HÁLÓZATVÉDELEM
Fotovillamos berendezések villámés túlfeszültségvédelme (I.)
/ EMC – ORIENTÁLT VILLÁMVÉDELEM
A mindennapi életünkben egyre nagyobb jelentősége van a gazdaságos és biztonságos energiaellátásnak. A hagyományos energiahordozók (szén, fa, olaj, gáz) felhasználásának mértéke és költségei megújuló technológiák alkalmazásával jelentősen csökkenthetők. Ez akkor lehetséges, ha a legújabb műszaki technológiai eredmények felhasználásával a korlátozott mértékben rendelkezésre álló helyi alternatív energiahordozókat (napenergia, szélenergia, termálvíz, talaj hőenergia + hőszivattyú) mint energiaforrásokat is beépítik a rendszerbe, és azok ott helyben hasznosulnak. A már meglévő és az újonnan létesülő energiaellátó rendszerben is ezeket felhasználva egyaránt gazdaságosabbá teszik az energiaellátást.
Magyarország földrajzi adottságai ebből a szempontból igen kedvezőek, mert az ország minden részében az évenként adódó napsütötte órák száma magas. Az új, korszerű fotovillamos berendezések rendszerbe állításával ezek a „napelemes” energiaforrások képesek az alap energiaellátást segíteni és kiegészíteni mind az ipari rendszerekben, mind a háztartásokban (1. ábra). (A szakirodalomban sok esetben
1 Fotovillamos berendezés kialakítása és elrendezése
a német Photovoltaikanlagen szó rövidítését, a „PV” jelölést alkalmazzák!) Az energiahordozók áremelkedései miatt az utóbbi időkben ezek a napenergia-hasznosító rendszerek egyre nagyobb mértékben elterjednek, bár beruházási költségei ma még ugyan viszonylag magasak, de széles körű elterjedésük következtében az áruk várhatóan a közeljövőben olcsóbb lesz. A tervezhető napenergia-hasznosítás költségei, a gazdaságossági mutatók, garantált hosszú élettartam és beépíthetőségük műszaki feltételei a beruházók számára már a döntések meghozatalakor meghatározóak és kedvezőek lehetnek. Külső villámvédelem Mivel a fotovillamos egységeket mindig az épületek és építmények magas pontjain – annak napsütötte részén, többnyire a tetőszerkezeteken – szerelik fel, ezért ki vannak téve a zivataros időjárás viszontagságainak, valamint a közvetlen villámcsapásnak. A vonatkozó villámvédelmi szabványok előírásainak megfelelően – hogy bennük meghibásodások ne keletkezhessenek – feltétlenül külső villámvédelemmel, valamint belső villám- és túlfeszültség-védelemmel is védeni kell a teljes fotovillamos berendezést és rendszert. Az MSZ 274 „villámvédelem” magyar szabvány és a katasztrófavédelem
30 ³ 2008/8–9
³ elektroinstallateur
2
Az épület külső villámvédelmi berendezése védett terében elhelyezett PV-napelemek az „s” veszélyes megközelítési távolságok betartásával
3
Az épület külső villámvédelmi berendezése védett terében elhelyezett PV-napelemek, de az „s” veszélyes megközelítési távolságok nincsenek betartva
4
Az épülettől különállóan felszerelt PV-napelemek különálló villámvédelemmel, egy közös EPH-főcsomóponthoz csatlakoztatva
2/2002. BM-rendelet is az EU-jogharmonizáció miatt 2009. január végéig még érvényben marad. Azonban az új MSZ EN 62 305 „Villámvédelem” szabvány is 2006. augusztus 1-jén életbe lépett, és a korábbi magyar előírásoktól eltérő sűrítettebben elrendezett villámvédelmi felfogók létesítését írja elő. A tetőszerkezeten 20–60 m sugarú gördülő gömbbel szerkesztett villámvédelmi felfogórendszer védett terében kell a napelemeket és a teljes berendezést elhelyezni. Ezért a villámhatás-veszélyeztetés miatt nem csak külső villámvédelem felszerelése szükséges, hanem a belső villamos tartalom másodlagos villámhatásveszélyeztetése (H1–H5) függvényében mindkét követelményrendszernek megfelelő belső villámvédelem (B0–B4) valamelyik fokozatának létesítése is