BAB II TINJAUAN PUSTAKA 2.1
Bio-oil Salah satu hasil pengolahan minyak nabati yang merupakan bahan bakar
alternatif adalah Bio-oil. Bio-oil adalah bahan bakar cair berwarna gelap, beraroma seperti asap, dan diproduksi dari biomassa seperti kayu, kulit kayu, kertas atau biomassa lainnya melalui teknologi pirolisis ( pyrolysis ) atau pirolisis cepat (fast pyrolysis ). Fast Pyrolysis (pirolisis cepat) adalah dekomposisi thermal dari komponen organik tanpa kehadiran oksigen dengan cara mengalirkan N2 dalam prosesnya untuk menghasilkan cairan, gas dan arang. Cairan yang dihasilkan ini lebih lanjut kita kenal sebagai Bio-oil. Produk yang dihasilkan dalam proses pirolisis cepat tergantung dari komposisi biomassa yang digunakan sebagai bahan baku, kecepatan serta lama pemanasan. Rendemen cairan tertinggi yang dapat dihasilkan dari proses pirolisis cepat berkisar 78 % dengan lama pemanasan 0,5 – 2 detik, pada o
suhu 400-600 C dan proses pendinginan yang cepat pada akhir proses. Pendinginan yang cepat sangat penting untuk memperoleh produk dengan berat molekul tinggi sebelum akhirnya terkonversi menjadi senyawa gas yang memiliki berat molekul rendah. Produksi bio oil sangat menguntungkan karena dengan pengorvensian bio oil maka akan didapatkan produk berupa bahan bakar minyak bio, misalnya: biokerosene, biodiesel dan lain-lain (Hambali, 2007). Produk yang dihasilkan dalam proses fast pyrolisis tergantung dari komposisi biomassa yang digunakan sebagai bahan baku, kecepatan, serta lama pemanasan. Gambar 2.1 dibawah ini merupakan struktur kimia Bio – oil.
Gambar 2.1 Struktur Kimia Bio – Oil
( Hambali, 2007)
Universitas Sumatera Utara
2.2
Spesifikasi Bio – Oil Untuk Bahan Bakar Bio – oil terdiri dari karbon, hidrogen, dan oksigen dengan sedikit kandungan
nitrogen dan sulfur. Hanya saja kandungan sulfur dan nitrogen dalam Bio – oil dapat ditiadakan ( tidak begitu berarti ). Komponen organik terbesar dalam Bio oil adalah lignin, alkohol, asam organik, dan karbonil. Karakteristik Bio – oil tersebut menjadikan bio – oil sebagai bahan bakar yang ramah lingkungan. Selain itu, Bio–oil memiliki nilai bakar yang lebih besar dibandingkan dengan bahan bakar oksigen lainnya ( seperti metanol ) dan nilainya hanya lebih rendah sedikit dibandingkan dengan diesel dan light fuel oil lainnya ( Hambali dkk, 2007). Tabel 2.1 dibawah ini merupakan spesifikasi bio-oil untuk bahan bakar. Tabel 2.1 Spesifikasi bio – oil untuk bahan bakar Properties
Spesifikasi
HHV
> 70.000 BTU / gal
Kandungan Air
< 25 %
Keterangan Metode DINS 51900
Titrasi
Karl
Fisher
berdasarkan
ASTM D 1744 Kandungan padatan
< 1%
Dihitung etanol
berdasarkan yang
kandungan
insoluble
dengan
Metode Filtrasi Viskositas
10-150 Cst pada 50 ASTM D445 0
C
1,2 ( pada 15 0C )
ASTM D405
