normal effect ] AHM - antidiuretic hormone [ratio to normal effect ] REK- percent of normal renal function [ratio to normal] DIURET- effect of diuretic on the distal tubule collecting duct [ratio to normal - without diuretics]
1.57
0.0007051 MYOGENIC AUTOREGULATION OF AFFERENT ARTERIOLE PAR
-0 240
MYOGTAU
0
1 TENSG
TENSGN
REK
1 1.57
0.9963
PERITUBULAR CAPILLARIES RFN
OUTPUTS: AMK - effect of aldosterone on potassium secretion [ratio to normal] AMNA- aldosterone for control of sodium reabsorbtion AMC - aldosterone concentration [ratio to normal]/n
OUTPUTS: RFAB- the multiplier factor for the effect of renal hemodynamics on reabsorbtion of sodium and potassium in the distal tubule collecting duct [ratio to normal] RCPRS- renal capillary pressure around the tubular systewm [torr]
DIURET
0.5388 DTNAI
RNAUG 1
1.024
ANM 1.034
ANM
0.9673
AUP
ANM
99.79 PA
0.2582 AH7
0
ADH
ADH 0 AHMRM
AHC1 1.008
VIM
1
0.9673
43.333
RNAUG 1
0
EFARF
EFARF
0 DPR
1.003
VUDN
PLURC
0.1238 GFN
1 2
1 BLOOD VISCOSITY
HM
INTPUT: HM - hematocrit [% ]
VIM
OUTPUT: VIM - blood viscosity[ratio to normal] Blood viscosity
0.24
URFORM
0.05128 NODN
0.05073 41.21
ANM
DR 0 0.05073
KOD
KODN
DR
INTPUTS: POT - non-muscle cell PO 2 [torr] AHC1 - antidiuretic hormone concentration factor in the circulating body fluids[ratio to normal] ANM - angiotensin multilier effect to vascular resistance [ratio to normal] AMK - effect of aldosterone on potassium secretion [ratio to normal] DR - forced input of fluid over and above the natural drinking desire (it may be used for intravenous infusion as well) [l/min] STHENABLED- switching variable: if STHENABLED <=0, then STH is not calcultated and STH=1 TVDENABLED- switching variable: if TVDENABLED<=0 then TVD is not calculated and TVD=DR
STHENABLED
STHENABLED
-2.682
PGH
1
TVDENABLED
UROD
71.95
INTERSTITIAL TISSUE FLUIDS , PRESSURES AND PROTEIN DYNAMICS
UREA
OUTPUTs: PGH - hydrostatic pressure in tissue gel [torr] PTC - total colloid osmotic pressure of the tissue gel] DPC PTT VTL - lymph flow rate [l/min] DPL - rate of return of protein to the circulatin by way of the lymph [g/min] CPI - concentration pf protein in the interstitium [g/l] PIF PTT - total interstitial tissue pressure [torr] PIF - pressurte in the free interstitial fluid [torr] PTS - solid tissue pressure [torr] PTS VIF - free interstitial fluid volume[l] VG - tissue gel volume[l] TSP - total interstitial tissue proteins [g] VIF
0.2364
UROD
OUTPUTS: UROD- urea excretion rate [mmol/min] VUDN- rate of urinary output if kidney id not damaged[l/min] VUDN- rate of urinary output [l/min]
VUDN
0.0007051
278.6
VPF
0.1 NID
NID
STH
1.006 NOD
-4.676 0.06 5.682
KID
KID
0.05073 KOD
0.6016
0.9825 AMK
Interstitial Tissue Fluids, Pressures and Gel Dznamics
VG
11.42
TSP
279.1
4.02
160.3
0.001019
VP
0.101
TSP0
TSP0
0.0007051 VUD
PLUR
Urea
TVD
OUTPUTS: STH - salt appetite multiplier factor [ratio to normal] TVD - actual rate of fluid intake [l/min]
0.004351
23.22
OUTPUTS: PLURC- concentration of urea in body fluids[mmol/l] PLUR- total body urea content[mmol/l]
PLURCNORM
TVDENABLED
VTS
INTPUTS: VTS - total interstitial fluid volume [l] DPL DPC -rate of influx protein into the interstitial fluid from plasma [g/min] TSP0 - initial value of total interstitial tissue proteins [g]
PLURC INTPUTS: URFORM- rate of urea metabolic production [mmol/min] UROD-rate of urea excretion [mmol/min] VTW - total body water volume [l] PLURCNORM- normal value of urea concentration in body fluids[4 mmol/l]
VTW
10.51
VTL
0.2364
4 PLURCNORM
VTS CKU
UREA AND WATER EXCRETION INTPUTS: PLURC- concentration of urea in body fluids[mmol/l] GFN- glomerular filtration rate if kidney is not damaged [l/min] NADT- the normalized delivery of sodium to the distal tubular system [ratio to normal] NODN- sodium excretion rate if kidney is not damaged [mmol/min] KODN- potassium excretion rate if kidney is not damaged [mmol/min] DTNAI - rate of sodium entry into the distal tubular system [mmol/min] AHM - antidiuretic hormone [ratio to normal] REK- percent of normal renal function [ratio to normal]
1
STH
Thirst, Drinking and Salt Appetite OUTPUTS: KODN- potassium excretion rate if kidney is not damaged [mmol/min] KOD - potassium excretion rate [mmol/min] CKU- concentration of potassium in urine [mmol/l]
1.115
1
THIRST,DRINKING AND SALT APPETITE
POT
0
1 ALCLK 25 VICnorm
ACLK
VICNorm
ECF AND ICF ELECTROLYTES AND VOLUMES INTPUTS: VP - plasma volume [l] VTS - systemic interstitial fluid volume [l] VPF - pulmonary interstitial fluid volume [l] NID - normal rate of sodium intake [mmol/min] STH - salt appetite multiplier factor [ratio to normal] NOD - rate of excretion of sodium in the urine [mmol/min] KID - rate of intake of potassium [mmol/min] KOD - rate of excretion of potassium in the urine [mmol/min] AMK - aldosterone multiplier factor for the effect of aldosterone on the transport of potassium through the cell membrane [ratio of normal effect ] ACLK- sensitivity control of the effect of the aldosterone on cellular membrane transport of potassium [ratio of normal effect ] VICnorm - normal value of the intracellular fluid volume [l] OUTPUTS: VEC- volume of extracellular fluid [l] VIC - volume of intracellular fluid [l] VTW - total body water [l] VID - rate of fluid transfer between interstitial fluid and cells [l/min] NAE- total extracellular sodium content [mmol] CNA- extracellular sodium concentration [mmol/l] CKE- extracellular potassium concentration [mmol/l] KI - total intracellular potassium content [mmol] CKI - intracellular potassium concentration [mmol/l] KCD- rate of transferof potassium from the interstitial fluid into the intracellular fluid [mmol/min]
VEC
VIC
14.96
24.92
39.88
VTW
VID
-0.0001418
NAE
2131
142.4
CNA
5.076
CKE
KI
3550
CKI
142.4
KCD
0.005006
Extracellular and Intracellular Fluid Electrolytes and Volumes
REK
1
REK
Red cells production and destruction
8.075
0.05073
Potassium Excretion
EAR
RC2
1.2 RFN
40
-0.01006
DPR
1.034 KODN
4.02
OUTPUT: AAR- afferent arteriolar resistance [torr l/min]
1.16e-005
3 VP
RFN
73.18
CPP
Plasma Protein Dynamics
CPI
INTPUTS: AARK- normal resistance in efferent arteriole [torr min/l RNAUG1 - macula densa feedback signal to efferent arteriole [ratio to normal] EAFRF- sensitivity contoller of macula densa feedback signal to efferent arteriole ANM - angiotensin multiplier effect on vascular resistance [ratio to normal] VIM - blood viscosity[ratio to normal blood]
RC1
PPD
Capillary Membrane Fluid Dynamics
30.17
AHM
0.9673
OUTPUTs: PPC - plasma colloid osmotic pressure [torr] DPC - rate of influx of protein into interstitial fluid from plasma [g/min] CPP - plasma protein concentration [g/l] DPL - net rate of protein exchange between liver and plasma [g/min]
VP
VIM
OUTPUTS: VRC - volume of red blood cells [l] VB - volume of blood[l] HM - hematocrit [% ] RC1 - red cells production rate [l/min] RC2 - red cells destruction rate [l/min]
VTSN
OUTPUT: AAR - afferent arteriolar resistance [torr l/min]
ANM
ANM
VIM
The control Functions of Antitiuretic Hormone
REK
AAR
OSA
RED CELLS PRODUCTION AND DESTRUCTION INTPUTS: OSA - arterial oxygen saturation [ratio to full saturation] VP - plasma volume [l] VIM - blood viscosity[ratio to normal blood] RFN- renal blood flow (if kidney is not damaged) [l/min] REK- fraction of normal kidney mass [ratio to normal]
0.1042
DLP
PTC
1
EARK
EARK
ANM
AHRM
AHMRM
LPPR
LPPR
0.9764
POTASSIUM EXCRETION INTPUTS: CKE- extracellular potassium concentration [mmol/l] CNA- extracellular sodium concentration [mmol/l] NADT- the normalized delivery of sodium to the distal tubular system [ratio to normal] DTNAI - rate of sodium entry into the distal tubular system [mmol/min] ANM - angiotensin multilier effect to vascular resistance [ratio to normal] AMK - effect of aldosterone on potassium secretion [ratio to normal] RFAB- the multiplier factor for the effect of renal hemodynamics on reabsorbtion of sodium and potassium in the distal tubule collecting duct [ratio to normal] REK- percent of normal renal function [ratio to normal] VUDN- rate of urinary output if kidney is not damaged[l/min]
0.0007051
EFFERENT ARTERIOLE
1
AHRM
1.57
AFFERENT ARTERIOLE INTPUTS: AARK- normal resistance in afferent arteriole [torr min/l] RNAUG1 - macula densa feedback signal [ratio to normal] AUM - sympathetic vasoconstrictor effect on arteries [ratio to normal] ANM - angiotensin multiplier effect on vascular resistance [ratio to normal] VIM - blood viscosity[ratio to normal blood]
Afferent Arteriole
1.115
AHMR
VTSREL
VTSN
0.03
0.004738
HM
72.73
CNU
AUM
AHM
OUTPUTS: AHC1 - antidiuretic hormone concentration in the circulating body fluids[ratio to normal] AHM - antidiuretic hormone multiplier [ratio to normal effect ] AHMR- effect of antidiuretic on systemic arterial resistance [ratio to normal effect ] ANUBRM- sensitivity contoller for the effect of angiotensin of the baroreceptor system ANUVM- sensitivity controller for the multiplier factor of the systemic veins
VPN 11.98
0.004025
RFAB
The control Functions of Aldosterone
0.9673
0.05128
NOD
VPN
1.152e-005
URFORM
NADT
ANM
AHC1
CFC
AHC1
CNA
1.078
0.9825
AARK
AARK MYOGRSAA
THE CONTROL FUNCTIONS OF ANTIDIURETIC HORMONE INTPUTS: CNA- Concentration of sodium in extracelullar fluid [mmol/l] AUP- autonomic multipllier effect on ADH hormone excretion etc. [ratio to normal] ANM - angiotensin multiplier effect [ratio to normal] PA- systemic arterial pressure [torr] H7 - effect of right atrial volume receptor reflex on ADH secretion [relative additive factor, normal value = 0] AHMRM- sensitivity coefficient for the effect of ADH on systemic arterial resistance .