szükséges. Belső villámés túlfeszültség-védelem A külső villámvédelem csak a villám közvetlen romboló és tűzgyújtó hatása ellen nyújt védelmet. A villámcsapás által keltett másodlagos túlfeszültségek ellen csak megfelelő egy- vagy többfokozatú potenciálkiegyenlítés, belső villám- és túlfeszültség-védelem nyújthat védelmet. Az LPZ villámvédelmi zónarendszerben (MSZ IEC 1312-1) az LPZ 0/1 zónahatáron minden zónahatár-átlépési ponton villámáram-levezetőképes (10/350) villámvédelmi potenciálkiegyenlítést kell létesíteni. Az épületek kisfeszültségű energiaellátó hálózatához kell csatlakoztatni a napenergia-hasznosító rendszert is. A tetőn elrendezett egységek és fém tartószerkezeteik egyik pontját 16 mm2 Cu-vezetővel a villámvédelmi földelőrendszerrel és az épület EPH-főcsomópontjával is össze kell kötni. A napelem-rendszer egyenáramú (+) és (–) kimenetére villámáram-levezetőképes (10/350) túlfeszültség-levezetőket és az inverter egyenáramú bemeneteit kell csatlakoztatni, az alábbiakban felsorolt ábrák magyarázatai szerint. A 3. ábrán tetőn elhelyezett PV-berendezés az épület külső villámvédelme védett terében van elrendezve, fém tartószerkezetek és a villámvédelmi felfogórendszer között a veszélyes megközelítési „s” távolságok betartásával. Tetőn elrendezett PV-berendezés látható a 2. ábrán, ahol az az épület külső villámvédelme védett terében van elrendezve, de a fém tartószerkezetek és a villámvédelmi felfogórendszer közötti a veszélyes megközelítési távolságok („s”) nincsenek betartva. ³ elektroinstallateur ³ 2008/8–9 ³ 31
HÁLÓZATVÉDELEM
/ EMC – ORIENTÁLT VILLÁMVÉDELEM
5
Fotovillamos telep különálló villámvédelemmel
6
Villámvédelmi felfogók védett terének szerkesztése a veszélyes megközelítési távolságok betartásával és az árnyékképződés kizárásával
A fémszerkezeteket be kell kötni a külső villámvédelembe, és az EPH-főcsomópontba, továbbá a fémszerelvényeket villámáramlevezető keresztmetszettel biztonságos áramúton le kell földelni! A 4. ábra az épülettől különállóan elrendezett PV-berendezést ábrázol, ahol annak rendszerét a külső villámvédelem védett terében kell elhelyezni. A fém tartószerkezetek és a villámvédelmi felfogórendszer egy közös földelőhöz és EPH-főcsomóponthoz csatlakozik. Az 5. ábrán egy különálló villámvédelemmel ellátott fotovillamos telep látható. Villámvédelmi felfogók védett terének szerkesztése a veszélyes megközelítési távolságok betartásával és az árnyékképződés kizárásával készüljön. A gyakorlatban figyelembe kell venni a napelemes rendszerekre vetülő árnyékképződés kizárásának követelményeit. A napelemek egyes felületegységei ugyanis villamosan párhuzamosan kapcsolódnak egymással. A teljes felület egy részére, ha árnyék vetül, akkor annak a résznek az energiater-
32 ³ 2008/8–9
³ elektroinstallateur
melésében zavarok keletkeznek. Ezt mutatja a 6. ábra. Mindegyik PV napelemes rendszer villámés túlfeszültség-védelmének a felépítésénél a fentiekben hivatkozott szabványelőírásokat be kell tartani, beleértve a még 2009.01.31-ig érvényes magyar nemzeti szabványokat és rendeleteket is. Az egységes műszaki célkitűzések ellenére adódnak eltérő megoldási lehetőségek és követelmények, amelyeket átgondoltan figyelembe kell venni, és meg kell találni a helyes és a nagyobb biztonságot jelentő műszaki megoldásokat! (folytatjuk) Fehér Zoltán
IRODALOM: [1 ] DEHN+SÖHNE Blitzplaner 2007, ISBN 978-3-00-021115-7 [2 ] www.dehn.de [3 ] DEHN+SÖHNE Sonderdruck 62.: Blitzschutzkonzept für PV – Anlagen [4 ] DEHN Fachbeitrag Photovoltaik: Neue Überspannung Schutzgeräte für Photovoltaik-Anlagen (DEHN limit PV 1000)
HÁLÓZATVÉDELEM
Fotovillamos berendezések villámés túlfeszültségvédelme (II.)