Karbon
51,5 % - 58,3 %
54,5 %
Hidrogen
0,1 % - 0,4 %
0,4 %
Nitrogen
0,07 % - 0,40 %
0,2 %
Sulfur
0,00 % - 0,07 %
0,0005 %
Debu
0,13 % - 0,21 %
0,16 %
Spesifik Grafity(densitas)
Universitas Sumatera Utara
2.3
Perbandingan karakteristik Bio – oil dengan Diesel-oil Pengembangan Bio – oil dapat menggantikan posisi bahan bakar hidrokarbon
dalam industri, seperti untuk mesin pembakaran, boiler, mesin diesel statis, dan gas turbin. Bio – oil sangat efektif digunakan sebagai pensubstitusi diesel, heavy fuel oil, light fuel oil, dan untuk berbagai macam boiler. Bio –oil bersifat larut sempurna dalam alkohol, seperti dalam metanol dan etanol. Pencampuran Bio – oil dalam alkohol dapat meningkatkan stabilitas dan menurunkan nilai viskositas bahan bakar. Bio – oil bersifat tidak larut dalam diesel, tetapi dapat diemulsifikasi dengan diesel. Emulsifikasi 10 – 30 % Bio - oil dalam diesel dapat memperbaiki stabilitas bahan bakar, memperbaiki viskositas, mengurangi tingkat korosifitas, dan meningkatkan nilai bilangan setana (Hambali, 2007). Tabel 2.2 merupakan perbandingan karakteristik Bio-oil dengan Diesel-oil Tabel 2.2 Perbandingan karakteristik Bio – oil dengan Diesel-oil Parameter Angka Setana Flash point Spesifik Grafity (200C) Sulfur (%) Densitas Viskosity (cp)
2.4
Bio – Oil
Diesel-oil
51
45-48
>110 0C
>110 0C
0,97
0,87
< 0,06
0,35
1,2
0,84
10-150 pada 50 0C
35-50 pada 40 0C
Potensi Batang Jagung Menjadi Bio – Oil Jagung termasuk ke dalam famili rumput – rumputan. Tanaman jagung
tumbuh tegak dengan tinggi bervariasi. Pada varietas tertentu, tinggi tanaman saat dewasa kurang dari 60 cm dan tipe yang lain dapat mencapai 6 m atau lebih. Batang jagung ( corn strover ) merupakan limbah jagung, setelah masa produktif jagung habis, limbah batang jagung yang dihasilkan cukup besar. Hampir setengah dari tanaman jagung terdiri dari corn stover. Selama ini, pemanfaatan limbah jagung hanya terbatas sebagai pakan ternak. Kandungan serat yang tinggi dalam batang jagung menjadikannya berpotensi untuk dimanfaatkan sebagai bahan baku Bio – oil ( Hambali, 2007). Tabel 2.4 merupakan komposisi organik batang jagung.
Universitas Sumatera Utara
Tabel 2.3 Komposisi Organik Batang Jagung Komponen
Kandungan ( % bk ) Batang Jagung
Sellulosa
53
Hemisellulosa
15
Lignin
16
Impuritis
16 Sumber : (Hambali, 2007)
Bahan yang mengandung selulosa berpotensi untuk dijadikan sebagai bahan baku Bio – oil. Bahan – bahan tersebut diantaranya kayu, kulit kayu, bagas, batang jagung dan biomassa lainnya. Tabel 2.5 memperlihatkan rendemen Bio – oil yang dihasilkan dari beberapa jenis bahan baku Tabel 2.4 Rendemen Bio – oil yang dihasilkan dari beberapa jenis bahan baku Bahan baku
Kayu
Rendemen Bio – oil 71 – 80 Arang 12 – 20 Gas 5 – 12 Sumber : (Hambali,2007).