3
HM
PLASMA PROTEINS DYNAMICS
INTPUTS: VP - plasma volume [l] VTCLP - rate of leakage of whole plasma through DPL DPC the capillary membrane [l/min] DPL - rate of return of protein to the circulation through the lymph[g/min] CPI - concentration of protein in the interstitium [g/l] [torr] LPPR - rate of production of protein by the liver[g/min] CPI PPD - rate of loss of protein through the pulmonary capillary membrane [g/min] DPR - rate of loos of protein through the kidney[g/min]
5.076
Peritubular Capillaries
40
VID
CFC
5 VTCLP
DIURET
142.4
19.88
0.958
0.9807
AMC
142.4 CNA
DFP
VID 0.01167
0.0007136
12.02
RFAB
RCPRS
AMNA
0.7392
1.01
VUD
1.138e-007
0 0.05128
NODN
OUTPUTS: NADT- the normalized delivery of sodium to the distal tubular system [ratio to normal] DTNAI- rate of sodium entry into the distal tubular system [mmol/min] NODN- sodium excretion rate if kidney is not damaged [mmol/min] NOD - sodium excretion rate [mmol/min] CNU- concentration of sodium in urine [mmol/l]
CKE
GLPC
AMK
ALD
0 ALD
TVD
0.0007051 0.5388
DTNAI
VB
30.66
PPC
INTPUTS: PC - systemic capillary pressure [torr] VTCLP PGH - hydrostatic pressure in the tissue gel [torr] PPC - plasma colloid osmotic pressure [torr] PTC - colloid osmotic pressure of the tissue gel [torr] VTL - rate of return of fluid from the interstitium to the blood through the lymph[l/min] VTS TVD - rate of intake of fluid by mounth or otherwise [l/min] VUD - loss of fluid into the urine [l/min] DFP- loss of fluid from the pulmonary capillaries [l/min] VID - rate of transfer of fluid into the cells [l/min] CFILTR CFC- capillary filtration coefficient [l/min/torr] (normal value CFC=0.01167) VPN - normal value of plasma volume [l] VTSN - normal value of interstitital fluid volume [l]/n OUTPUTS: VTC VP - plasma volume [l] VTS - total interstitial fluid volume [l] VTCPL - rate of leakage of whole plasma through the capillary membrane [l/min] CFILTR- rate of filtration from the systemic capillaries [l/min] VPREL VTC - toral rate of movement of fluid out of systemic capillaries [l/min] VPR - plasma volume [ratio to normal] VTS - total interstitial fluid volume [ratio to normal]
Sodium Excretion
INTPUTS: RFN- renal blood flow if kidney is not damaged[l/min] GLPC- average glomerular plasma colloid osmotic pressure [torr]
44.73
AMK
INTPUTS: ANM - angiotensin multiplier effect on vascular resistance [ratio to normal value] CKE- extracelullar fluid potassium concentrastion [mmol/l] ALD- rate of infusion of aldosterone [relative to normal rate of aldosterone secretion ]
1
OUTPUT: MYOGRSAA- myogenic autoregulation effect on vascular resistance in afferent arteriole [multiplier, ratio to normal effect ]
0.7036
0.9825 THE CONTROL FUNCTIONS OF ALDOSTERONE
CKE
1.115
Myogenic Autoregulation of Afferent Arteriole
The control Functions of Angiotensin
0.9673
5.076
AMNA
0.7392
AHM
ANUVM1
ANM
VUDN
0.958
MYOGRSAA
0.001019
1.078
NADT
ANUBR
OUTPUTS: ANM - angiotensin multilier factor on vascular resistance [ratio to normal] ANUVN ANU- angiotensin multilier factor on peripheral arteriolar resistance [ratio to normal] ANUBRM ANUBR- angiotensin multilier factor for the effect in controlling the sensitivity of the baroreceptor system[ratio to normal] ANUVM- angiotensin multilier factor for the constriction ANC of systemic veins [ratio to normal] ANC ANC- angiotensin concentration in blood[ratio to normal] ANUVM
0
INTPUTS: PAR - renal perfusion pressure [torr] PC - capillary pressure [torr] MYOGTAU- time delay factor of myogenic response (in normal condition TENSTC = 240 min) TENSGN- factor of effectiveness of myogenic response
MYOGTAU1
ANG
ANUBRM
RFAB
Glomerulus
74.79
ANU
VTL
NAPT1
5.949
VP
VP
CAPILLARY MEMBRANE FLUID DYNAMICS PPC
10.51 0.004351
1.005
PFL
VRC
PC
-2.682
30.78
ANM 0.9018
ANU
1 0 ANG
17.82 1.024
RNAUG 1
Macula densa
OUTPUTS: GFR- glomerular filtration rate [l/min] GFN- glomerular filtration rate if kidney is not damaged [l/min] GLP - glomerular pressure [torr] GLPC- average glomerular plasma colloid osmotic pressure [torr] PFL - net pressure gradient in glomerulus [torr]
REK
THE CONTROL FUNCTIONS OF ANGIOTENSIN NAPT1
1
2 2.929
0.1238 44.73 GLP
1.005
1 REK
ANXM
1.005
NAPT1
GFN
PGH
OUTPUTS: PAR - renal perfusion pressure [torr] RFN- renal blood flow if kidney is not damaged[l/min] RBF- renal blood flow [l/min] RR - renal resistance [torr min/l]
Efferent Arteriole Urea and Water Excretion
!IJ"1F &-GML & -&+.-,1& . - %-- 2 & .& & A ,& &&_ 7&%. X - & . w& &% X &_ .&- - '-%& . -'-('-&%. )5 .& +. )2 .--, ,+. &%2'8c+ - &2 ,& & . '-+. & .,-.>?@@.@)
41
1 Atrial pressure [mmHg ]
p(n) p(n)
left ventricle p - V diagram
p(n+2)
p(n+1)
p(n+1)
LEFT HEART
Q(n) Q(n) Q(n-1)
2 Left ventricular pressure
Q(n-1)
V
LEFT ATRIUM
p(n)
p(n)
p(n+1)
Q(n-1)
Q(n)
V
Q(n-1)
Q(n-1)
V Terminator 2
Q(n)
Q(n)
Q(n-1) V Terminator 3
V
V Terminator 4
RE a 2
RLE a 1
p(n) p(n+1)
p(n+1)
Q(n)
Q(n-1)
Scope 3
[ml ]
p(n)
p(n+1)
Q(n)
3 Left ventricular volume
LEFT VENTRICLE
p(n)
p(n+1)
[mmHg ]
V
Terminator
Terminator 6
Terminator 5
RE a3
RLE v 2
RE v1
SYSTEMIC CIRCUIT
p(n) p(n) p(n+2)
p(n+1)
p(n+1) Q(n)
RIGHT HEART
Q(n) Q(n-1)
V
Terminator 7 RIGHT ATRIUM
RIGHT VENTRICLE
p(n)
p(n) p(n+1)
Q(n)
V Terminator 12
Q(n-1) V
V
V Terminator 11
Terminator 9
Terminator 10
RE p 2
Q(n)
Q(n)
Q(n-1)
Q(n-1)
V
p(n) p(n+1)
Q(n)
Q(n-1)
RLE p 1
p(n) p(n+1)
p(n+1)
Q(n)
Right ventricle p - V diagram
p(n)
p(n+1)
Q(n-1)
Scope 4
Q(n-1)
V
Terminator 8
RE l 1
RE p 3
RLE l 2
PULMONARY CIRCUIT
1 p(n+2) systemic pressure [mmHg]
R
Pn+1
system resistance
1 p(n+1) next block pressure [mmHg]
2 p(n+1) atrial pressure [mmHg]
1 s Product
R
1 s
2 Q(n-1) inflow [ml/t]
L inductance
current volume
V
4 V current volume [ml]
Product 1
resistance
2 Qn outflow [ml/s]
1 s
3 V current volume [ml]
current volume
3 Q (n) outflow [ml/t]
Valve backflow condition
0
2 Q(n-1) inflow [ml/s]
-1
Integrator 1
phi (t)1
1 s
>= Vbmax Compare To Constant
Saturation >0
Memory
Compare To Zero
1 s L
V0
1 p(n) current pressure [mmHg]
E elastance
zero pressure volume
Pn
1 p(n)
RLE function block (according to Ottesen et al ., Applied Mathematical Models in Human Physiology ), 6th chapter , SIAM 2004
1 pi
sin
.9
2*pi
sin
.25
V0 zero pressure volume [ml ]
Elastance function Ev [phi (t)]
by O.Vacek, http ://patf -biokyb .lf1.cuni .cz Repeating Sequence
phi (t)
Ventricle function block (according to Ottesen et al ., Applied Mathematical Models in Human Physiology ), 6th chapter , SIAM 2004 by O.Vacek, http ://patf -biokyb .lf1.cuni .cz
Emin
Emax Emax
Product 3
!IL"<2 2.
