66
DAFTAR PUSTAKA
1. Departemen Kesehatan RI. Petunjuk Teknis Pemantauan Status Gizi Orang Dewasa dengan Indeks Massa Tubuh (IMT), Jakarta; [internet] 2003. [cited 14 Desember
2013]
Available
from:
http://www.depkes.go.id/index.php.
vw=2&id=A-137 2. Ganong, W.F. Buku Ajar Fisiologi Kedokteran. 22nd. ed. Novrianti A, Dany F, Resmisari T, Rachman LY, Muttaqin H, Nugroho AW, et al editors. Jakarta: EGC; 2008. p. 325. 3. WHO. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO consultation. Geneva, Switzerland: WHO; 2000. p. 11. 4. Kementerian Kesehatan Republik Indonesia. Katalog dalam Terbitan Kementerian Kesehatan RI Indonesia: Pusat Data dan Informasi Profil Kesehatan Indonesia 2012, Jakarta: Kementerian Kesehatan RI; 2013. p. 69. 5. Low S, Chin MC, Deurenberg-Yap M. Review on epidemic of obesity. Ann Acad Med Singapore [PDF file]. 2009; 38: 57-65. 6. Badan Penelitian dan Pengembangan Kesehatan Depkes RI.Laporan Nasional Riset Kesehatan Dasar 2007. Jakarta: Balitbangkes Depkes RI; 2008. p. 37. 7. Arisman. Gizi dalam Daur Kehidupan: Buku Ajar Ilmu Gizi. 2nd. ed. Suryani, editor. Jakarta: EGC; 2008. p. 232.
66 66
67
8. Gutierrez-Fisac JL, Lopez E, Banegas JR, Graciani A, Rodriguez-Artalejo F. Prevalence of overweight and obesity in elderly people in Spain.Obesity. 2004; 12: 710-15. 9. Asmadi. Konsep Dasar Keperawatan. Mardella EA, editor. Jakarta: EGC; 2008. p. 209. 10. Jakicic JM, Otto AD. Physical activity considerations for the treatment and prevention of obesity. Am J Clin Nutr. 2005; 82: 9S-226S. 11. Risérus U, Ingelsson E. Alcohol intake, insulin resistance, and abdominal obesity in elderly men. Obesity. 2007; 15:1766 -73. 12. Guallar
Castillon
P,
Rodríguez-Artalejo
F, Fornés
NS, Banegas
JR, Etxezarreta PA, Ardanaz E, et al. Intake of fried foods is associated with obesity in the cohort of Spanish adults from the European prospective investigation into cancer and nutrition. Am J Clin Nutr. 2007; 86:198-205. 13. Roemmich, JN, Jasmine R. Smith, Leonard H. Epstein, Maya Lambiase .Stress Reactivity and Adiposity of Youth. Obesity a research Journal. 2007; 15(9): 2303–10. 14. Wajchenberg, B.L. Subcutaneous and Visceral Adipose Tissue: Their Relation to the Metabolic Syndrome, Endocrine Reviews. 2000; 21 (6):697738. 15. Pangkahila. Anti Aging Medicine: Memperlambat Penuaan Meningkatkan Kualitas Hidup. Dharmawan B, editor. Kompas; 2007. p. 94-99. 16. MB Snijder, M Visser, J M Dekker, J C Seidell, T Fuerst, F Tylavsky, et al. The prediction of visceral fat by dual-energy X-ray absorptiometry in the
67
68
elderly: a comparison with computed tomography and anthropometry. International Journal of Obesity [PDF file]. 2002; 26: 984–93. 17. Mohan Anjana, Sreedharan Sandeep, Raj Deepa, Karani Santhanakrishnan Vimaleswaran, Syed Farooq, and Viswanathan Mohan. Visceral and Central Abdominal Fat and Anthropometry in Relation to Diabetes in Asian Indians. Diabetes Care. 2004; 27(12): 2948-53. 18. Mlinar B, Marc J, Janez A, Pfeifer M. Molecular mechanisms of insulin resistance and associated diseases. Clinica Chimica Acta.2007; 375: 20-35. 19. Wang JJ, Wang HJ, Liu JS, Ma J. The association between body mass index, waist
circumference
with body fat percent,
and
abdominal fat rate
in
overweight and obese pupils. Zhonghua Yu Fang Yi Xue Za Zhi. 2013; 47(7) :603-7. 20. Janssen I, Heymsfield SB , Allison DB , Kotler DP , Ross R. Body mass index and waist circumference independently contribute to the prediction of nonabdominal, abdominal subcutaneous, and visceral fat. Am J Clin Nutr. 2002; 75(4) :683-8. 21. Kuk JL, Janiszewski PM, Ross R. Body mass index and hip and thigh circumferences are negatively associated with visceral adipose tissue after control for waist circumference. Am J Clin Nutr. 2007; 85(6): 1540-4. 22. Arisman. Obesitas, Diabetes mellitus,& Dislipidemia. Mahode AA, Astuti NZ, editor. Jakarta: EGC; 2011. p. 162-5. 23. Kantachuvessiri A, Sirivichayakul C, KaewKungwal J, Tungtrongchitr R, Lotrakul M. Factors associated with obesity among workers in a metropolitan
68
69
waterworks authority. Southeast Asian J Trop Med Public Health. 2005; 36:1057-65. 24. Hill JO. Obesity: Etiology in Modern Nutrition in Health and Disease. Lippincot Wilkins. USA [internet]. 2006 [cited 2013 December 12]. Available from http://www.itd.unair.ac.id/files/ebook/html 25. Abramowitz, M. Diseases and Disorder: Obesity. Smith GS, editor. Lucent Books.USA; 2004. p. 44. 26. Health and Development through Physical Activity and Sport.