Kulit kayu
Bagas batang
Kelobot
jagung
kertas
75 – 81 12 – 14 5 – 10
71 – 76 7 – 14 10 – 17
60 – 67 16 – 28 8 – 17
Limbah
71 – 93 4 – 20 2 – 12
2.5 Sifat – sifat bahan baku dan Produk 2.5.1 Bahan Baku yang digunakan Batang Jagung (Corn Stover) - Bentuk
: Padat
- Penampilan
: Berwarna Hijau (basah) Berwarna kecoklatan (kering)
- HHV (High Heating Value) : 19 MJ / kg - Kadar air
: 76 % dari massa basah 23 % dari massa kering
(Hambali, 2007)
Universitas Sumatera Utara
2.5.2 Produk Utama Bio – oil (C3H8O) -
Bentuk
: Cair
-
Hight Heating Valve (HHV)
: 18 MJ / Kg
-
Flash Point
: 48 – 55 0 C
-
Pour Point
: - 33 0C
-
Dew Point
: 28 – 32 0C
-
Viskosity
: 50 cp (pada 40 0 C)
-
Kelembaban
: 20 – 25 Wt %
-
Kadar abu
: 0 Wt %
-
Densitas
: 1,2 Kg / L
-
Tegangan Permukaan
: 35 – 39 mN / m
-
Keasaman (pH)
: 2,5
-
Kandungan Padatan
:<1%
-
Kemurnian
: 96 % (Anonim,2010)
2.5.3 Produk Samping 1. Karbon Aktif (C) - Bentuk
: Padat
- Penampilan
: Berwarna hitam (grafit)
- Massa Jenis
: 2,267 g / cm3
- Titik Lebur
: 4300 – 4700 K
- Titik Didih
: 4000 K
- Kalor Peleburan
: 100 kJ / mol
- Kalor Penguapan
: 355,8 kJ / mol
- Kapasitas Kalor
: 8,517 J / (mol K) pada 25 0C
- Elektronegatifitas
: 2,55 (skala pauling)
- Konduktivitas termal
: 119 – 165 W / m K (pada 300 K) (http://id.wikipedia.org/wiki/karbon)
Universitas Sumatera Utara
2. Karbon Monoksida (CO) - Bentuk
: Gas
- Massa molar
: 28,0101 g/mol
- Penampilan
: Gas tidak berwarna
- Densitas
: 1,250 g / L
- Titik Leleh
: 205 0C (68 K)
- Titik Didih
: - 192 0 C
- Kelarutan dalam air
: 0,0026 g / L
- Momen dipol
: 0,112 D (3,74 X 10 -31C m) (http://id.wikipedia.org./wiki/CO)
3. Karbon dioksida (CO2) - Bentuk
: Gas
- Massa molar
: 44,0095 g/ mol
- Penampilan
: Gas tidak berwarna
- Densitas
: 1,98 g/ L
- Titik Leleh
: - 57 0C
- Titik Didih
: - 78 0C (menyublim)
- Kelarutan dalam air
: 1,4 g/ L
- Keasaman (pKa)
: 6,35 dan 10,33
- Viskositas
: 0,07 cP (- 78 0C)
- Momen dipol
: nol (http://id.wikipedia.org/wiki/CO2)
4. Metan (CH4) - Bentuk
: Gas
- Massa molar
: 16.042 g/ mol
- Penampilan
: Gas tidak berwarna
- Densitas
: 0,717 kg/ m3
- Titik Leleh
: - 182,5 0C
- Titik Didih
: - 161,6 0C
- Kelarutan dalam air
: 3,5 mg/ 100 ml (pada 17 0C)
- Titik nyala
: - 188 0C (http://id.wikipedia.org/wiki/CH4)
Universitas Sumatera Utara
5. Hidrogen (H2) - Bentuk
: Gas
- Struktur kristal
: Heksagonal
- Densitas
: 0,08988 g/L (pada 0 0C)
- Titik Leleh
: - 259,14 0C
- Titik Didih
: - 252,87 0C
- Titik Tripel
: 13,8033 K
- Titik Kritis
: 32,97 K
- Bahan beku
: 0,117 kJ mol -1
- Bahan penguapan
: 0,904 k J mol -1
- Kapasitas bahan
: 28,836 J mol-1K-1 (pada 25 0C)
- Elektronegativitas
: 2,20 (skala pauling)
- Energi ionisasi
: 1312,0 Kj mol-1
- Kondukrivitas termal
: 180,5 m W m-1K-1 (pada 300 K) (http://id.wikipedia.org/wiki/hidrogen
6. H2O - Berat molekul
: 18,015
- Densitas
: 0,917 gr/cm3
- Titik Lebur
: 0 0C
- Titik Didih
: 100 0C
- Viskositas
: 8,949 Mp
- Spesifik gravitas
: 32,97 K
- Kapasitas panas
: 75,291 J mol-1K-1 )
- Elektronegativitas
: 2,20 (skala pauling) (http://id.wikipedia.org/wiki/H2O).
7. Nitrogen (N2) - Bentuk
: Gas
- Berat molekulbbb
: 28,02 g/mol
- Titik Lebur
: - 209,86 0C
- Titik Didih
: - 195,8 0C
- Tekanan kritis
: 13,8033 K
- Titik Kritis
: 126 K (http://id.wikipedia.org/wiki/nitrogen).