&)(-% .5-c -- & &+2 .2,-.&cTx
&+ . & .A- L-.! 7!> !5y= ;WWI8 &,- !1-
*,.
$ * *'$* '$* #$ ! - *+* +#- $ @! , *# C! !-#( * -(+ *'$+ ', EIIIJG . -+ ** & * $/ \ '$
** + @! *# II ** $ -+ *# M R 2 * *(+ %, +. ! $* *'$ '! -* ' (* + , ( , E' !$+ -# G $# %,* ! $* $ #* #. / - #$ < % *,. *$
! C! I-$$ *'$+ ' E$# $ *#$ , , , '$* '$* ! * EILG )+ -* $# !.$ % *-
42
PercentVDi VA exp BTPS PercentQsh
A L V E Q - Alveolar Equilibrium Set of N Alveolar-Blood unit(s).
INPUTS: PercentVDi - Dead Space = how many percent of inspired air (VTi) is not participating in the blood gase exchange in the lungs [%] VTi BTPS PercentQsh - Shunts = how many percent of blood (QCO) is not participating in the blood gase exchange in the lungs [%] VTi BTPS - total insp. ventilation = alveolar ventil.+ death space [l BTPS/min] VAi distrib. - vector of VAi distribution relative weights[-] VAi distrib. FiO2 - fractional concentration of O2 in inspired gas [-] FiCO2 - fractional concentration of CO2 in inspired gas [-] QCO - minute cardiac output = perfusion of lungs + shunts [l/min] FiO2 Q distrib. - vector of Q distribution relative weights[-] CvO2 - O2 content in inflowing mixed venous blood[l/l] CvCO2 - CO2 content in inflowing mixed venous blood[l/l] BEox - Base excess in fully oxygenated blood [mmol/l] FiCO2 PB - Barometric pressure [torr] temp - body temperature [^oC] XHb - coefficients derived from blood hemoglobin concentration Number N - THE NUMBER OF ALVEOLAR UNITS QCO
Q distrib.
CvO2
CvCO2
BEox
PB
temp
XHb
OUTPUTS (all vectors) VAexp BTPS- (expired) alveolar ventilation [l BTPS/min] VAi BTPS - (inspired) alveolar ventilation [l BTPS/min] VDi BTPS - (inspired) dead space [l BTPS/mi] Qp - pulmonary perfusion [l/min] Qsh - right-to-left perfusion shunts [l/min] VO2 - rate of oxygen comsumption [l STPD/min] VCO2 - rate of carbon dioxide production [l BTPS/min] cepcO2 - O2 contents in end pulmonary capillary blood [l STPD/l] cepcCO2 - CO2 contents in end pulmonary capillary blood [l STPD/l] PAO2t - alveolar O2 partial pressures at body temperature [torr] PACO2t - alveolar CO2 partial pressures at body temperature [torr] sO2pct - saturations in end pulm. capilary blood at body temp. [-] pHpct - pH in end pulm.cap.blood at body temp.[-] HCO3pc - bicarbonate conc. in end pulm.cap.blood at body temp.[mmol/l] HCO3stpc - standard bicarbonat conc. in end pulm.cap.blood [mmol/l] BEpc - base excess in end pulm.cap.blood [mmol/l] cO2a - O2 content in mixed arterial blood [l/l] cCO2a - CO2 content in mixed arterial blood [l/l] pO2a - O2 partial press. in mixed arterial blod at body temp [torr] pCO2a - CO2 partial press. in mixed arterial blod at body temp [torr] SO2a - saturation in mixed arterial blod at body temp [-] pHa - pH in mixed arterial blod at body temp [-] HCO3a - bicarb. concentration in mixed arterial blod at body temp [mmol/l] HCO3st -standard bicarb. concentration in mixed arterial blod [mmol/l] BEa - Base Excess in mixed arterial blod at body temp [mmol/l]
VO2 VCO2 cepcO2 cepcCO2 pAO2t pACO2t sO2pct pHpct HCO3pc HCO3stpc BEpc Qp QSh VAi VDi cO2a cCO2a pO2a pCO2a sO2a pHa HCO3a HCO3sta BEa
Number N
ALVEQ
!IH"<2 2 ..-% - -+& $& 2 D -2& - 2 .2g=1Bn-.&cTx
43
cO2a pHt
17
XHb XH Hb
cO2 shunt mixing Mixing Concentrations MIXING Q[i] INPUTS : Q[i] - volumesCmix C[i] concentrations C[i] [i] OUTPUTS : Mixing Cmix C mix i - mixed miConcentrations xed d concen concentration concentrati concentrat t stiio ion on n MIXING Q[i] INPUTS TS S: Q[i] - vvolumes olume olum olu l es esCmix C[i]] - cconcentrations oncen once nt tions ntrat ntra ntr nt C[i] [i] OUTPUTS OUT OUTP TPUTS : TPU TP Cmix Cm C m mix iix x - mixed miixed mix d concentration t ti cCO2 cCO cC CO2 shunt mixing
cO2pc mixing1 Mixing Concentrations MIXING Q[i] INPUTS : Q[i] - volumes Cmix C[i] - concentrations C[i] [i] OUTPUTS : Mixing Cmix C i - mixed iConcentrations d concentration t ti MIXING Q[i] INPUTS : Q[i] - volumes Cmix C[i] - concentrations C[i] [i] OUTPUTS : Cmix C i -cO2pc mixed i d mixing4 concentration t ti
Blood Gases Tensions at Body Temperature ABINVT pCO2t
INPUTS : XHb - coefficients derived from hemoglobin concentration O2 - blood O2 content [l STPD/l] CO2 - blood CO2 content [l STPD/l BEox - Base Excess in fully oxygenated blood [mmol/l] temp - body temperature [^oC]
O2
CO2
BEox
18 cCO2a temp
20 pC CO2a CO pCO2a
pO2t
19 9 pO 2 2a pO2a
SO2t
21 2 sO2a sO a
HCO3
23 2 3 HCO3a HCO O3a
OUTPUTS : 9?27k %+- 9Z>;2) pH37 - pHt at body temperature
PCO2t - pCO2 [torr] at body temperature PO2t - pO2 [torr] at body temperature SO2t - oxyhemoglobin saturation at body temperature [expressed as ratio from 0 to 1] HCO3 - actual bicarbonate concentration [mmol/l] at body temperature HCO3st - standard bicarbonate concentration [mmol/l] BE - current value of blood Base Excess [mmol/l]
22 pHa
HCO3st
B BE
24 4 HCO3sta HCO3 3sta 25 5 BEa BEa
ABINVTemp at body temperature [mmol/l] ACBCB 7 BE
pH37
Hb
Blood Gases Tensions ABINV BE
INPUTS : XHb - coefficients derived from hemoglobin concentration O2 - blood O2 content [l STPD/l] CO2 - blood CO2 content [l STPD/l BEox - Base Excess in fully oxygenated blood [mmol/l]
2IN IN
pH37 37
TEMP37T
OUTPUTS : pH37 - pH at 37 ^oC PCO237 - pCO2 [torr] at 37 ^oC PO237 - pO2 [torr] at 37 ^oC SO237 - O2 hemoglobin saturation at 37 ^oC BE - blood Base Excess
O2IN
Eox ox
PCO23 7 PCO237
PCO237
PO237
9Z>;) %+- )7<WX)
PO237 SO237
SO237
OUTPUTS : plasm ma pH at body temperature pHt - plasma pCO2 [torr] at body temperature PCO2t - pCO2 PO2t - pO2 {torr] at body temperature
BEox
1
pHt
INPUTS : pH37 - plasma pH at 37 ^oC PCO237 - pCO2 [torr] at 37 ^oC PO237 - pO2 [torr] at 37 ^oC SO237 - oxyhemoglobin saturation [expressed as ratio from 0 to 1] at 37^oC BEox - BE in fully oxygenated blood [mmol/l] temp - body temperature
pHt
2
pCO2t
pCO2
3
pO 2t pO2t
pO2
ABINV
tem p temp
TEMP37T PH37T
pH37
1 pH37
INPUTS : pH37 - plasma pH at 37 ^oC BEox - BE in fully oxygenated blood temp - patient temperature
BEox
5 BEox
pHt
1 pHt
OUTPUT : pHt - plasma pH at body temperature
temp
PH37T
SO237
SAT37T PCO237T
PCO237 PC CO237
2 PCO237
INPUTS : PCO237 - pO2 [torr] at 37 ^oC temp - body temperature
pCO2t
2
)7<WX) %+- L"RWX) temp
6 temp
pCO2t
OUTPUT : PCO2t - pCO2 [torr] at body temperature
PO2t
PCO237T
XHb
3 PO237
PO237T
simulation chip: A B I N V T PO237 PO O237
SO SO237
4 SO237 SO237
temp te
INPUTS : PO237 - pO2 [torr] at 37 ^oC SO237 - oxyhemoglobin saturation PO2t [expressed as ratio from 0 to 1] at 37^oC temp - body temperature
%?
