BAB 2
LANDASAN TEORI
2.1
Analytic Hierarchy Process (AHP)
Analytic Hierarchy Process (AHP) adalah salah satu metode khusus dari Multi Criteria Decision Making (MCDM) yang diperkenalkan oleh Thomas L. Saaty. AHP sangat berguna sebagai alat dalam analisis pengambilan keputusan dan telah banyak digunakan dengan baik dalam berbagai bidang seperti peramalan, pemilihan karyawan, pemilihan konsep produk, dan lain-lain. Pada dasarnya, metode AHP memecah-mecah suatu situasi yang kompleks dan tak terstruktur ke dalam bagian-bagian komponennya. Kemudian menata bagian atau variabel ini dalam suatu susunan hirarki dan memberi nilai numerik pada pertimbangan subjektif tentang relatif pentingnya setiap variabel. Setelah itu mensintesis berbagai pertimbangan ini untuk menetapkan variabel mana yang memiliki prioritas paling tinggi dan bertindak untuk mempengaruhi hasil pada situasi tersebut. (Saaty, 1993)
2.1.1
Landasan Aksiomatik
AHP memiliki landasan aksiomatik yang terdiri dari: a. Resiprocal Comparison, yang mengandung arti bahwa matriks perbandingan berpasangan yang terbentuk harus bersifat berkebalikan. Misalnya, jika A adalah k kali lebih penting dari pada B maka B adalah 1/k kali lebih penting dari A.
Universitas Sumatera Utara
6
b. Homogenity,
yaitu
mengandung
arti
kesamaan
dalam
melakukan
perbandingan. Misalnya, tidak dimungkinkan membandingkan jeruk dengan bola tenis dalam hal rasa, akan tetapi lebih relevan jika membandingkan dalam hal berat. c. Dependence, yang berarti setiap level mempunyai kaitan (complete hierarchy) walaupun mungkin saja terjadi hubungan yang tidak sempurna (incomplete hierarchy). d. Expectation, yang berarti menonjolkon penilaian yang bersifat ekspektasi dan preferensi dari pengambilan keputusan. Penilaian dapat merupakan data kuantitatif maupun yang bersifat kualitatif.
2.1.2
Prinsip Dasar AHP
Dalam menyelesaikan persoalan dengan Metode AHP, ada beberapa prinsip dasar yang harus dipahami, yakni: a. Decomposition (prinsip menyusun hirarki) Pengertian decomposition adalah memecahkan atau membagi problem yang utuh menjadi unsur–unsurnya ke dalam bentuk hirarki proses pengambilan keputusan, dimana setiap unsur atau elemen saling berhubungan. Untuk mendapatkan hasil yang akurat, pemecahan dilakukan terhadap unsur-unsur sampai tidak mungkin dilakukan pemecahan lebih lanjut, sehingga didapatkan beberapa tingkatan dari persoalan yang hendak dipecahkan. Struktur hirarki keputusan tersebut dapat dikategorikan sebagai complete dan incomplete. Suatu hirarki keputusan disebut complete jika semua elemen pada suatu tingkat memiliki hubungan terhadap semua elemen yang ada pada tingkat berikutnya (Gambar 2.1), sementara pada hirarki keputusan incomplete tidak semua unsur pada masing-masing jenjang mempunyai hubungan. Pada umumnya problem nyata mempunyai karakteristik struktur yang incomplete.