/ EMC – ORIENTÁLT VILLÁMVÉDELEM
Előző számunkban tájékoztatást adtunk a fotovillamos berendezések növekvő elterjedéséről, valamint az alternatív energiahordozók szerepének jelentőségéről. Ezzel kapcsolatosan fontosnak tartottuk, hogy a fotovillamos berendezések villámés túlfeszültség-védelmének jelenlegi helyzetéről tájékoztatást adjunk.
Túlfeszültség-levezető készülékek kiválasztása Egyenáramú áramkörök túlfeszültségvédelmére jobb híján a korábbiakban a váltakozó áramkörökhöz kifejlesztett készülékeket alkalmazták. Ezek a védőkészülékek a villamos paraméterek szempontjából többé-kevésbé az egyenáramú áramkörökben is alkalmazhatók voltak. A túlfeszültség-levezetőket mindig a földpont és a + pont, illetve a földpont és a – pont közé építették be (1–2. ábra). Sok-sok éven keresztül a túlfeszültség-levezető készülékek feszültségét a PV napelemegység egyenáramú üresjárá-
si feszültségének az 50%-ra méretezték. Azt azonban hangsúlyozni kell, hogy az egyen- és váltóoldali alkalmazásoknál az egyenfeszültségű oldalon fellépő igénybevételeknél károsodásokkal együttjáró meghibásodások jelentkeztek (3. ábra)! A varisztoron fellépő tartós áramterhelés rövid idő alatt megengedhetetlenül nagy alkatrész-melegedést és tűzkárt is okozhat! A levezető készülékek biztonsági lekapcsoló készüléke eredetileg csak a váltakozó áramköri alkalmazásra készült, ezért az egyenáramú áramkörben csak korlátozott feltételek mellett alkalmazható. Azonban a levezetővel sorosan beépített
1
Egyenáramú PV napelem túlfeszültség-védelme Tip 2 túlfeszültség-levezetővel
28 ³ 2008/10
³ elektroinstallateur
2
Egyenáramú PV napelem túlfeszültség-védelme Tip 2 túlfeszültséglevezetővel, PV napelem szigeteléshiba, feszültségátütés
olvadóbiztosító kiolvadása képes a zárlati egyenáramot megszakítani! A PV napelem egyenáramú zárlati áramának – amelyik a névleges árammal közel azonos nagyságú – az egyenáram biztonságos megszakítása szinte lehetetlen! Erre egy alkalmas egyenáramot is megszakítani képes zárlatvédelmet kell találni! Az ilyen jellegű tűzveszélyek kivédésére a túlfeszültséglevezető készülékgyártó cégek különböző megoldásokat dolgoztak ki (4. ábra). A 4. ábra egy ún. Y védőkapcsolást ábrázol, amelyik két varisztoros Tip 2 túlfeszültség-levezetőből, és egy közös földelő szikraközből áll. A szikraköz megakadá-
3
Egyenáramú PV napelem túlfeszültségvédelme Tip 2 túlfeszültség-levezetővel, PV napelem és a földelt fémszerkezet közötti szigeteléshiba miatt a túlfeszültség-levezető tűzkárt okoz
4
Egyenáramú PV napelem túlfeszültség-védelme két darab Tip 2 túlfeszültség-levezetővel, és egy közös földelt szikraközzel
5
Egyenáramú PV napelem túlfeszültség-védelme három darab Tip 2 túlfeszültség-levezetővel
6
Egyenáramú PV napelem túlfeszültség-védelme kettő darab Tip 2 túlfeszültség-levezetővel
lyozza a levezetők megszólalását testzárlat esetén. Ezek a megoldások alkalmazhatók voltak 500 V feszültségig, de csak akkor, ha a szigetelési hibával egyidejűleg nem lépett fel túlfeszültség-igénybevétel, ami a levezető szikraközt mégis begyújtotta volna. A PV napelemek névleges feszültségének növekedő trendje miatt új megoldásokat kell keresni a túlfeszültség-levezető