SO237 37 - oxyhemoglobin saturation [expressed sssed as ratio form 0 to 1] at 37^oC O2 - blood O2 2 content [expressed in l CO2 STPD/l] PO2t - pO2 [torr] at body temperature Hb - coefficients derived from XHb entration of hemoglobin in blood concentration temp - body temperature
SO2t
4 S SO2
OUTPUT : OUTPUT bin saturation (expressed (exp pressed as ratio from 0 to 1) SO2t - oxyhemoglobin at body temperature
temp 3 pO2t
SATUR37T
OUTPUT : PO2t - pO2 {torr] at body temperature PO237T
I& & $I&
INPUTS :
O2
&!X!#!Y <
!"!&!!X#Y
bG <
<
# <&
><
bG <
><
I&
2 $ ('
$ L"R
!IM"T.-% 2 .2g=1Bn1 &+2 -+& $$ 4&
44
'$+ ', !. (+ *#! =%(* ** '$* #* - #.
# *. ++ #$ *'$+ ', EIHIMG -# +#I- *# *+ *$ * #+ #- .
! (+ *'$+ %, -(+ *#+
* #) DE#FGFAHIHE ! )$ ' -", ("' )+ 8*'$ '! - *. #
# + . *,. !
--+ ./ (+ *#+ EIGG : *'$+ *(+ ', -* ! A $ # " 0 + %+- #* $* # #! < %d8* E JWG + $ ( % *$ +
#! +c dd+!*d *+ <#$ - ! A[8>"<7 7Q"A[8>"<7 #-$ *. -P- $ -I$ ! (+ *#, - #+ (#a *#, ! (+ $* #$ - %! $ - V B 2 * + - # %$ %+-$$ !!IG"<2 2.+ &&+&&% (+ *#, <- z& ..- +. = % *#, !-#(+ - -.&3.- &%2& .& #$ ##+ -! L 7- ,8 {& & &% E?!# A # ` ; R^^SG - # - - & & & $ K # +c dd*#* d 1
-&+.-.& -.&cTx< EQ!*# Zc4 + ` Z +4 + R^^WG - # # +c dd444+!* d*#d#+ = % (+ % (+ *#, (+ '$* -! 8Z?< E8! * Z ! < ? G .$+ - -# ##, $ *#, % (+ ! *, E+c dd%* dG - # # +c dd444%d%*#6*d. <#! - ##* +(+ ((+ * , + # %$+ %! -#* . --+ #% . (-*! -I-$ 2 $ * + ACT>9U>'L< ! #$ -! 8* E+c dd+!*d*+G - $* *(* $* # $(+ # %$ *#, ! (+ ! *,
) + ** - %+- . #-( i# + *# (+ ! *, ( %! ##* " " R.
*4#) 6 )@ (!)+" !)$' ; *0$ *# $+ #$ E ( JK+ Z# @#. ` 2 MUR6a Z# ` @. MUSa @#. ( ` Z# MUXG-* *# (+
!.$
( 1+ *0
!.#-
45
!JW"D -.&c..- -.& .-, '- )& - % A @<- 3 -&+. -, % - --0
46
** E -! O G #* +#4 * *#* # *( * & %! # .# $ ( ! %!! '$ # ! ! (+ # +! C( ( # (
#$# P$ -* -+ ** Q,
( %$+ '$ ', *.& --+ C+ . + +$
#$ # 54 - % #$ #&C *#, E< %d8* # C* < +4G #! * . -* ! $ (+ * ! (+ $ #+ ## (+
& 2! -* " " +R, E 2 ` MMXa 2 ` 1# R^^^ 9+ 2 8 ` 2 R^^ 8 9+ 2 1# ` 2 R^^ 2 1# ` R^^ 2 2 ` 1# R^^ 9#$ ` < R^^R R^^R% R^^R R^^R# 9#$ ` R^^W 9#$ ` R^^NG ( !.$ ( 0 (+ + +'$+ (+ + "# * + ' %! * ! - ( *, 1+ &(* ##* %! +( * *&( *# ! (+ +, +* ! $+ #$ ! ( (-* #$ < %d8* 8 *# 8* -* $ - V B E#$ + *# - '/ $ +! A[8>"?>ZQ9Q[ \ +c dd444 +!*d*+G &(* !./* &(+ (#, - *+ ! (+ %! *, * *$ * *&+ *# %! ( *, \ * @* 1+ % * !.# # $ * * P$ '$-$$ ! $ . + +$ -+ -$ C(* *#* ** (* #$ * 2! ( (( * %! # % L= Q"< #$+ * -*,* ,(+ (+
# &(+ / ( ! # $ *# * 2(* *&'$* &** - * %!! +! , !.$-$$+ * ( EJG 8* V@*B %! * # $* ( ! + $+ #$ *.I- *
-* *$ +! *& #% +! +! $+ !, '$ +$ +! # *.I #
-,- $ P$
E 1 8 9+ 2 ` 8' R^^a 8 9+ 2 ` 8' R^^a 2 2 ` 1# !J"D &-- ,&&+ & &+ F!=BAK. R^^G 8* %! %! '-+ - '-+ 5 $ - )-+. & ., & &+ & A @<- D- . & &+-&+ * +- .$! * '$ )& & | < $' E# '$ ' *! $G %--+. 5- . - f$! E (* *$ *! # - - ' . &+- - & '
$ +# !G *! $ - & %. A# - . -), ,+. &$ & * #$ ' %$ -# (+ &&+ & 2 - &-'& +#
#
47
)
%!! 2- $ #*$! E- - %* ( !, * #+ #G ' '$ +# ! (+ ' # ' * * E
% -# (+ $+ &+G R Q!+& - $+ $-*, '
-# (+ E , #! i!G #d * E &$
% *$ P$G :#$* !+/ $-*,d
%! *.
, ! (+ + E ,-* $G --+ P$ '% E*$ P$+ , -,- $+ #+G W ; V $B * ! ! (+ , *'$* *# --+. * %! *. *
, ! '$+! E #% G )"
%-! 2 + *(* +* ! ! (+ %! *, !+ %! % '$(* ( * $# *$+ +# ' $# --$+ ( $ # ! ( * ' *# $.$ # + *$ *$+ +# a * +#
-# (+ ' %! ' * *+ +* E * V+#!B * V#$ + B * * *(+ #G R 2 + C(* ( ! * ! ! (* +* * * ! %! *. # $
*$ $ (+ '$ 8* #' -* ( ! ! # $ $* +$ #!*(+ / - -,- $+ (+ , $ 8* %! +#(* #I* (+ '% ! ! 2 '%$+ ##&(+ #,#, %! %$-$ -# ! +! ## -# (+ ! (+ %! *+ -# (+ ++ (+ , $# * *%$ -# (+ + 8* *. $ #
(- -##+(+ *%(+ + $ '$ ## ! (+ %! *, -##+ *% +! ) * (# + $+ #$ %$-$ +! -# (+ %! *, $+ #$ E - +! #% %-* *& +* !G * 2 0 - , +! $+ #$ ' *% E !! - *$ #% %-* +G *$ # & % # $ #% *
* '$+ *!' -# (+ %! *, : # + +# - (+# . * #$! *0& *. #* # $ " # " .
**6 )) ! " 7! B8 8* *.I $* -# (+ $+ ' #
- -,- $+ (+ , $ $+ 8* *.I- * +#
(+ , *
$ E * $# + - '$ * % #i! ( E 9+ 2 8 R^^G - %+* V '$* f$ -#* , * E #% * % % \ & MG ( $* * % # (+ ! !* * % #i ,% ( $* %! (+ ! E%#% - #i #%& #i -G ; # $* %-$$* #% % E&;& MG *. #$* #,# < % # (+ ! #-$$+ $ ! #$ -
48
! EAnG ( $ --+ 0 #* 2 #+ 0 #$ ! .$ ! * !'-$ - & # * ! E;A4nG 2 #* $# - % * * %(* $* #$(+ , # 0 $ &! --+ !'$* # E#$ ! +*#$ 0 $ & !+/ MSR **dRS+#G " * - /* . #$ ! - 0 $ & ! %% (* %% (* ! I ( $ (* #$(+ , # #$ ! **% % > ! An -$ # % # - ! $* $! ;%+(* #,#* - !*($ % #$ %I+ = -$$ #* *,.
%'* $.$ % #$ ; #% +! E E& MG *,.* #
'$+ ! *, * % #i ;#%! ' #$ ! . %%
%% $ % - ! *& %$! +* % E - +! %% % '! + - ZO-G A *! $-$ #* Z 70 +# $+ %% , 2 0 !+#$ + #% +! !.$-$ *'$ #*! *'$ # * - * I $* E I& MG ; * # * *,.* # - #% + !$-$ - I-$ *'$ '$ *+*! 2 #* ** $# #$* . +# ! #% +! - *'$* # * * $ * % #i! +# A - XM * E%+* #& +#G '$ $-
*'$ # * % #i \ L"2 * E *'$* # * '$ ** #,G = $ (- * % #i! %+-$$* *'$ # * EJ& MG :( $ $ & # +#
L"2 $ E * '$ G ( $ A ,#$ $ +# ! X E % RSG +# XM 9#% +# ! *+ +-$ * *0*$ '$ * $' + ! $ $ & - #++ * % #i Q '$+ *,.* #
# $* E&L& MG A# %% , $. #$! % #%! '(+ #$(+ , '$ . #$ # L"2 %% ! -$ +* % * * **$ $* ** $ * '$ #
%% , ; *,.* # - %% ! -$ * # - --+ +# **$ $* * : %% , + %% * ! * * # . # * ! $ #$(+ , A * A **$ $+ * #.#$ #+ * #,#* - ! -$$ $ & Z+* T6R +# E# /. +!G +#! %% , * $ * !-$ '$ # * % #i #+ + *0* Q'$ ! * * % #.