Universitas Sumatera Utara
7
Objektif
Kriteria 1
Alternatif 1
Kriteria i
Kriteria 2
Alternatif 2
Alternatif j
Gambar 2.1. Struktur Hirarki AHP Complete b. Comparative Judgement Comparative Judgement dilakukan dengan penilaian tentang kepentingan relatif dua elemen pada suatu tingkat tertentu dalam kaitannya dengan tingkatan di atasnya. Penilaian ini merupakan inti dari AHP karena akan berpengaruh terhadap urutan prioritas dari elemen-elemennya. Hasil dari penilaian ini lebih mudah disajikan dalam bentuk matriks pairwise comparison yaitu matriks perbandingan berpasangan memuat tingkat preferensi beberapa alternatif untuk tiap kriteria. Skala preferensi yang digunakan yaitu skala 1 yang menunjukkan tingkat yang paling rendah (equal importance) sampai dengan skala 9 yang menunjukkan tingkatan yang paling tinggi (extreme importance). c. Synthesis of Priority Synthesis of Priority dilakukan dengan menggunakan eigen vector method untuk mendapatkan bobot relatif bagi unsur-unsur pengambilan keputusan. d. Logical Consistency Logical Consistency merupakan karakteristik penting AHP. Hal ini dicapai dengan mengagresikan seluruh eigen vector yang diperoleh dari berbagai tingkatan hirarki dan selanjutnya diperoleh suatu vector composite tertimbang yang menghasilkan urutan pengambilan keputusan.
Universitas Sumatera Utara
8
2.1.3
Tahapan-tahapan AHP
Tahapan-tahapan pengambilan keputusan dengan Metode AHP adalah sebagai berikut: a. Mendefinisikan masalah dan menentukan solusi yang diinginkan. b. Membuat struktur hirarki yang diawali dengan tujuan umum, dilanjutkan dengan kriteria-kriteria, sub kriteria dan alternatif-alternatif pilihan yang ingin di ranking. c. Membentuk matriks perbandingan berpasangan yang menggambarkan kontribusi relatif atau pengaruh setiap elemen terhadap masing-masing tujuan atau kriteria yang setingkat diatasnya. Perbandingan dilakukan berdasarkan pilihan atau judgement dari pembuat keputusan dengan menilai tingkat tingkat kepentingan suatu elemen dibandingkan elemen lainnya. d. Menormalkan data yaitu dengan membagi nilai dari setiap elemen di dalam matriks yang berpasangan dengan nilai total dari setiap kolom. e. Menghitung nilai eigen vector dan menguji konsistensinya, jika tidak konsisten pengambil data (preferensi) perlu diulangi. Nilai eigen vector yang dimaksud adalah nilai eigen vector maximum yang diperoleh dengan menggunakan matlab maupun manual. f. Mengulangi langkah c, d, dan e untuk seluruh tingkat hirarki. g. Menghitung eigen vector dari setiap matriks perbandingan berpasangan. Nilai eigen vector merupakan bobot setiap elemen. Langkah ini mensintesis pilihan dan penentuan prioritas elemen-elemen pada tingkat hirarki terendah sampai pencapaian tujuan. h. Menguji konsistensi hirarki. Jika tidak memenuhi dengan CR<0,100 maka penilaian harus diulang kembali.
2.1.4
Menetapkan Prioritas
Langkah pertama dalam menetapkan prioritas elemen-elemen dalam suatu persoalan keputusan adalah dengan membuat perbandingan berpasangan (pairwise comparison), yaitu elemen-elemen dibandingkan secara berpasangan terhadap suatu kriteria yang
Universitas Sumatera Utara
9
ditentukan. Perbandingan berpasangan ini dipresentasikan dalam bentuk matriks. Skala yang digunakan untuk mengisi matriks ini adalah 1 sampai dengan 9 (skala Saaty) dengan penjelasan pada tabel di bawah ini: Tabel 2.1 Skala untuk Perbandingan Berpasangan
Intensitas Kepentingan
Defenisi
1
Equally important (sama penting)
3
Moderately more important (sedikit lebih penting)
5
Strongly more important (lebih penting)
7
Very strongly more important (sangat penting)
9
Extremely more important (mutlak lebih penting)
2, 4, 6, 8
Intermediate values (nilai yang berdekatan)