technika számára. Az 5. ábrán bemutatott Y kapcsolással – amelyik három varisztor alapú levezetőből áll,– nagyon eredményes és hatásos védőkapcsolás építhető. Túlfeszültség eseménykor mindig két varisztor kapcsolódik sorba, melynek következtében a varisztor túlterhelése kivédhető. Az ilyen kapcsolású DEHNguard Y PV 1000 készülék 1000 V DC egyenfeszültségig a napelemeket képes túlfeszültség ellen megvédeni. Azonban az ilyen három varisztorból álló túlfeszültség ellen védő kapcsolások sem képesek a tűz keletkezését megbízhatóan kizárni. A gyakori impulzuslevezetések következtében ugyanis a varisztorok jelleggörbe-torzulásai (öregedése) miatt a szivárgó áramuk megnő, amelyet a váltakozó áramköri alkalmazásra kifejlesztett biztonsági lekapcsoló szerkezet még esetenként meg tud szakítani, de az egyenáramú áramkörben ez már nehézségeket okoz. Ezért teljesen új megoldást kellett keresni arra, hogy az egyenáramú áramkörökben alkalmazott túlfeszültség-levezető védőkészülékek megfeleljenek mind a villamos, mind a tűzvédelmi elvárásoknak. A 6. ábrán látható a DEHNguard PV… SCP levezető, amelynek a beépítésével első ízben valósult meg és áll a felhasználó rendelkezésére olyan védőkészülék, amelyik túlterhelés esetén biztonságosan egyenáramú zárlatot képes lekapcsolni. Azt a tényt figyelembe véve, hogy a napelem túlfeszültség-védelmének a teljes áramköre az egyenáramú zárlati áram igénybevételre alkalmas kell legyen, mint követelmény teljesen logikus. Ahhoz viszont, hogy levezető készülék zárlatbiztos működését is ki lehessen használni, a „Thermo Dinamik Kontroll” lekapcsoló szerkezet egyenáramú lekapcsolási működését egy kiegészítő rövidre záró szerkezettel mechanikusan össze kellett kombinálni. Ezzel az intézkedéssel sikerült a túlterheléskor fellépő fokozott tűzveszélyt is egyben kiküszöbölni. A módosított kombinált lekapcsoló és rövidre záró szerkezet mindkét tranziens üzemállapotot pontosan kezelni képes: „túlfeszültséget határolni / és levezetni”, illetve az „egyenáramú zárlati áramot vezetni”. A levezető készülék elején lévő látjelző szerkezet ablakában látható kijelző jelzése, valamint a készülékbe beépített galvanikusan független FM „morse” kijelző kontaktus a mindenkori üzemállapotot a felhasználónak jelzi. Azért, hogy a jövőben létesíteni tervezett nagyobb teljesítményű PV napelemek túlfeszültség-védelmét megépíthessük, tovább kellett fejleszteni és bővíteni a DEHNguard ³ PV...SCP védőkészülék-sorozatot! elektroinstallateur ³ 2008/10 ³ 29
HÁLÓZATVÉDELEM
Villámvédelmi potenciálkiegyenlítés A fentiekben eddig ismertetett védelmi megoldások lényegében a varisztortechnológia által megvalósítható tranziens túlfeszültségek korlátozott energialevezetését mutatta be. Ezek a műszaki megoldások azonban a közvetlen (10/350) villámáram-levezetés igénybevételekor kudarcot vallottak! Jóllehet a varisztorok energialevezető képessége és a PV napelem áramkörökbe a váltakozó áramú oldalon beépített inverter védelmi adottságai szintén meghatározóak voltak! A varisztorok párhuzamos kapcsolásával végzett korábbi kisérletek a (10/350) hullámalakú villámáram-impulzusok levezetésére a PV napelemek esetében nem hoztak kielégítő eredményeket! Hasonlóan a váltakozó áramkörök esetében is a varisztorok párhuzamos kapcsolások alkalmazásai már korábban is sikertelenek voltak. További bonyodalmakat jelentett még a PV napelemeknél az egyenáramú áramkörökből adódóan az árammegszakítási problémák megoldása is. Az a tény hogy az egyenáramú PV napelemek védelmére a közelmúltig nem állt rendelkezésre szikraköz alapú (10/350) villámáram-levezető védőkészülék, volt az oka annak, hogy sokan próbáltak a varisztorok párhuzamos kapcsolásával a villámáram-levezető képességet növelő megoldásokat keresni. Mi az oka annak, hogy az eddigiekben a PV napelemek egyenfeszültségű oldalának villámvédelmére nem tudtak kínálni szikraköz alapú (10/350) villámáram-levezető védőkészülékeket? Ez azzal