! A *$ +# XS A - %$ / $ #! #! ( $ E%+* W6N #,G !'$ #$(+ , (+ ! * - * & # ! *(+ , ;A4n !'$ +*# !! A# ! #%(+ * , %! *'$* # * * +!%! * *0*$ '$ * ** *$* +# * E - ** # *'$+ # * E*-* ## . $ $ * .# # $ G Q$ * % #i! *,.* #
$ * # #$* . $
( !'$ & # ! ;A4n 9%! !+- * % #i %! # P %% , ; $* !%* $ ( P$ $* -+ # $* !+
P EG& MG 2(# * % #i! *$ P %% , *,.* #
*'$+ # * EM& MG 2#$* . #% +# ! %+* #$ P *'$* # * * ! %& + * % #i! #
49
%& *$+ A $.+ $+ L"2 2 * *. %! %! +# P # '$* *,.* /* $* ,%* '%! !
$-* *
- $ E -+ *
- - $G *,.* * #!. #-* P$ %% ! E&G& G >P %% , $* %#* * #
%%
. # !$ +# ! Z7 *$ +# E^ **dG #!%! %! +# L"2 *$ +# A %! * E AlXSG 1*.
%! * *0*$ '$ * E !$- R +#G - #% %# * * #$ 2 #,# * #$-$$ '$ * - +# L"2 $ +# A EA l XNWG ) *,. *$
%+ #,#! #( * %* )! *,.* * #
% #$ E&W& MG 2#$* . !+ -* +% $ # -$$ #* # #$ # % =$ ( #+$ #* # 0 $ &! E(* #$ !G # '& !' # *' 0 $ & -. $ # #$ # % # %'* +#! #$ *
- +. 8 -
##$* #$ =$ * *$* #
* # %! #$ 0 $ & #$! -+ $ P$* * $ %! # >P #(+ , - %$ #
%! +# #$ 0 $ & $ ( #( #$ '
# % #I
$. %! #$ %I+ !+- $ #$ $.(+ % #$ %I+ - +# #$ #(+ , P I (
#$ # % #$ # % !+- $ #* # # P $ i E * $ # %G ; i % E&J;G *,.* # - P i! $* ( $ !+
i! # % =$ i! $ $* %!+* ! +! !* E+# !* *,.* ,%. #
G ; % #$ EJEG *,.* # - * $ I i # % ! $ *$ P #( #$ 8$. %! #$ %I+ !+ #I-$ +# *&+ #$ - # # P #. %'(+ *$+ $+ + . + #$ '$+ P$ 8* %! *. #!
#C( *( ' %+ F ,%+! +#
-# (+ ' %! *. #
$+ + %-$$+ $ ! '(+ ,%+, +#
+ $+ ' 8* %! *. &*
'$ VQ B '
# *$+ ) '$ %! /* -##+(* ,%* *. #
. .
+.-$$ ! * (+ , 0 - * ! .$ - . ' ( *, + # &+ &+ +#$ % %'$ 2 #+ $* # *
- - $ * %! # , -$$+ -,- $ *% +! +* ! $+ #$ \ #$ * %+! $# V B # %! *. #
!+
'( $ (+
$+ & $ +#
$ (+ * , (* %! *. *
$ +! ! (+ $ -,- $+ *$+ Z! ! #$ $ 6 #& *+ !%$
P$ #! %$# (+ P$+ , * *.I # $ + #
# $ !
50
!J;"6-- F1& -X -'-
!JE"6-- FC54+. -,)-q -- -
51
*.6 ) ;! ) <L!5 !3 !@-,
/" + ( * - . '(* ((* #* *.I-$$* # ,* *#$! (* # I$* -# (+ *(+ -*
#$ * & %! #+ # (! * 0 - . # # (+ -, *.I-$$+
* *! % '$ ' #
!JI"<& && -:'-%. - '-+. -& &&. ( % &- ' -' -: &&. T & . &2 +. )&%&2&%& +.-%-.K.. 7 %)2 -f -2
2& ) 8 <'- %. 2
- & - ,$ )2 2- . % &2 ,$ -- & & - & 1% -&'- 2
- . -'-%. -'-+. -&$- .& 1 ,$ & - $ . &-&+ % & ' -'-%& -'&- -,D .. F,$ & - )& 5)-% %),$+ %-: ' &&.& ) & -+&+ &% %&- -,
!JJ"<& && - +. 5)-+. +..&&* 5-&1 2-&+. . ,. ) ( . ., &&* . 5-7 gaT '-%. .8 . - +. )&+. 5)-+. +.# . ,$7'- 2
-- & &)-%& 8 ) $ - .& & &. . +.#- -% - ). '-%- -,& 7)&%8. I IG@ 2 &. L ;G@D,$& $&&+ - D%-,$ & -&+ . & &+ &2& -&# , F$* ,& &+ &+. 5)-+. )2 . -., % . & &+. 5)-+. %,, )-% '-%
52
$* #$ E +c dd444%%#!*dG "%#% - * -*$ * %! * # I-* -# '& , #$ '& * * # + +# - (+# %-I
! ( (* -# (+ '$+ +, *$ ! " $ Q-$ '$+ % * *.$ ! " # " $% * +#
(+ *(+ - * * ! = * @* -* # + , (+ (+ !JL"c )2 2- 52 . ! (+ *(+ --+ V/ %,-&<'- 2
-) #( B 8 '$ # * 2 2- . !;& -&" $ * E - * # #+ $&&2 %. %! * --$. +# - - %! * .c!;,$& -- & A,$.. &+ & -&+ G &
$ '$ E . !; )& 52 % -& 1- ' * G * $ . - , &* .- * #-$ - $ '$ *!'! 1-$ +# - &+. 7N6_-8 - . T *,.* *
#
#! %!722-&% 8.+ * # +# ! 1*
&* - <'- .7$ &&+.8 $ '$ E-+. # * „cont 2
-,$)2 .2- & . G *
-$* # & %& .& '$ *!'! %. 52 . %, -& . Q-$ '$+ *!' *.$ *
&+.& .&21% * -# ( ! ( %! * & ,$ & -&- *
-+ +$ & (+ & %. .) )'$+ $+ + * # 7X&.E:J,
+$ -# (+ ! (+ '&%. 28 $ - -%. T $+ +, ## &+ &2& +.-&7&5 V ) *,.* # -( ' & % DTI 8 ! #! * &$ & * # *&( *&(+ %$ $ % # *&( & ' +!#( &$ &! EJIG 2 +! ! '! - ** ! # #-$* # # *&(
* E ( $ ** *&(+ %$G *,.* # - -+ '
&! *! # &$+ ; * *,.* ** - *
-# (+ *(+ (#- $ (+ +*, \ $# -$* '$ *!'! $#$$ *& +#! #$ *,.* +# #$ * #
- # - ( $ +#! #$ *$ (#- # E&JJG # #
- ( +# # $ -+ !'
$ #+ "# - $+ % *,.* # #-
( %! * #
#!* +$ #+ %! * (+ *+ -#+ /* - ! - ! $ +# ! E V %BG ) $# +$ *+* #% +! *,.* #
+$ '$+ ! *, #-(+ - $ * +#! 0# +' + E& JLG Q-$* '$+ *!' *,.* #% * '$* - I!
53
!JH"<& .& 2 . ) . -% &&. D .% - &%52 %&-& &- - %. 5- %!;-. 5-%7 ..&-&-& -'-&$&&%80- 7T!E-8 - . 5- % 7 . + . . -& & - %8 k . . T ) ,$ . & - - & & -2 .) .Tc-. T $ HIH;I --- &-& -$ -.- ,7T!E-8 T!;&- --'- -&&.!;&-& 0. - , & -& - &&& D ,$& -- - . - . -& . . & - - # & .-% -&52 -&- &% % - & - & -&+. , &- T--# $ 2 . & &'72-&%& 2'-8 7.;.&%.28
!JM"<& .& . ) -%&&.k ) &+ ) &&2& +.-<'- 2
- & .) .& - . .T - -$%& -- & .) < $ :. .T ,$& -&$ - &+ &2& +. - 1 - 7.E:J &%. 28 & X- & -&+. , &+. 55 7&5' & % 8-7& 5DTIV8T T&2 $
'$ $ #% +! EJHJMG "#-$* -# (+ , *,.* #! ## #
+$ * (+ '$+ *!' #$'$+ ! (+ %! *, )$* * @* +- *#, #$'$+ ! (+ %! *, *,.
+$ -# (+ ! (+ '$+ % +$ ! #! (+ , - #,. +$ -*(+ / -# (+ ! (+ %! *, Q-$* '$ *!'! $$ (#- # *,.* $# #
+*$ $ %! *, - #% ! +! E&JGG <.
-$ -$ '$+ *!' *.I- # ,* *$ * -*
(* -# (+ '$+ +, #
E-(+ ' $(+G '$+ % +$ * -,- $+ (+ ++ $+ $ # + / $ # " " = *$ --+ P+! -,- $+ *$ +$ ! (+ , $ (+ '%(+ +,
54
!JG"c - 5)-+. %, & . )2 . 2- & F!=BA & %-%&&.- &%&&.)2 &&. )<'-0 2
- .. )c 2 -f -- . &+ 7g8c2& .% &2& -&&. $ - &&+ % &22 .&& -% &% &- $ - &2% -'78-7N81+ --& -&& & -&+. ,-78 ,-&X -%-q7a8
55
*2M)!6 ) L) ) "()$ #) <(&+ @* \ ++ *+ ' + # #! 1+# ?j4 . V * +6* B \ *$ Z.$+ -* - $* +* ' ]* .$ # @* + %!