Setelah keseluruhan proses perbandingan berpasangan dilakukan, maka bentuk matriks perbandingan berpasangannya adalah seperti pada Tabel 2.2. Apabila dalam suatu subsistem operasi terdapat n elemen operasi yaitu A1, A2,…,An maka hasil perbandingan dari elemen-elemen operasi tersebut akan membentuk matriks A berukuran n × n sebagai berikut: Tabel 2.2 Matriks Perbandingan Berpasangan
A1
A2
An
A1
1
a12
a1n
A2
a21
1
a2n
An
an1
an2
1
Universitas Sumatera Utara
10
Matriks An×n merupakan matriks reciprocal yang diasumsikan terdapat n elemen yaitu w1, w2,…,wn yang akan dinilai secara perbandingan. Nilai perbandingan secara berpasangan antara wi dan wj yang dipresentasikan dalam sebuah matriks , dengan i, j = 1, 2,…, n, sedangkan aij merupakan nilai matriks hasil perbandingan yang mencerminkan nilai kepentingan Ai terhadap Aj bersangkutan sehingga diperoleh matriks yang dinormalisasi. Untuk i = j, maka nilai aij = 1 (diagonal matriks), atau apabila antara elemen operasi Ai dengan Aj memiliki tingkat kepentingan yang sama maka aij = aji = 1. Data dari matriks perbandingan berpasangan ini merupakan dasar untuk menyusun vektor prioritas dalam AHP. Bila vektor pembobotan elemen-elemen operasi dinyatakan dengan W, dengan W = (w1, w2,…,wn), maka intensitas kepentingan elemen operasi A1 terhadap A2 adalah , sehingga matriks perbandingan berpasangan dapat dinyatakan sebagai berikut: Tabel 2.3 Matriks Perbandingan Intensitas Kepentingan Elemen Operasi
A1
A2
An
A1 A2
An
Berdasarkan matriks perbandingan berpasangan tersebut dilakukan normalisasi dengan langkah-langkah sebagai berikut: a. Menjumlahkan nilai setiap kolom dalam matriks perbandingan berpasangan: , untuk i, j = 1, 2,…,n. b. Membagi nilai aij pada setiap kolom dengan jumlah nilai pada kolom: ,untuk i, j = 1, 2,…,n.
Universitas Sumatera Utara
11
c. Menjumlahkan semua nilai setiap baris dari matriks yang telah dinormalisasi dan membaginya dengan elemen tiap baris. Hasil pembagian tersebut menunjukkan nilai prioritas untuk masing-masing elemen.
2.1.5
Konsistensi
Dalam penilaian perbandingan berpasangan sering terjadi ketidakkonsistenan dari pendapat/ preferensi yang diberikan oleh pengambil keputusan. Konsistensi dari penilaian berpasangan tersebut dievaluasi dengan menghitung Consistency Ratio (CR). Saaty menetapkan apabila CR ≤ 0,1, maka hasil penilaian tersebut dikatakan . Dimana, CI = Consistency
konsisten. Formulasi untuk menghitung adalah:
Indeks (Indeks Konsistensi) dan RI = Random Consistency Index. Formula CI adalah:
; dimana
max
= nilai maksimum dari eigen value
berordo n. Eigen value maksimum didapat dengan menjumlahkan hasil perkalian matriks perbandingan dengan eigen vector utama (vektor prioritas) dan membaginya dengan jumlah elemen. Nilai CI tidak akan berarti bila tidak terdapat acuan untuk menyatakan apakah CI menunjukkan suatu matriks yang konsisten atau tidak konsisten. Saaty mendapatkan nilai rata-rata Random Index (RI) seperti pada tabel berikut: Tabel 2.4 Tabel Nilai Random Indeks (RI)
Ordo Matriks
1,2
RI
0
3
4
5
6
7
0,52 0,89 1,11 1,25 1,35
8 1,4
9
10
11
12
13
1,45 1,49 1,51 1,54 1,56
Universitas Sumatera Utara
12
2.1.6
Nilai Eigen dan Vektor Eigen
Defenisi. Misalkan A adalah sebarang matriksbujur sangkar. Skalar
disebut sebagai
nilai eigen dari A jika terdapat vektor (kolom) bukan-nol v sedemikian rupa sehingga:
Sebarang vektor yang memenuhi hubungan ini disebut sebagai vektor eigen dari A yang termasuk dalam nilai eigen . Dicatat bahwa setiap kelipatan skalar kv dari vektor eigen v yang termasuk dalam juga adalah vektor eigen karena:
Untuk mencapai nilai eigen dari matriks A yang berukuran n × n, maka dapat ditulis pada persamaan berikut:
Atau secara ekuivalen: Agar
menjadi nilai eigen, maka harus ada pemecahan tak nol dari persamaan ini.