[internet]
World Health Organization. 2003. [cited 23 Januari 2013] Available from: http://whqlibdoc.who.int/ hq/2003/WHO_NMH_NPH_PAH_03.2.pdf 27. Geneva, Switzerland: The WHO Document Production Services.CDC.gov [internet]. USA Government. [updated: 13 September November
2013]
Available
from:
2011; cited 23
http://www.cdc.gov/healthyweight/
assessing/bmi/adult_bmi/index.html 28. WHO.int [internet]. World Health Organization, c2006 [update: 23 Januari 2014; cited 23 Januari 2013]. Available from: http://apps.who.int/bmi/ index.jsp?introPage=intro_3.html 29. CDC.gov [internet]. USA Government. [updated: 13 September 2011; cited 23 November2013] Available from : http://www.cdc.gov/healthyweight/ assessing/bmi/childrens_bmi/about_childrens_bmi.html 30. K.M Robert, Daryl KG, Victor WR. Biokimia Harper. 27th. Ed. Wulandari N, Rendy L, Dwijayanthi L, Liena, Dany F, Rachman LY, editors. Jakarta: EGC; 2006. p. 223.
69
70
31. Balisteri CR, Caruso C, Candore G. The Role of Adipose Tissue and Adipokines in Obesity-Related Inflammatory Diseases. Mediators of Inflamation. 2010; 2010. p.1. DOI :10.1155/2010/802078. 32. Badan Penelitian dan Pengembangan Kesehatan Depkes RI. Riset Kesehatan Dasar: Pedoman Pengukuran dan Pemeriksaan Jakarta. Jakarta: Balitbangkes Depkes RI; 2007. p. 21. 33. M, Eickemberg , Oliveira CC, Roriz AK, Fontes GA, Mello AL, and Sampaio LR . Bioelectrical impedance and visceral fat: a comparison with computed tomography in adults and elderly. Endocrinol Metabol. 2013 ; 57(1): 27-32. 34. R, Sjahriar Rasad. Radiologi Diagnostik. 2nd. Ed. Ekayuda I, editor. Jakarta: Badan Penerbit FKUI; 2005. p. 13. 35. Ida M, Hirata M, Hosoda K and Nakao K. Abdomen specific bioelectrical impedance
analysis
(BIA)
methods
for
evaluation
of
abdominal fat distribution. Nihon Rinsho. 2013 ; 71(2): 262-5. 36. Fernandes RA, Rosa CS, Buonani C, Oliveira AR, Freitas Júnior IF. The use of bioelectrical impedance to detect excess visceral and subcutaneous fat. J Pediatr (Rio J). 2007 83(6):529-34. 37. Ryo M, Maeda K, Onda T, Katashima M, Okumiya A, Nishida M, et al. A New Simple Method for the Measurement of Visceral Fat Accumulation by Bioelectrical Impedance. Diabetes Care. 2005; 28(2): 451-2. 38. Rômulo AF, Clara S.C, Camila B, Arli R, Ismael F. The use of bioelectrical impedance to detect excess visceral and subcutaneous fat. J Pediatr (Rio J). 2007;83(6):529-534
70
71