P#- % . < (* V **B ( .- * @* - * *&( *# < *&( *# ( - ##* * %! ! #$ < %d8* # C*! < +4 :#-( 0
*# 8* - '/ * ! +! A[8>"?>ZQ9Q[ - - V B # # +c dd444+!*d*+ <# 8* * ++ \ . -# (+ (+ -(+ *(+ %, *$-$$+ '! L( *# - ( - -# ++! #( *( % E& LWG -+ V/B %-$ *# U -(* *(* %! -$ -# %! *, ELG A+ -# (+ %, -$ %! %! *# -* & %!! * ! ! 2 * .#+ % - ! (*! + $+ ( $+ *(+ !$+ -# +. - !-#! --+ +# ! -$ -# (+ %, - * - ! & - *# .! $ * *& +! - ! ! -(+ %, * +,* - *. Simulation time
SIMTIME ZUR XURE YURU ZMNE XMNE YMNU VA GFR ALD ADH THDF STPG YTA YTA1 PHU YNH4 YCO3 YCO3R PICO XPIF ZPIF ZPP XPP PPCO ZPO4E XPO4 YPO4 ZSO4E XSO4 YSO4 ZORGE XORGE YORG OSMP UCO2V UO2V PCO2A FCO2A PO2A FO2A YNU YNH YND XNE ZNE YNHI YKHI ZKI ZKE YKU YKD XKE PIF QLF QWD QWU OSMU ZCLE XCLE YCLU QCO PAP PAS PC PVS PVP ZCAE XCAE YCA ZMGE XMGE YMG HB HT VB VP VEC VIF VTW VIC YINT YGLS YKGLI ZGLE XGLE YGLU A STBC BE AH PHA SO2A XCO3 UCO2A UO2A BEOX BEEC
TBEOX YCO3IN YHIN MRH ZBEEC0 BEOX0 TYINT XGL0 CGL1 CGL2 YINS CGL3 YGLI YINT0 ZGLE0 QIN QVIN QIWL QMWP CFC CSM VRBC XHBER VIN0 VP0 VIF0 VIC0 YCAI YMGI ZCAE0 ZMGE0 RTOT RTOP KL KR DEN KRAN YCLI ZCLE0 QLF0 CPR YNIN CBFI CHEI ZKI0 CKEI YKIN ZNE0 ZKE0 ZHI0 MRCO2 MRO2 PBA FCO2I VAL FO2I UCO2V0 UO2V0 FCO2A0 FO2A0 YPO4I YSO4I YORGI ZPO4E0 ZSO4E0 ZORGE0 YPLIN ZPG0 ZPIF0 ZPP0 ZPLG0 TPHA1 YTA0 TPHU2 TPHU1 YNH40 PHA0 PHU20 PHU10 VA0 YURI YMNI ZUR0 ZMNE0
1 SIMTIME
TBEOX
1
TBEOX 2
(=8.0)
YCO3IN
<XURE>
3 YHIN
YHIN
(=0)
4
MRH <XMNE>
MRH (=0.0405)
6
(=0)
BEOX0
7 TYINT 8 XGL0
9 CGL1
10 CGL2
TYINT
11 YINS 12 CGL3
7 YMNU 8 VA
(=15) XGL0
(=108)
CGL1
9 GFR 10 ALD
(=1)
CGL2
11 ADH
(=1)
5 ZMNE 6
(=0)
BEOX0
3
4 YURU
XMNE
ZBEEC0
5 ZBEEC0
2 ZUR
XURE
YCO3IN (=0)
YINS
12 THDF
(=0) CGL3 <STPG>
(=0.03)
13 STPG
13 YGLI
14 YINT0
15
YGLI
(=0)
17 QVIN
18
(=0) ZGLE0
(=66)
ZGLE0
YINT0
QVIN
(=0.01)
QIWL
QIWL (=5e-4)
19
20 CFC
PHU 17 YNH4 18 YCO3 19 YCO3R 20 PICO
QMWP
(=5e-4)
QMWP
14 YTA 15 YTA1 16
<XPIF>
CFC
(=0.007)
21 XPIF 22 ZPIF
21 CSM
CSM
(=3e-4)
23 ZPP
22 VRBC
VRBC
<XPP>
(=1.8)
23 XHBER
XHBER
(=33.34)
24 XPP 25 PPCO 26 ZPO4E
24 VIN0
<XPO4>
VIN0
(=0.01)
25 VP0
26 VIF0
27 VIC0
28 YCAI
29 YMGI
VP0 <XSO4>
(=8.8) VIC0
(=20)
30
(=0.007) YMGI
ZORGE 33
ZMGE0
32 RTOT 33
RTOT
34 KL
35 KR
UO2V 38
36
KL
KR
(=0.3)
KRAN
<XNE>
37 KRAN (=5.93)
38 YCLI
39 ZCLE0
40 QLF0
41 CPR
42 YNIN
43
CBFI 44 CHEI
45
ZKI0
46 CKEI
YCLI
(=0.1531)
ZCLE0
(=1144) QLF0
(=0.002) CPR
(=0.2) YNIN
(=0.106) CBFI
(=1e-9) CHEI
<XKE>
(=5) ZKI0
(=2800) CKEI
(=0.001)
47
YKIN 48
ZNE0
49 ZKE0
YKIN
(=0.047) ZNE0
<XCLE>
(=1540)
41 FO2A 42 YNU 43
44 YND 45 XNE 46 ZNE 47 YNHI 48 YKHI 49 ZKI 50 ZKE 51 YKU 52 YKD 53 XKE 54 PIF 55 QLF 56 QWD 57 QWU 58 OSMU 59 ZCLE 60
XCLE 61
YCLU 62
ZKE0
(=49.5)
FCO2A 40 PO2A
YNH
DEN(=1)
DEN
36 UCO2V 37
PCO2A 39
(=0.2)
35 OSMP
XORGE 34 YORG
(=20) RTOP
RTOP (=3)
31
<XORGE>
(=0.008)
31 ZMGE0 (=33)
30 XSO4
YSO4 32
ZCAE0
(=55)
29 ZSO4E
YCAI
ZCAE0
28 YPO4
(=2.2)
VIF0
27 XPO4
QCO 50 ZHI0
ZHI0
(=100)
MRCO2
51 MRCO2 (=0.2318)
52 MRO2
53 PBA
MRO2
(=0.2591) PBA
(=760)
55 VAL
56 FO2I
FCO2I
(=3)
XMGE 73 YMG
UO2V0
(=0.155)
FCO2A0
59 FCO2A0 (=0.0561)
60 FO2A0
FO2A0
(=0.1473)
61
YPO4I
62 YSO4I
63 YORGI
64 ZPO4E0
65 ZSO4E0
66
ZORGE0 67 YPLIN
68 ZPG0
YPO4I
(=0.05) YSO4I
(=0.04) YORGI
(=0.01) ZPO4E0
(=24.2) ZSO4E0
69 ZPIF0 70 ZPP0
(=0)
71
ZPLG0 72 TPHA1
73 YTA0
74 TPHU2
ZPLG0
(=70)
<SO2A>
TPHA1
(=200) YTA0
<XCO3>
(=0.0068) TPHU2
(=20)
75 TPHU1
76 YNH40
77
PHA0 78 PHU20
79 PHU10
80 VA0
TPHU1
YGLU 88 A 89 STBC 90 BE 91 AH 92 PHA 93 SO2A 94 XCO3 95 UCO2A 96 UO2A 97 BEOX
(=300) YNH40
81 VIC 82
83 YGLS 84 YKGLI 85
XGLE 87
ZPP0
(=154)
79 VIF
(=20) ZPIF0
(=176)
VB 77 VP 78 VEC
80 VTW
ZGLE 86
YPLIN
ZPG0
HT 76
<XGLE>
(=66.0)
<STBC>
74 HB 75
YINT
(=22) ZORGE0
71
(=0.21)
58 UO2V0
69
ZMGE 72
UCO2V0
68
70 YCA
<XMGE>
57 (=0.52) UCO2V0
PC 66
67 PVP
XCAE
(=0.0003)
VAL
FO2I
64 PAS 65
ZCAE <XCAE>
54 FCO2I
63 PAP
PVS
98 BEEC
(=0.024) PHA0
(=7.4) PHU20
(=6) PHU10
(=6) VA0
(=5) YURI
81 YURI (=0.15) YMNI 82 (=0) YMNI ZUR0 83 (=77.5) ZUR0
GOLEM
ZMNE0
84 ZMNE0 (=0) 16 QIN
QIN
(=0.001)
!LW"A '-+ - +- F &- ..-+-&+- - +20& %-.&cTx?@@999 .@.8<& - - -+2
56
XHB TBEox
BEOX
ACID BASE METABOLIC BALANCE
A
9L>= Z987 <7)9Z"?>L Z9?9;L7
VEC
yTA
yNH4
yCO3
yKHi
yNHi
Z?""= 9L>= Z987 Z9?9;L7
yHin
HB
BEOX
BE
U(E) U
A
AH
UO2A
yINT <XGL0>
BE
Z?""= @?L"87 L";)Q"?