Akan tetapi, persamaan di atas akan mempunyai pemecahan tak nol jika dan hanya jika:
Ini dinamakan persamaan karakteristik A, skalar yang memenuhi persamaan ini adalah nilai eigen dari A. Bila diketahui bahwa nilai perbandingan elemen Ai terhadap elemen Aj adalah aij, maka secara teoritis matriks tersebut berciri positif berkebalikan, yakni . Bobot yang dicari dinyatakan dalam vektor Nilai
.
menyatakan bobot kriteria An terhadap keseluruhan set kriteria pada
subsistem tersebut.
Universitas Sumatera Utara
13
Jika aij mewakili derajat kepentingan faktor i terhadap faktor j dan aik menyatakan derajat kepentingan dari faktor j terhadap faktor k, maka agar keputusan menjadi konsisten, kepentingan i terhadap faktor k harus sama dengan jika
atau
untuk semua i, j, k.
Untuk suatu matriks konsisten dengan vektor w, maka elemen
dapat ditulis:
Jadi, matriks konsistennya adalah:
Seperti yang diuraikan di atas, maka untuk pairwise comparison matrix diuraikan menjadi:
Dari persamaan tersebut di atas dapat dilihat bahwa:
Dengan demikian untuk matriks perbandingan berpasangan yang konsisten menjadi:
Persamaan tersebut ekuivalen dengan bentuk persamaan matriks di bawah ini:
Universitas Sumatera Utara
14
Dalam teori matriks, formulasi ini diekspresikan bahwa w adalah eigen vektor dari matriks A dengan nilai eigen n. Perlu diketahui bahwa n merupakan dimensi matriks itu sendiri. Dalam bentuk persamaan matriks dapat ditulis sebagai berikut:
Tetapi pada prakteknya tidak dapat dijamin bahwa:
Salah satu penyebabnya yaitu karena unsur manusia (decision maker) tidak selalu dapat konsisten mutlak dalam mengekspresikan preferensi terhadap elemen-elemen yang dibandingkan. Dengan kata lain, bahwa penilaian yang diberikan untuk setiap elemen persoalan pada suatu level hirarki dapat saja tidak konsisten (inconsistent).
2.2
Himpunan Fuzzy
Pada tahun 1965, Zadeh memodifikasi teori himpunan dimana setiap anggotanya memiliki derajat keanggotaan yang bernilai kontinu antara 0 dan 1. Himpunan ini disebut dengan Himpunan Kabur (Fuzzy Set). Himpunan Fuzzy didasarkan pada gagasan untuk memperluas jangkauan fungsi karakteristik sedemikian hingga fungsi tersebut akan mencakup bilangan real pada interval [0, 1]. Nilai keanggotaannya menunjukkan bahwa suatu item dalam semesta pembicaraan tidak hanya berada pada 0 atau 1, namun juga nilai yang berada diantaranya. Sedangkan dalam himpunan crisp, nilai keanggoataan hanya 2 kemungkinan yaitu 0 atau 1. Jika yang berhubungan dengan a adalah 1. Namun, jika
, maka nilai
, maka nilai yang
berhubungan dengan a adalah 0.