39. M, Patrick, Paul Poirier, Philippe Pibarot, Isabelle Lemieux and Jean-Pierre Després. Relationship Between Inflammation, Hypertension and Cardiovascular Disease. American Heart Association, Inc . 2009; 53: 577. 40. Rohman, M S. Patogenesis dan Terapi Sindroma Metabolik. J Kardiol Ind: 2007; 28: 160-8. 41. Oktavia Lilyasari. Hipertensi Dengan Obesitas: Adakah Peran Endotelin-1?. J Kardiol Ind 2007; 28: 460-75. 42. Mlinar B, Marc J, Janez A, Pfeifer M. Molecular mechanisms of insulin resistance and associated diseases. Clinica Chimica Acta.2007; 375: 20-35. 43. Sam S, Haffner S, Davidson MH, D?Agostino RB, Feinstein S, Kondos G. Relationship of Abdominal Visceral and Subcutaneous Adipose Tissue With Lipoprotein Particle Number and Size in Type 2 Diabetes. Diabetes. 2008; 57: 2022-7. 44. Kang HW , Kim D , Kim HJ , Kim CH , Kim YS , Taman MJ , ete al . Visceral obesity and insulin resistance as risk factors for colorectal adenoma: a cross-sectional, case-control study. Am J Gastroenterol. 2010; 105:178-87. 45. Demerath EW, Sun SS, Rogers N, Lee M, Reed D, Choh AC et al. Anatomical patterning of visceral adipose tissue: race, sex, and age variation. Obesity. 2007; 15: 2984-93. 46. Chang CJ, Wu CH, Yao WJ, Yang YC, Wu JS, Lu FH. Relationships of age, menopause and central obesity on cardiovascular disease risk factors in Chinese women. Int J Obes Relat Metab Disord. 2000; 24: 1699-1704.
71
72
47. Chiolero Et Al, F. D., Paccaud F, Cornuz J. Consequences of smoking for body weight, body fat distribution, and insulin resistance. American Journal Clinical Nutrition. 2008; 87: 801-809. 48. Mustelin L, Silventoinen K, Pietiläinen K, Rissanen A, and Kaprio J. Physical activity reduces the influence of genetic effects on BMI and waist circumference: a study in young adult twins. Int J Obes. 2009; 33: 29-36. 49. Williams PT, Satariano WA. Relationships of age and weekly running distance to BMI and circumferences in 41 582 physically active women. Obesity. 2005; 13: 1370-80. 50. Kyrou I ,Tsigos C. Hormon
stres:
stres
fisiologis
dan
regulasi
metabolisme. Curr Opin Pharmacol. 2009; 9: 787 - 93. 51. J.
Marniemi,
E.
Kronholm, S.
Aunola, T.
Toikka, C.-E.
Mattlar,M.
Koskenvuo, Et Al. Visceral fat and psychosocial stress in identical twins discordant for obesity. Journal of Internal Medicine. 2002; 251(1): 35–43.
52. Wei Ping JIA, Jun-Xi, Kun-San Xiang, Hui-Juan LU, Lei Chen. Prediction of Abdominal Visceral Obesity From Body Mass Index, Waist Circumference and Waist-hip Ratio in Chinese Adults: Receiver Operating Characteristic Curves Analysis. Biomedical Land Environmental Sciences. 2003; 16: 206211. 53. Singgih Santosa. Statistik Multivariat. Jakarta: PT Gramedia; 2010. p. 58. 54. Muhammad Zen Rahfiludin, Praba Ginandjar. Tidak ada perbedaan respon imun perokok berat dan perokok ringan karena asupan mikronutrien. J Gizi Indonesia. 2013 ; (2) 12-14.