CGL2
yINS
SO2A
XCO3 UCO2A
UO2A
CGL3
BEEC
BEEC
yKGLI
vEC
GFR
zGLE
xGLE
21.8.2001
yGLU
YGLS
YKGLI
ZGLE
XGLE
YINT 0
Scope2
ZBEEC 0
ZGLE 0
YGLU
Blood Glucose Control
BEOX 0
yGLS
OUTPUTS: yINT - insulin secretion [unit/min] yGLS - glucose flow rate from ECF into cells [mEq/min] yKGLI - K flow rate from ECF to ICF accompanying secretion of insulin [mEq/min] zGLE - ECF glucose content [mEq] xGLE - ECF glucose concentration [mEq] yGLU - renal excretion rate of glucose [mEq/min]
yGLI
Blood Acid Base Balance
YINT
BLOOD GLUCOSE CONTROL INPUTS: TYINT - time constant of insulin secretion xGL0 - reference value of ECF glucose concentration CGL1 - parameter of glucose metabolism CGL2 - parameter of glucose metabolism yINS - intake rate of insulin[unit/min] CGL3 - parameter of glucose metabolism yGLI - intake rate of glucose [g/min] vEC - ECF volume [l] GFR - glomerular filtration rate [l/min]
CGL1
PHA
xGL0
AH
MRH
<MRH>
TYINT
Selector STBC
OUTPUTS: PHA XHB - Vector of coefficients derived from hemoglobin concentration STBC - Standard bicarbonate concentration [mmol/l] BE - Base Excess concentration in arterial blood SO2A AH - Hydrogen ions concentration [nmol/l] PHA - arterial plasma pH XCO3A SO2A - Oxygen hemoglobin saturation in arterial blood (expressed as ratio from 0 to 1) XCO3 - Actual bicarbonate concentration in arterial blood UCO2A - Content of CO2 in arterial blood [l STPD/l] UCO2A UO2A-Content of O2 in arterial blood [l STPD/l] PO2A PCO2A
OUTPUTS: BEox (** Base excess in fully oxygenated blood [mEq/l]*) BEEC (*ECF Base excess concentration
yCO3in
BEox
INPUTS: TBEOX - (*Time constant*) VB (*Blood Volume [l]*) HB (fore XHB) (*Blood hemoglobin concentration [g/100 ml]*) A [11] - (* vector of coeficients, see "Blood Acid Base Balance" *) pCO2A (*CO2 tension in arterial blood [Torr]*) VEC (*Extracelular fluid volume [l]*) yTA (*Renal excretion rate of titratable acid [mEq/min]*) yNH4 (*Renal excretion rate of ammonium [mEq/min]*) yCO3 (*Renal excretion rate of bicarbonate [mEq/min]*) yKHi (*Potassium ions flow rate from ECF into ICF exchanged with hydrogen ions [mEq/min]*) yNHi (*Hydrogen ions flow rate from ECF into ICF exchanged with sodium ions [mEq/min]*)
pCO2A
STBC
INPUTS: BEOX - Base Excess in fully oxygenated blood [mmol/l] HB - Hemoglobin concentration [g/dl] PCO2A - CO2 tension in arterial blood [torr] PO2A - Oxygen tension in arterial blood [torr]
HB
XHB
BLOOD ACID BASE BALANCE
VB
Scope Acid Base Metabolic Balance1 Acid base metabolic balance
Scope1
Blood acid base balance
Scope3
Blood glucose control
qIN
HB
qVIN
HB
vEC
zCaE
ZCAE
VB
QCO
QCO
qIWL
CALCIUM AND MAGNESIUM BALANCE
BODY FLUID VOLUME BALANCE qMWP
qWU
qLF
CFC
pICO
pPCO
pC
pIF
CSM
xNE
<XNE>
xKE
<XKE>
INPUTS: qIN - drinking rate [l/min] qVIN - intravenous water input [l/min] qIWL - insensible water loss [l/min] qMWP - metabolic water production [l/min] qWU - urine output [l/min] qLF - lymph flow rate [l/min] CFC - capillary filtration coefficient [l/min/torr] pICO - interstitial colloid osmotic pressure [torr] pPCO - plasma colloid osmotic pressure [torr] pC - capillary pressure [torr] pIF - interstitial pressure [torr] CSM - transfer coeff. of water from ECF to ICF xNE - ECF Na concentration [mEq/l] xKE - ECF K concentration [mEq/l] xGLE - ECF glucose conc. [mEq/l] zKI - ICF K content [mEq] vRBC - volume of red blood cells [l] xHBER - hemoglobin concentration in the red blood cells [g/100 ml]
Z"=[ O?>= 2"?<7 Z9?9;L7
zKI
vRBC
xHBER
<XHBER>
vB
VB
vP
VP
yCaI
xCaE
INPUTS: vEC - ECF volume [l] yCaI - calcium intake [mEq/min] yMgI -magnesium intake [mEq/min] GFR - glomerular filtration rate [l/min]
XCAE
L9?L>< 9;= <9@;78>< Z9?9;L7 GFR
yCa
OUTPUTS: zCaE - ECF calcium content [mEq] xCaE - ECF calcium contentration [mEq/l] yCa - calcium renal excretion rate [mEq/min] zMgE - ECF magnesium content [mEq] xMgE - ECF magnesium contentration [mEq/l] yMg - magnesium renal excretion rate [mEq/min]
yMgI
zMgE
INITIAL CONDITIONS: zCaE0 - ECF calcium content [mEq] zMgE0 - ECF magnesium content [mEq]
zCaE0
xMgE
zMgE0
yMg
VIF
L9Q=>"298L?9Q Z?"L
RTOP
KL
XMGE
YMG
PAS
OUTPUTS: QCO - Cardiac output [l/min] PAP - Pulmonary arterial pressure [torr] PAS - Systemic arterial pressure [torr] pC - Capillary pressure [Torr] PVS - Central venous pressure [torr] PVP - Pulmonary venous pressure [torr]
KR
PAP
INPUTS: VB - Blood volume [l] RTOT - Total resistance in systemic circulation [Torr * Min / l] (norm.=20) RTOP - Total resistance in pulmonary circulation [Torr * Min /l] (norm. =3) KL - Parameter of the left heart performance [l/min/torr] (norm.=0.2) KR - Parameter of the right heart performance [l/min/torr] (norm.=0.3) DEN - Proportional constant between QCO AND VB [1/min] (norm.=1) KRAN - Parameter of capillary pressure (norm.=5.93)
ZMGE
vTW
CARDIOVASCULAR BLOCK
RTOT
YCA
30.7.2001
VEC
vIF
24.8.2001
VIN 0
HT
vEC
OUTPUTS: HB - blood hemoglobin concentration [g/100 ml] HT - hematocrit vB - blood volume [l] vP -plasma volume [l] vEC - ECF volume [l] vIF - interstitial fluid volume [l] vTW - total body fluid volume [l] vIC - ICF volume [l]
xGLE
<XGLE>
HT
DEN
pC
PVS
24.8.2001 edited by Tom Kripner
KRAN
PVP
Calcium and Magnesium Balance
PAP
PAS
PC
PVS
PVP
Cardiovascular Block
VTW
VP 0
VIF 0
Scope5
vIC
Scope4
VIC
VIC 0
Body Fluid Volume Balance Scope6
Body fluid volume balance Calcium and magnesium balance
Cardiovascular block
vEC
>;)7Q8)>)>9? Q788Q7 9;= ?[<A O?"J Q9)7
ADH
DIURESIS AND URINE OSMOLARITY
yCLI zCLE
CHLORIDE BALANCE
INPUTS: vEC - ECF volume [l] yCLI - chloride intake [mEq/min] yKU yNU - Na renal excretion rate [mEq/min] yKU - K renal excretion rate [mEq/min] yNH4 - ammonium renal excretion rate [mEq/min] yNH4 yCa - calcium renal excretion rate [mEq/min] yMg - magnesium renal excretion rate [mEq/min] xCLE yCa ySO4 - sulphate renal excretion rate [mEq/min] yCO3 - bicarbonate excretion rate [mEq/min] STPG - summary renal excretion rate of phosphates and org. acids yMg related to arterial pH [mEq/min]
LA?"Q>=7 Z9?9;L7
yKD
yGLU
XCLE
yURU
yMNU
=>Q78>8 9;= Q>;7 Z9?9;L7
qWU
VIF0
QWD
yKU
yCLU
YCLU
PIF
PIF
OUTPUTS: pIF - interstitial pressure [torr] qLF - lymph flow rate [l/min]
QWU
QLF
OUTPUTS: qWD - rate of urinary excretion in distal tubule [l/min] qWU - urine output [l/min] OSMU - urine osmolality [mOsm/l]
Scope7
STPG
INTERSTITIAL PRESSURE AND LYMPH FLOW RATE
INPUTS: vIF0 - normal interstitial fluid volume [l] vIF - interstitial fluid volume [l] qLF - normal lymph flow rate [l/min]
VIF
16.8.2001
QLF0
QLF
Interstitial Pressure and Lymph Flow Rate
17.8.2001
yNU
yCO3
30.7.2001 <STPG>
INPUTS: ADH - effect of antidiuretic hormone [x normal] OSMP - plasma osmolality [mOsm/l] yND - sodium excretion rate in distal tubule [mEq/min] yKD - potassium excretion rate in distal tubule [mEq/min] yGLU - renal excretion rate of glucose [mEq/min] yURU - renal excretion rate of urea [mEq/min] yMNU - renal excretion rate of mannitol [mEq/min] yNU - sodium renal excretion rate [mEq/min] yKU - potassium renal excretion rate [mEq/min]
yND
OUTPUTS: zCLE - ECF chloride content [mEq] xCLE - ECF chloride concentration [mEq/l] yCLU - chloride renal excretion rate [mEq/min]
ySO4
qWD
OSMP
ZCLE
yNU
OSMU
OSMU
Diuresis and Urine Osmolarity
ZCLE 0
Chloride Balance
Scope8 Scope9 Diuresis and urine osmolarity
Interstitial pressure and lymph flow rate