Universitas Sumatera Utara
2.6
Proses Pembuatan Bio – Oil Proses yang ada pada pembuatan Bio – Oil adalah Fast Pyrolisis yang
merupakan dekomposisi termal dari komponen organik tanpa kehadiran oksigen dalam prosesnya untuk menghasilkan cairan, gas, dan arang. Cairan yang dihasilkan ini lebih lanjut dikenal sebagai Bio – oil. Produk yang dihasilkan dalam proses Fast Pyrolisis tergantung dari komposisi biomassa yang digunakan sebagai bahan baku, kecepatan, serta lama pemanasan. Rendemen cairan tertinggi yang dapat dihasilkan dari prose Fast Pyrolisis berkisar 78 % dengan lama pemanasan 2 detik, suhu
4800
C, dan proses kondensasi yang cepat pada akhir proses. Kondensasi yang cepat sangat penting untuk memperoleh produk dengan berat molekul tinggi sebelum akhirnya terkonversi menjadi senyawa gas yang memiliki berat molekul rendah. Proses pyrolisis yang cepat (Fast Pyrolisis ) dilakukan di dalam reaktor pyrolisis, awalnya lignoselulosa yang sudah diperoses secara fisis diumpankan ke reaktor dan akan mengalami proses pemanasan sampai temperatur reaksi yaitu 4800 C. Kecuali bahan pengotor, lignoselulosa terkonversi menjadi Bio – oil, karbon, hidrogen, karbon monoksida, karbon dioksida dan metana. Proses pyrolisis lignoselulosa berdasarkan sistem reaksinya dapat dibagi menjadi tiga macam, yaitu : Circulating fluid bed, Fluidized bed dan vacum pyrolizer ( Hambali, 2007).
2.7.1
Tipe Circulating Fluid Bed Circulating Fluid Bed, dimana serbuk lignoselulosa berukuran antara 3 – 30
mm diumpankan dari atas reaktor dan akan menumpuk karena gaya beratnya. Gas CO2 dihembuskan dari bawah berlawanan dengan memasukan lignoselulosa akan bereaksi membentuk gas. Hal ini menyebabkan lignoselulosa turun secara berlahan selama proses hingga waktu tinggal ( residence time ) lignoselulosa adalah lama, yaitu
sekitar
1
jam
serta
menghasilkan
produk
sisa
berupa
abu
( Brown, 2003 dalam Hambali 2007 ).
Universitas Sumatera Utara
Gambar 2.2 Tipe Reaktor Circulating Fluid Bed (Brown, 2003).
Reaktor model ini beroperasi pada 500
0
C untuk mendekomposisi
lignoselulosa, maka lignoselulosa yang akan dipirolisis harus memiliki ( char fusion temperatur ) yang tinggi. Hal ini dimaksudkan agar arang tidak meleleh yang akhirnya mengumpul di bagian bawah alat sehingga dapat menyumbat bagian tersebut. Produk utama proses ini adalah Bio – oil, Arang (C) dan gas sintetis. Reaktor Circulating Fluid Bed sesuai untuk produksi uap, karbon, dan gas sistesis dengan tingkat konversi karbon pada tipe Circulating Fluid Bed
maksimum
mencapai 12 % (Brown, 2003 dalam Hambali 2007).
2.7.2
Tipe Fluidized Bed (Unggun Terfluidisasi) Tipe Fluidized Bed, dimana pemasukan batang jagung dari samping ( side
feeding ), gas N2 dari bagian bawah. Gaya dorong dari gas N2 akan setimbang dengan gaya gravitasi sehingga serbuk batang jagung dalam keadaan mengambang pada saat terjadi proses pyrolisis. Serbuk batang jagung yang digunakan lebih halus dan berukuran kurang dari 1mm. Tekanan Operasi pada proses ini kurang lebih 5 atm (Brown, 2003 dalam Hambali 2007).
Universitas Sumatera Utara
Gambar 2.3 Reaktor Pyrolisis Unggun Fluidisasi (Fluidized bed) (Brown, 2003).
Biomassa yang akan diperoses pada reaktor pyrolisis, fluidized bed harus memiliki ( softening temperatur ) diatas suhu operasional tersebut, hal ini bertujuan agar arang yang dihasilkan selama proses tidak meleleh yang dapat mengakibatkan terganggunya kondisi lapisan mengambang dan karena suhu operasi yang relatif rendah maka reaktor ini banyak digunakan untuk memproses lignoselulosa yang memiliki sifat lebih reaktif (Brown, 2003 dalam Hambali 2007).