72
73
55. Aisyiyah. Hubungan Tingkat Pengetahuan Ibu Tentang Makanan Sumber Protein dengan Frekuensi Pemberian Makanan Sumber Protein pada Anak Balita Usia 1-2 Tahun di Desa Purwosari Kecamatan Comal Kabupaten Pemalang. [internet] 2011 [cited 6 Januari 2014] Available from: http://digilib.unimus.ac.id/gdl.php?=browse&op=read&id=jtptunimus-5971 56. Panduan Kesehatan Olahraga Bagi Petugas Kesehatan [internet] 2002. [cited 2014 Feb 2] Available from: http://www.depkes.go.id/downloads/ Panduan%20Kesehatan%20Olahraga.pdf 57. Sumner
AE, Farmer
NM, Tulloch-Reid
MK, Sebring
NG, Yanovsk
JA, Reynolds JC, et al. Sex differences in visceral adipose tissue volume among African Americans. Am J Clin Nutr. 2002; 76(5 ): 975-9. 58. Altan Onat, Erkan Ayhan, Gülay Hergenç, Günay Can, M. Metin Barlan, Smoking inhibits visceral fat accumulation in Turkish women: Relation of visceral fat and body fat mass to atherogenic dyslipidemia, inflammatory markers, insulin resistance, and blood pressure. Metabolism. 2009; 58: 963– 970. 59. Sarah M. Camhi1, George A. Bray1, Claude Bouchard1, Frank L. Greenway1, William D. Johnson1, et al. The Relationship of Waist Circumference and BMI to Visceral, Subcutaneous, and Total Body Fat: Sex and Race Differences, Obesity (2011) 19, 402–408. 60. Steven E. Riechman, Robert E. Schoen, Joel L. Weissfeld, F. Leland Thaete and, Andrea M. Kriska. Association of Physical Activity and Visceral Adipose Tissue in Older Women and Men. Obesity Research. 2002;10(10):1065–1073
73
74
61. C. Gollisch ,Josef Brandauer ,Niels Jessen , Taro Toyoda , Ali Nayer ,Michael F, Katja et al. Effects of exercise training on subcutaneous and visceral adiposetissue in normal and high fat diet fed rats. American Journal of Physiology Endocrinology and Metabolism. 2009; 297: E495-E504 62. Susanne B, Rebecca S.M, Daniel A.D, Christina Koutsari, and Michael D. Jensen.Meal. Fatty Acid Uptake in Visceral Fat in Women. Diabetes. 2007; 56:2589–2597. 63. Yasmeen R, Reichert B, Deiuliis J, Yang F, Lynch A, Meyers J, et al. Autocrine function of aldehyde dehydrogenase 1 as a determinant of diet- and sex-specific differences in visceral adiposity. Diabetes. 2013; 62(1): 124-36. 64. Cris A. Slentz , Lori B. Aiken , Joseph. Houmard , Connie W. Bales , Johanna L. Johnson , Charles J. Tanner , et al. Inactivity, exercise, and visceral fat. STRRIDE: a randomized, controlled study of exercise intensity and amount. Journal of Applied Physiology. 2005; 99: 1613-1618. 65. I. Giannopoulou, L. L. Ploutz-Snyder, R. Carhart, R. S. Weinstock, B. Fernhall, S. Goulopoulou, et al. Exercise Is Required for Visceral Fat Loss in Postmenopausal Women with Type 2 Diabetes. J Clin Endocrinol Metab. 2005; 90: 1511–1518. 66. Brian E Saelens, Randy J Seeley, Kelly van Schaick, Lane F Donnelly, and Kendall J O’Brien. Visceral abdominal fat is correlated with whole-body fat and physical activity among 8-y-old children at risk of obesity. Am J Clin Nutr. 2007;85:46 –53.
74
75
LAMPIRAN
Lampiran 1
75
76
Lampiran 2
76
77
Lampiran 3
PERNYATAAN KESEDIAAN MENJADI SUBJEK PENELITIAN (INFORMED CONSENT) Yang bertanda tangan di bawah ini, saya : Nama
:
Umur/TTL
:
Alamat
:
No. Handphone
:
Bersedia dan mau berpartisipasi menjadi subjek penelitian yang berjudul “Hubungan antara Indeks Massa Tubuh (IMT) dengan Nilai Lemak Viseral (Studi Kasus pada Mahasiswa Kedokteran Undip )” yang dilakukan oleh: Nama
:Adhitya Pradana
Instansi
:Program Studi Fakultas Diponegoro Semarang
Kedokteran
Universitas
Demikian pernyataan ini saya buat dengan sesungguhnya tanpa ada paksaan dari siapapun.
Mengetahui
Semarang,
Peneliti
2014
Subjek penelitian
(Adhitya Pradana)
(
77
)
78
Lampiran 4
Penjelasan mengenai penelitian dengan judul: HUBUNGAN ANTARA INDEKS MASSA TUBUH (IMT) DENGAN NILAI LEMAK VISERAL (Studi kasus pada mahasiswa kedokteran Undip)
Saya (Adhitya Pradana) sedang melakukan penelitian dengan judul “Hubungan Antara Indeks Massa Tubuh (IMT) dengan Nilai Lemak Viseral (Studi kasus pada mahasiswa kedokteran Undip)”, maka saya sebagai peneliti memohon kesediaan Saudara/Saudari untuk menjadi subjek penelitian dalam kegiatan penelitian ini. Penelitian ini bertujuan untuk mencari dan menganalisis hubungan antara IMT dengan nilai lemak viseral pada mahasiswa kedokteran Undip. Metode penelitian Apabila Saudara/Saudari setuju berpartisipasi dalam penelitian ini, saya akan melakukan beberapa pengukuran diantaranya : 1. Pengisisan data subjek penelitian. 2. Pengukuran lemak viseral menggunakan Tanita BC-601 yang berbasis metode bioelectrical impedance analysis (BIA). 3. Indeks massa tubuh (IMT) melalui pengukuran berat badan dan tinggi badan. 4. Pengisian kuesioner meliputi kebiasaan merokok, kebiasaan konsumsi alkolhol, kebiasaan konsumsi makanan berlemak dan aktifitas fisik(olahraga). 5. Waktu pemerikssaan kurang lebih 15 menit.