mrCO2
<MRCO2>
uCO2A
yTA1
yNU
8"=>< 9;= ")988>< Z9?9;L7
CHEI
yNH
xNE
zKI0 CKEI yKIN vEC ZNE 0 ZKE 0
YND
QCO
PBA
XNE
ZNE
VAL
VA
YNHI
fO2i
yKHI
YKHI
zKI
zKE
yKU
yKD
ZKI
ZKE
<XMNE> UCO2V <XURE>
uO2V
"R 9;= L"R 7}LA9;@7
fCO2i
zNE
yNHI
OUTPUTS: yNU - Na renal excretion rate [mEq/min] yNH - Na excretion in Henle loop [mEq/min] yND - Na excretion rate in distal tubule [mEq/min] xNE - ECF Na concentration [mEq/l] zNE - ECF Na content[mEq] yNHI - H ions flow rate from ECF to ICF (exchanged w. Na) [mEq/min] yKHI - K flow rate from ECF to ICF (exchanged w. H) [mEq/min] zKI - ICF K content [mEq] zKE - ECF K content [mEq] yKU - K renal excretion rate [mEq/min] yKD - K excretion rate in distal tubule [mEq/min] xKE - ECF K concentration [mEq/l]
yKGLI
uO2A
yND
INPUTS: mrCO2 - (*Metabolic production rate of CO2 [l STPD/min]*) uCO2A (*Content of CO2 in arterial blood [l STPD/l]*) VTW (*Total body fluid volume [l]*) mrO2 - (*Metabolic consumption rate of O2 [l STPD/min]*) uO2A (*Content of CO2 in arterial blood [l STPD/l]*) QCO (*Cardiac output [l/min]*) PBA - (*Barometric pressure*) fCO2i - (*Volume fraction of CO2 in dry inspired gas*) VAL - (*Total alveolar volume (BTPS)*) VA (*Alveolar ventilation [l BTPS/min]*) fO2i - (*Volume fraction of O2 in dry inspired gas*)
mrO2
<MRO2>
YNH
uCO2V
O2 and CO2 EXCHANGE VTW
INPUTS: yTA1 - Arterial pH dependent portion of titrable acid excretion rate yNH4 - ammonium renal excretion rate [mEq/min] ALD yCO3R - bicarbonate reabsorption rate [mEq/min] ALD - aldostrone effect [x normal] GFR GFR - glomerular filtration rate [l/min] CPR - excretion ratio of filterd load after proximal tubule CPR THDF - effect of 3rd factor (natriuretic horm.) [x normal] yNIN - sodium intake [mEq/min] THDF PHA - Arterial blood pH CBFI - Parameter of intracellular buffer capacity yNIN CHEI - Transfer coeff. of H ions from ECF to ICF yKGLI - K flow rate from ECF to ICF accompanying secretion of insulin [mEq/min] PHA zKI0 - normal ICF K content [mEq] CKEI - Transfer coeff. of K ions from ECF into ICF (exchanged with H ions) yKIN - K intake [mEq/min] CBFI vEC - ECF volume [l] yCO3
YNU
SODIUM AND POTASSIUM BALANCE
yNH4
pCO2A
fCO2A
OUTPUTS: (** Content of CO2 in venous blood [l STPD/l]*) (** Content of O2 in venous blood [l STPD / l*) pCO2A (*CO2 tension alveoli [Torr]*) fCO2A (*Volume fraction of CO2 in dry alveoli gas*) pO2A (*O2 tension in alveoli [Torr]*) fO2A (*Volume fraction of O2 in dry alveoli gas*)
UO2V
xMNE
?98<9 "8<"?9Q>)[ PLASMA OSMOLARITY
xURE
xGLE
<XGLE>
xNE
<XNE> PCO2A
INPUTS : XMNE - ECF mannitol concentration [mmol/l] XURE - ECF urea concentration [mmol/l XGLE - ECF glucose concentration [mmol/l] XNE - ECF sodium concentration [mmol/l] XKE - ECF potassium concentration [mmol/l]
OSMP
OSMP
OUTPUT : OSMP - plasma osmolarity
xKE
<XKE>
Plasma osmolarity calculation
FCO2A
uCO2V uO2V -
UCO2V 0
pO2A
PO2A
UO2V 0
8.10.2001 fO2A
FCO2A 0
FO2A
FO2A 0
O2 and CO2 Exchange
YKU
YKD
27.7.2001 xKE
ZHI 0
XKE
Scope12 Na & K Balance Scope11
Sodium and potassium balance
Scope10 O2 and CO2 exchange Plasma osmolarity
zPO4E
vEC
ZPO4E
A"8A9)7 9;= "Q@9;>L 9L>=8 Z9?9;L7 PHOSPHATE, SULPHATE AND ORGANIC ACIDS BALANCE
xPO4
yPO4I
INPUTS: vEC - ECF volume [l] yPO4I - phosphate intake [mEq/min] ySO4I - sulphate intake [mEq/min] yORGI - organic acids intake [mEq/min] GFR - Glomerular filtration rate [l/min]
ySO4I
yORGI
GFR
ZPO4E 0
OUTPUTS: zPO4E - ECF phosphate content [mEq] xPO4 - ECF phosphate contentration [mEq/l] yPO4 - Phosphate renal excretion rate [mEq/min] zSO4E - ECF sulphate content [mEq] xSO4 - ECF sulphate contentration [mEq/l] ySO4 - sulphate renal excretion rate [mEq/min] zORGE - ECF organic acids content [mEq] xORGE - ECF organic acids contentration [mEq/l] yORG - organic acids renal excretion rate [mEq/min]
ZSO4E 0
30.7.2001
ZORGE 0
yPO4
zSO4E
xSO4
ySO4
zORGE
xORGE
yORG
pICO
vIF
STPG
XSO4
pC YPLIN vP ZPG 0 ZPIF 0
YSO4
ZPP 0
INPUTS: vIF interstitial fluid volume [l] qLF - lymph flow rate [l/min] pC - capillary pressure [torr] YPLIN - rate of intravenous plasma protein input [g/min] vP -plasma volume [l]
Q")7>; Z9?9;L7 OUTPUTS: pICO - interstitial colloid osmotic pressure [torr] xPIF - interstitial protein concentration [g/l] zPIF - interstitial protein content[g] zPP - plasma protein content [g] xPP - plasma protein concentration [g/l] pPCO - plasma colloid osmotic pressure [torr]
xPIF
XPIF
zPIF
ZPIF
zPP
ZPP
xPP
XPP
10.7.2001
ZORGE
STPG
PHA
qLF
YPO4
ZSO4E
TPHA1
PICO
PROTEIN BALANCE
XPO4
ZPLG 0
pPCO
PPCO
Protein Balance
XORGE
YORG
Phosphate, Sulphate and Organic Acids Balance
ano XCO3
<XCO3>
yORG
RENAL ACID BASE CONTROL yPO4
Q7;9? 9L>= Z987 L";)Q"?
INPUTS: TPHA1 - Time constant of titratable acid [1/min] PHA - arterial pH yORG - Renal excretion rate of organic acid [mEq/min] yPO4 - Renal excretion rate of phosphate [mEq/min] yTA0 - Normal value of renal excretion rate of titratable acid [mmol/min] ALD - Aldosterone effect [x normal] TPHU1 - Time constant of ammonium secretion [1/min] TPHU2 - Time constant of titratable acids secretion [1/min] yNH40 - Normal value of ammonium renal excretion rate [mmol/min] TPHU1 qWU - Urine output [l/min] pCO2A - Alveolar pCO2 [torr] GFR - Glomerular filtration rate [l/min] yNH40 xCO3 - Actual bicarbonate concentration [mmol/l] yTA0 ALD
TPHU2
yTA
yTA1
PHU
YTA
YTA1
PHU
qWU OUTPUT VARIABLES: STPG - summary renal excretion rate of titratable acids, phosphate and org. acids [mmol/mi yNH4 yTA - renal excretion rate of titratable acids [mmol/min] pCO2A YNH4 yTA1 - on arterial pH dependent portion of titratable acid secretion rate [mmol/min] PHU - urine pH GFR YNH4 - Ammonium renal excretion rate [mmol/min] YCO3 - Bicarbonate excretion rate [mmol/min] YCO3R - Bicarbonate reabsorption rate [mmol/min] xCO3 yCO3
YCO3
24.7.2001
PHA 0 PHU2 0 yCO3R
Phosphate sulphate and organic acids balance Protein balance
vEC
CONTROLLER OF RENAL FUNCTION
<XKE>
GFR
L";)Q"??7Q "O Q7;9? O;L)>"; pAS
xKE
yNH
pVP
INPUTS: vEC - ECF volume [l] pAS - systemic arterial pressure [torr] xKE - ECF K concentration [mEq/l] yNH - Na excretion in Henle loop [mEq/min] pVP - pulmonary venous pressure [torr] OSMP - plasma osmolality [mOsm/l] pPCO - plasma colloid osmotic pressure [torr]
ALD
HIDDEN CONSTANTS: vEC0 - normal ECF volume [l] GFR0 - normal glomerular filtration rate [l/min] ___
VA0
ALD
RESPIRATION CONTROL
Q78>Q9)>"; L";)Q"?
pO2A
pCO2A
pHA
INPUTS: VA0 - normal value of alveolar ventilation [l BTPS/min] pO2A - O2 partial pressure in alveoli [Torr] pCO2A - CO2 partial pressure in alveoli Torr] pHA - arterial blood pH AH - concentration of hydrogen ions in arterial blood [nM/l]
VA
vTW
yURI
VA
OUTPUTS: VA - alveolar ventilation [l BTPS/min]
GFR
4.10.2001
AH
yMNI
Respiration Control
ADH
Scope15
YCO3R
vEC
zUR
ZUR
UREA AND MANNITOL BALANCE xURE
Q79 9;= <9;>)"? Z9?9;L7 INPUTS: vTW - total body fluid volume [l] yURI - intake rate of urea [mEq/min] GFR - glomerular filtration rate [l/min] yMNI - intake rate of mannitol [mEq/min] vEC - ECF volume [l]
OUTPUTS: zUR - total body-fluid urea content [mEq] xURE - ECF urea concentration [mEq/l] yURU - renal excretion rate of urea [mEq/min] zMNE - ECF mannitol content [mEq] xMNE - ECF mannitol concentration [mEq] yMNU - renal excretion rate of mannitol [mEq/min]
yURU
XURE
YURU Urea and mannitol balance
zMNE
ZMNE
21.8.2001
xMNE