2.7.3
Tipe Vacuum Pyrolizer Pyrolisis vacum
menggunakan bahan yang dapat diperbaharui untuk
dijadikan produk, yaitu bio – oil dan carbon black, bio – oil murni yang berharga tinggi di pasaran. Dekomposisi dari biomassa kompleks pada temperatur 420 0C, temperatur tersebut tidak berubah untuk membentuk produk minyak, karbon black dan gas. Karbon black sebagai produk dari reaktor menuju tangki penampungan. Tipe produk yang dihasilkan dari proses pirolisis vacuum ini adalah 55 % oil, 35 % karbon black dan 10 % gas. Tekanan operasi pada proses ini antara 10 – 15 atm (Brown, 2003 dalam Hambali 2007).
Universitas Sumatera Utara
Gambar 2.4 Vacuum Pyrolizer (Sumber : Brown, 2003) 2.8
Pemilihan Proses Berdasarkan keunggulan dan kelemahan jenis proses yang telah dijelaskan di
atas maka proses yang dipilih pada produksi bio- oil melalui fast pirolisis ini adalah menggunakan reaktor unggun terfluidisasi (Fluidized Bed). Proses unggun terfluidisasi (Fluidized Bed) memiliki kapasitas paling besar per satuan volume dibandingkan kedua proses lainnya. Selain itu proses ini mampu menangani segala jenis biomassa yang mengandung lignoselulosa dan menghasilkan bio – oil. Gas yang didorong menyebabkan partikel – partikel terpyrolisis dengan cepat (±2 detik) sehingga tidak sempat menggumpal. (Hambali,2007).
2.9
Deskripsi Proses Pembuatan bio-oil dari batang jagung diawali dari penghalusan batang jagung
menjadi berukuran kurang dari 1 mm, tujuannya agar mempercepat reaksi di dalam reaktor. Setelah ukuran batang jagung telah halus, maka akan di masukkan ke dalam reaktor dengan menggunakan belt-conveyor. Di dalam reaktor terjadi proses fast pyrolysis dengan kondisi operasi yaitu suhu 480 0C dan tekanan 4 atm. Reaksi yang terjadi adalah (C10H12O4)10
480 0 C
6,203C3H8 O (l)+ 66,976C(s)+ (6,404CO2 + 3,852CO +4,159CH4+
9,734H2) (g) + 17,136 H2O (Simulation of Olive Pits Pyrolysis in a Rotary Kiln Plant thermal scienc, 2011). Keluaran dari reaktor pyrolysis yaitu berupa gas yang dapat dikondensasi, gas yang tidak dapat dikondensasi dan padatan arang selanjutnya akan diteruskan ke cooler tujuannya untuk menurunkan suhu dari 480 0C menjadi 1950C dan tekanan dari 4 atm
Universitas Sumatera Utara
menjadi 1,8 atm dengan bantuan air pendingin pada suhu 30 0C dan tekanan 1 atm. Kemudian keluaran dari cooler akan di teruskan ke cyclone. Di cyclone arang di pisahkan dari gas yang dapat dikondensasi dan gas yang tidak dapat dikondensasi. Pemisahan tersebut terjadi karena pengaruh gaya gravitasi. Arang tersebut dikeluarkan dari bagian bawah cyclone dan di tampung di penampungan arang ( TK206) sedangkan gas yang dapat dikondensasi dan gas yang tidak dapat dikondensasi akan keluar dari atas dan di teruskan ke kondensor. Di dalam kondensor suhu di turunkan dari 195 0C menjadi 35 0C dan gas yang dapat dikondensasi akan dikondensasikan menjadi bio-oil sedangkan gas yang tidak dapat dikondensasi akan diteruskan ke combuster yang berguna sebagai bahan bakar. Hasil kondensasi akan dipisahkan di dalam Knock Out Drum (KO-208). Bio-oil yang terbentuk akan keluar dari bawah dan di pompakan ke tangki penampungan Bio-oil (TK-302).
Universitas Sumatera Utara
Universitas Sumatera Utara