Manfaat yang akan diperoleh adalah dapat mengetahui hubungan antara IMT dengan nilai lemak viseral, sehingga dapat digunakan sebagai informasi mengenai IMT sebagai indikator untuk prediktor lemak viseral, serta sebagai landasan untuk penelitian selanjutnya mengenai lemak viseral. Tidak ada efek samping dan risiko yang merugikan pada pemeriksaan penelitian ini.
78
79
Semua keterangan yang diperoleh dari penelitian ini akan diperlakukan secara rahasia. Saudara berhak menolak ikut serta dalam penelitian ini dan berhak mengundurkan diri selama penelitian berlangsung. Selama penelitian Saudara tidak dibebani biaya apapun, tetapi harus mengisi surat persetujuan mengikuti penelitian.
Peneliti,
(Adhitya Pradana)
79
80
Lampiran 5 KUESIONER HUBUNGAN ANTARA INDEKS MASSA TUBUH (IMT) DENGAN NILAI LEMAK VISERAL ( Studi Kasus Pada Mahasiswa Kedokteran Undip ) Identitas subjek penelitian 1. Nama
:
2. Jenis kelamin
:
3. Umur
:
Data pengukuran Antropometri 1. Tinggi badan
:
2. Berat badan
:
3. IMT
:
4. Nilai lemak viseral
:
Data kelengkapan 1. Apakah anda perokok?
Ya / Tidak
2. Berapa batang rokok sehari yang dihabiskan?
Sebutkan: ...............
3. Apakah rutin melakukan aktivitas seperti olahraga? Ya / Kadang / Tidak 4. Berapa sering olahraga perminggu? 5. Berapa menit setiap kali melakukan olahraga?
Kuesioner Kebiasaan konsumsi alkohol >1 x sehari
1x sehari
Berapa Kali Konsumsi Per 4-6 x / 3x/ 1-2 x / minggu minggu minggu
Alkohol
80
< 1x / minggu
Tidak pernah
81
Kuesioner Frekuensi Makan Makanan berlemak
>1 x sehari
1x sehari
Berapa Kali Konsumsi Per 4-6 x / 3x/ 1-2 x / minggu minggu minggu
Jeroan (usus, babat, paru) Daging ayam dengan kulit Telur ayam Susu full cream Keju Alpukat Minyak goreng Minyak ikan Santan Minyak sayur Mentega/ margarin Daging kerbau/ sapi Daging kambing Telur bebek Daging bebek Lain-lain .................
81
< 1x / minggu
Tidak pernah
82
Lampiran 6 BUKU PETUNJUK INNER SCAN TANITA BC-601 MONITOR LEMAK TUBUH / TIMBANGAN a. Pemrograman Umum Alat akan menuntun anda dalam pengaturan. Tampilan akan menunjukkan menu-menu utama dan alat akan berbunyi tiap kali langkah-langkah telah dilaksanakan. Gunakan tombol naik atau turun (Up/down) untuk memilih nomor data pribadi. Gunakan tombol set untuk menyimpan data. b. Pilih nomor data pribadi Nomor data pribadi menyimpan data-data pribadi dan gunakan tombol naik atau turun (up/down) untuk memilih umur. Tekan set. c. Pilih Pria atau Wanita (Male atau Female) Pria dan Wanita. Standar atau atlet dewasa (baca definisinya dalam buku manual) d. Gunakan tombol naik atau turun (up/down) untuk menentukan tinggi badan. Tekan set. e. Alat akan berbunyi dua kali dan layar akan menampilkan data tiga kali untuk konfirmasi pemrograman. Power kemudian akan mati secara otomatis. f. Lakukan pengukuran Setelah memprogram data pribadi, anda melakukan pengukuran. Tekan tombol tanda panah “Up” untuk mengaktifkan alat. Tekan tombol tanda panah “Up”/Down untuk memilih nomor data pribadi. Tekan tombol set. Alat akan menyala dan naiklah ke atas pijakan. g. Berat tubuh akan muncul dahulu .Teruskan berdiri di atas timbangan . Hasil pengukuran akan ditampilkan secara bergantian sebanyak 3 kali. h. Pahami hasil pengukuran Monitor lemak tubuh anada secara otomatis membandingkan hasil pengukuran lemak tubuh dengan batas lemak tubuh sehat. Peringatan Jangan gunakan fitur pengukuran kadar lemak tubuh alat ini jika anda sedang menggunakan alat pemacu jantung atau alat elektronik yang dicangkok ke dalam tubuh
82
83
Lampiran 7 Hasil crosstabulasi