magyarázható, hogy a váltakozó áramkörökhöz szükséges villámáramlevezetőkre nagy a darabszámigény, ezzel szemben a PV napelemek egyenáramú védelmére alkalmas szikraköz alapú villámáram-levezetőire jelenleg még csak elhanyagolhatóan kis darabszámot igényel a piac! A piacon jelenleg kapható váltakozó áramú villámáram-levezető készülékekben található szikraközök az ún. feszültség- és áramirányváltás nulla átmeneténél szakítanak. Ez a villamos váltakozó áramú árammegszakító eljárás viszont nem alkalmazható az egyenáramú PV napelemek villámlevezetőiben. A szikraköz-levezetők több évtizedes gyakorlati tapasztalatai ismeretében sikerült a cégnek kifejleszteni az első PV napelemekhez alkalmazható egyenáramú villámáram-levezető készülékét! A 8. ábra a PV napelemek szikraköz alapú villámáram-levezető készülékét mu-
30 ³ 2008/10
³ elektroinstallateur
7
Földfüggetlen PV napelem túlfeszültségvédelme max. 1000 V DC névleges feszültségig
8
PV napelemek szikraköz alapú villámáramlevezető készüléke
9
A DEHNlimit PV 1000 készülék elvi kapcsolási rajza
10
A DEHNlimit PV 1000 készülék méretrajza
tatja be. Az új Kombi-levezető (10/350) készülék a DEHNlimit PV. Olyan, amelyik alkalmas egészen 1000 V DC névleges feszültségig a napelemek villámvédelmére. Az új szikraköz-levezető képes megállapítani, hogy a levezetőn egy villámkisü-
lés által előidézett villámáram lökőáramának impulzusa folyik, vagy a napelem által táplált utánfolyó földzárlati egyenáramról van szó. Villám lökőáram-impulzus esetében az új szikraköz-kombináció begyújt és átveszi a teljes villámáram-levezetést. Ha megállapítást nyer, hogy a levezetett áram már nem a villámáram, hanem a PV napelemből folyó utánfolyó egyenáram, akkor a szikraköztől egy bypass áramkör átveszi az áramvezetést egészen a szikraköz áramának teljes kialvásáig, és csak ezután kerülhet sor a napelemek által táplált utánfolyó földzárlati egyenáram megszakítására is (9. ábra). Ekkor a villámáram-levezető már árammentes kell legyen, és újra begyújtásra kész, és újbóli működésre és levezetésre alkalmas állapotba került kell legyen (10. ábra). Ez a folyamat összesen mintegy 100 msec alatt lezajlik, és ez az inverter tranziens újraéledési holtidejénél rövidebb. Egy szünetmentes áramellátás lekapcsolása tehát így kivédhető, és elmarad. Ha az egyenáram fent ismertetett megszakítása nélkül alkalmaznák villámáramlevezető szikraközkapcsolást, akkor mint ahogy az a varisztoros levezetőkkel már előfordult, annak komoly egyenáramú meghibásodások és egyéb kárkövetkezményei is lennének. Befejezésül fel kell hívni a szakemberek figyelmét arra, hogy a DEHNguard PV… SCP és a DEHNlimit PV 1000 Kombi villámáram-levezető fejlesztési folyamatában az új eredmények mindig a különböző napelemes berendezések konkrét feladatmegoldásakor születtek. Különösen a berendezések DC oldali energiatárolási problémák megoldásakor, és az inverter rendszer közepes és nagy teljesítményű, illetve nagy áramkapcsolási értékekre tekintettel (néhány 10 kA csúcsérték). A bemutatott műszaki megoldások bepillantást adnak a PV napelemes rendszerek villám- és túlfeszültség-védelem védőkészülékeinek fejlesztési részletkérdéseibe. Szeretnénk továbbá felhívni a figyelmet arra is, hogy a napelemek helyesen kialakított és megfelelően összeszerelt egyenáramú áramkörbe beépített villámáram-levezető készülékek fontos tűzvédelmi intézkedést is jelentenek a rendszer számára. A nem megfelelően kiválasztott és rosszul beépített DC egyenáramú villámáram-levezető és a hibás, rossz szereléstechnológia tűzveszélyt jelent. Fehér Zoltán