Indeks Massa Tubuh * Nilai Lemak Viseral Crosstab Nilai Lemak Viseral Berlebih Indeks Massa Tubuh
Overweight
Count
Normal
25
2,5
22,5
25,0
75,0%
26,4%
31,3%
2
53
55
5,5
49,5
55,0
25,0%
73,6%
68,8%
8
72
80
8,0
72,0
80,0
100,0%
100,0%
100,0%
Expected Count
Total
Count Expected Count % within Nilai Lemak Viseral
Berlebih 19
Count % within Nilai Lemak Viseral
Sehat 6
Expected Count % within Nilai Lemak Viseral
Total
Chi-Square Tests
Pearson Chi-Square
1
Asymp. Sig. (2-sided) ,005
5,818
1
,016
7,276
1
,007
Value 7,919(b)
Continuity Correction(a) Likelihood Ratio
df
Exact Sig. (2-sided)
Fisher's Exact Test
Exact Sig. (1-sided)
,010
Linear-by-Linear Association
7,820
N of Valid Cases
80
1
,010
,005
a Computed only for a 2x2 table b 1 cells (25,0%) have expected count less than 5. The minimum expected count is 2,50. Symmetric Measures
Ordinal by Ordinal Interval by Interval
Value ,787
Asymp. Std. Error(a) ,164
Approx. T(b) 2,239
Approx. Sig. ,025
Spearman Correlation
,315
,114
2,927
,004(c)
Pearson's R
,315
,114
2,927
,004(c)
Gamma
N of Valid Cases
80 a Not assuming the null hypothesis. b Using the asymptotic standard error assuming the null hypothesis. c Based on normal approximation.
83
84
Jenis kelamin * Nilai Lemak Viseral Crosstab Nilai Lemak Viseral Berlebih Jenis kelamin
Laki-laki
Count
Perempuan
39
45
40,5
45,0
75,0%
54,2%
56,3%
2
33
35
3,5
31,5
35,0
25,0%
45,8%
43,8%
Expected Count
Total
Count
8
72
80
8,0
72,0
80,0
100,0%
100,0%
100,0%
Expected Count % within Nilai Lemak Viseral
Berlebih
6
Count % within Nilai Lemak Viseral
Sehat
4,5
Expected Count % within Nilai Lemak Viseral
Total
Chi-Square Tests
Value Pearson Chi-Square
Asymp. Sig. (2-sided)
df
1,270(b)
1
,260
,564
1
,453
1,340
1
,247
Continuity Correction(a) Likelihood Ratio
Exact Sig. (2-sided)
Fisher's Exact Test
Exact Sig. (1-sided)
,455
Linear-by-Linear Association
1,254
N of Valid Cases
80
1
,229
,263
a Computed only for a 2x2 table b 2 cells (50,0%) have expected count less than 5. The minimum expected count is 3,50. Symmetric Measures
Ordinal by Ordinal Interval by Interval
Value ,435
Asymp. Std. Error(a) ,345
Approx. T(b) 1,188
Approx. Sig. ,235
Spearman Correlation
,126
,101
1,122
,265(c)
Pearson's R
,126
,101
1,122
,265(c)
Gamma
N of Valid Cases
80 a Not assuming the null hypothesis. b Using the asymptotic standard error assuming the null hypothesis. c Based on normal approximation.
84
85
Kebiasaan merokok * Nilai Lemak Viseral Crosstab Nilai Lemak Viseral Berlebih Kebiasaan merokok
Merokok
Berlebih
2
3
5
Expected Count
,5
4,5
5,0
25,0%
4,2%
6,3%
Count
6
69
75
7,5
67,5
75,0
75,0%
95,8%
93,8%
Expected Count % within Nilai Lemak Viseral Total
Sehat
Count % within Nilai Lemak Viseral
Tidak Merokok
Total
Count
8
72
80
8,0
72,0
80,0
100,0%
100,0%
100,0%
Expected Count % within Nilai Lemak Viseral
Chi-Square Tests
Value Pearson Chi-Square
Asymp. Sig. (2-sided)
df
5,333(b)
1
,021
2,370
1
,124
3,468
1
,063
Continuity Correction(a) Likelihood Ratio
Exact Sig. (2-sided)
Fisher's Exact Test
Exact Sig. (1-sided)
,076
Linear-by-Linear Association
5,267
N of Valid Cases
80
1
,076
,022
a Computed only for a 2x2 table b 2 cells (50,0%) have expected count less than 5. The minimum expected count is ,50. Symmetric Measures
Ordinal by Ordinal Interval by Interval
Value ,769
Asymp. Std. Error(a) ,206
Approx. T(b) 1,248
Approx. Sig. ,212
Spearman Correlation
,258
,177
2,360
,021(c)
Pearson's R
,258
,177
2,360
,021(c)
Gamma
N of Valid Cases
80 a Not assuming the null hypothesis. b Using the asymptotic standard error assuming the null hypothesis. c Based on normal approximation.
85
86
Kebiasaan konsumsi makanan berlemak * Nilai Lemak Viseral Crosstab Nilai Lemak Viseral Berlebih Kebiasaan konsumsi makanan berlemak
Sering dikonsumsi
Count Expected Count % within Nilai Lemak Viseral
Jarang dikonsumsi
Sehat
Berlebih
7
70
77
7,7
69,3
77,0
87,5%
97,2%
96,3%
Count
1
2
3
Expected Count
,3
2,7
3,0
12,5%
2,8%
3,8%
% within Nilai Lemak Viseral Total
Total
Count Expected Count % within Nilai Lemak Viseral
8
72
80
8,0
72,0
80,0
100,0%
100,0%
100,0%
Chi-Square Tests
Value Pearson Chi-Square
Asymp. Sig. (2-sided)
df
1,886(b)
1
,170
,154
1
,695
1,280
1
,258
Continuity Correction(a) Likelihood Ratio
Exact Sig. (2-sided)
Fisher's Exact Test
Exact Sig. (1-sided)
,274
Linear-by-Linear Association
1,862
N of Valid Cases
80
1
,274
,172
a Computed only for a 2x2 table b 2 cells (50,0%) have expected count less than 5. The minimum expected count is ,30. Symmetric Measures Asymp. Std. Error(a)
Value Ordinal by Ordinal Interval by Interval
Approx. T(b)
Approx. Sig.
Gamma
-,667
,358
-,797
,426
Spearman Correlation
-,154
,175
-1,372
,174(c)
Pearson's R
-,154
,175
-1,372
,174(c)
N of Valid Cases
80
a Not assuming the null hypothesis. b Using the asymptotic standard error assuming the null hypothesis. c Based on normal approximation.
86
87
Aktifitas fisik * Nilai Lemak Viseral Crosstab Nilai Lemak Viseral Berlebih Aktifitas fisik
Kurang
Count
Cukup
48
52
46,8
52,0
50,0%
66,7%
65,0%
4
24
28
2,8
25,2
28,0
50,0%
33,3%
35,0%
Expected Count
Total
Count
8
72
80
8,0
72,0
80,0
100,0%
100,0%
100,0%
Expected Count % within Nilai Lemak Viseral
Berlebih
4
Count % within Nilai Lemak Viseral
Sehat
5,2
Expected Count % within Nilai Lemak Viseral
Total
Chi-Square Tests
Value Pearson Chi-Square
Asymp. Sig. (2-sided)
df
,879(b)
1
,348
,299
1
,584
,843
1
,359
Continuity Correction(a) Likelihood Ratio
Exact Sig. (2-sided)
Fisher's Exact Test
Exact Sig. (1-sided)
,441
Linear-by-Linear Association
,868
N of Valid Cases
80
1
,286
,351
a Computed only for a 2x2 table b 1 cells (25,0%) have expected count less than 5. The minimum expected count is 2,80. Symmetric Measures
Ordinal by Ordinal Interval by Interval
Value -,333
Asymp. Std. Error(a) ,333
Approx. T(b) -,869
Approx. Sig. ,385
Spearman Correlation
-,105
,117
-,931
,355(c)
Pearson's R
-,105
,117
-,931
,355(c)
Gamma
N of Valid Cases
80 a Not assuming the null hypothesis. b Using the asymptotic standard error assuming the null hypothesis. c Based on normal approximation.
87
88
Diskriptif nilai lemak viseral menurut jenis kelamin Descriptives
Nilai lemak viseral
JK Laki-laki
Statistic 5,78
Mean Median
5,00
Variance
20,586
Std. Deviation
Perempuan
Std. Error ,676
4,537
Minimum
1
Maximum
18
Range
17
Mean
3,40
Median
3,00
Variance
9,424
Std. Deviation
3,070
Minimum
1
Maximum
13
Range
12
,519
Uji normalitas pada nilai lemak viseral menurut jenis kelamin
Tests of Normality Kolmogorov-Smirnov(a) JK Laki-laki
Statistic
Perempuan
df
Shapiro-Wilk
Sig.
Statistic
df
Sig.
,165
45
,004
,889
45
,000
,238
35
,000
,750
35
,000
a Lilliefors Significance Correction Test of Homogeneity of Variance Levene Statistic Nilai lemak viseral
df1
df2
Sig.
Based on Mean
6,387
1
78
,014
Based on Median
5,959
1
78
,017
Based on Median and with adjusted df
5,959
1
74,323
,017
Based on trimmed mean
6,846
1
78
,011
88
89
Perbedaan Nilai lemak viseral
Uji Mann-Whitney Test Ranks
Nilai lemak viseral
JK Laki-laki
N
Mean Rank
Sum of Ranks
45
45,84
2063,00
Perempuan
35
33,63
1177,00
Total
80
Test Statistics(a) Nilai lemak viseral 547,000
Mann-Whitney U Wilcoxon W
1177,000
Z
-2,379
Asymp. Sig. (2-tailed)
,017
a Grouping Variable: JK
Frequencies Statistics
N
Valid Missing
Mean Median
Nilai lemak viseral 80
Indeks massa tubuh 80
BR 80
0
0
0
4,74
22,3737
,55
4,00
21,6000
,00
4,115
4,38815
2,894
Minimum
1
16,20
0
Maximum
18
40,60
22
Std. Deviation
89
90
Uji Multivariat
Logistic Regression Categorical Variables Codings
Kebiasaan merokok
Frequency
Parameter coding
(1)
(1)
Merokok Tidak Merokok
Indeks Massa Tubuh
Overweight Normal
5
1,000
75
,000
25
1,000
55
,000
Classification Table(a,b) Observed
Predicted Percentage Correct
Nilai Lemak Viseral Berlebih Step 0
Nilai Lemak Viseral
Sehat
Berlebih
Berlebih
0
8
,0
Sehat
0
72
100,0
Overall Percentage
90,0
a Constant is included in the model. b The cut value is ,500
Variables in the Equation
Step 0
B 2,197
Constant
S.E. ,373
Wald 34,760
df 1
Sig. ,000
1
Sig. ,005
Variables not in the Equation
Step 0
Variables
IMT(1)
Score 7,919
KM(1)
5,333
1
,021
12,649
2
,002
Overall Statistics
Omnibus Tests of Model Coefficients Chi-square Step 1
df
Sig.
Step
10,665
2
,005
Block
10,665
2
,005
Model
10,665
2
,005
90
df
Exp(B) 9,000
91
Model Summary -2 Log likelihood
Step 1
Cox & Snell R Square
Nagelkerke R Square
41,348(a) ,125 ,261 a Estimation terminated at iteration number 6 because parameter estimates changed by less than ,001.
Hosmer and Lemeshow Test Step 1
Chi-square ,157
Df
Sig. ,692
1
Contingency Table for Hosmer and Lemeshow Test Nilai Lemak Viseral = Berlebih Observed Step 1
Nilai Lemak Viseral = Sehat
Expected
Observed
Expected
Total Observed
1
2
2,000
3
3,000
5
2
5
4,606
18
18,394
23
3
1
1,394
51
50,606
52
Classification Table(a) Observed
Predicted Percentage Correct
Nilai Lemak Viseral Berlebih Step 1
Nilai Lemak Viseral
Sehat
Berlebih
Berlebih
1
7
12,5
Sehat
1
71
98,6
Overall Percentage
90,0
a The cut value is ,500
Variables in the Equation B Step 1(a)
S.E.
IMT(1)
-2,207
,906
KM(1)
-2,218 3,592
Constant
Wald
df
Sig.
Exp(B)
5,928
1
,015
1,166
3,617
1
,057
,109
,798
20,244
1
,000
36,301
a Variable(s) entered on step 1: IMT, KM.
91
,110
92
Lampiran 8
Pelaksanaan penelitian
Tanita BC-601
92
93
Lampiran 9
Biodata Mahasiswa Nama
: Adhitya Pradana
NIM
: 22010110120064
Tempat/tanggal lahir : Cilacap / 4 Juli 1992 Jenis kelamin
: Laki-laki
Alamat
: Jl. H Agus Salim 18 Yogyakarta
Nomor Telepon
:-
Nomor HP
: 081392142470
e-mail
:
[email protected]
Riwayat Pendidikan Formal 1. SD
: SD N NGABEAN I Yogyakarta
2. SMP
: SMP N 8 Yogyakarta
3. SMA
: SMA N 1 Yogyakarta
4. FK UNDIP
: Masuk tahun 2010
93