Universitas Sumatera Utara
15
Misalkan diketahui klasifikasi sebagai berikut: MUDA
umur < 35 tahun
SETENGAH BAYA
35 ≤ umur ≤ 55 tahun
TUA
umur > 55 tahun
Dengan menggunakan pendekatan crisp, amatlah tidak adil untuk menetapkan nilai SETENGAH BAYA. Pendekatan ini bisa saja dilakukan untuk hal-hal yang bersifat diskontinu. Misalkan umur klasifikasi 55 tahun dan 56 tahun sangat jauh berbeda, umur 55 tahun termasuk SETENGAH BAYA, sedangkan umur 56 tahun sudah termasuk TUA. Demikian pula untuk kategori TUA dan MUDA. Dengan demikian pendekatan crisp ini sangat tidak cocok untuk diterapkan pada hal-hal yang bersifat kontinu, seperti umur. Selain itu, untuk menunjukkan suatu unsur pasti termasuk SETENGAH BAYA atau tidak, dan menunjukkan suatu nilai kebenaran 0 atau 1, dapat digunakan nilai pecahan, dan menunjuk 1 atau nilai yang dekat dengan 1 untuk umur 45 tahun, kemudian perlahan menurun menuju ke 0 untuk umur dibawah 35 tahun dan diatas 55 tahun. Terkadang
kemiripan
antara
keanggotaan
fuzzy
dengan
probabilitas
menimbulkan kerancuan. Keduanya memiliki interval [0, 1], namun interpretasi nilainya sangat berbeda. Keanggotaan fuzzy memberikan suatu ukuran terhadap pendapat atau keputusan, sedangkan probabilitas mengindikasikan proporsi terhadap keseringan suatu hasil bernilai besar dalam jangka panjang. (Kusumadewi, 2004)
2.2.1
Fungsi Keanggotaan
Fungsi keanggotaan (membership function) adalah suatu kurva yang menunjukkan pemetaan titik-titik input data ke dalam nilai keanggotaannya (sering juga disebut dengan derajat keanggotaan) yang memiliki interval antara 0 sampai 1. Atau dapat dinotasikan sebagai berikut :
Untuk x
maka µA(x) adalah derajat keanggotaan x dalam A.
Universitas Sumatera Utara
16
2.2.2
Bilangan Fuzzy Triangular
Fungsi keanggotaannya adalah sebagai berikut:
Berikut akan ditampilkan gambar bilangan fuzzy segitiga (Triangular):
µA(x) 1
0
a-β
a
a+β
x
Gambar 2.2 Bilangan Fuzzy Triangular
2.2.3
Bilangan Fuzzy Trapezoidal
Fungsi keanggotaannya adalah sebagai berikut:
Universitas Sumatera Utara
17
Berikut akan ditampilkan gambar bilangan fuzzy trapezoidal:
µA(x) 1
0
a–β
a
b
a+β
x
Gambar 2.3 Bilangan Fuzzy Trapezoidal
2.2.4
Himpunan Penyokong (Support Set)
Terkadang bagian tidak nol dari suatu himpunan fuzzy ditampilkan dalam domain. Sebagai contoh, domain untuk BERAT adalah 40 kg hingga 60 kg, namun kurva yang ada dimulai dari 42 kg hingga 60 kg. Daerah ini disebut dengan himpunan penyokong (support set). Hal ini penting untuk menginterpretasikan dan mengatur daerah fuzzy yang dinamis.
2.2.5
Nilai Ambang Alfa-Cut
Salah satu teknik yang erat hubungannya dengan himpunan penyokong adalah himpunan level-alfa (α-cut). Level-alfa ini merupakan nilai ambang batas domain yang didasarkan pada nilai keanggotaan untuk tiap-tiap domain. Himpunan ini berisi semua nilai domain yang merupakan bagian dari himpunan fuzzy dengan nilai keanggotaan lebih besar atau sama dengan α.
Universitas Sumatera Utara
18
2.2.6
Operasi-operasi pada Himpunan Fuzzy
Seperti halnya himpunan konvensional, ada beberapa operasi yang didefenisikan secara khusus untuk mengkombinasi dan memodifikasi himpunan fuzzy. Berikut ini ada beberapa operasi logika fuzzy yang didefinisikan oleh Zadeh, yaitu: Interseksi
:
Union
:
Komplemen
:
Karena himpunan fuzzy tidak dapat dibagi dengan tepat seperti halnya dalam himpunan crisp, maka operasi-operasi ini diaplikasikan pada tingkat keanggotaan. Suatu elemen dikatakan menjadi anggota himpunan fuzzy jika: a. Berada pada domain himpunan tersebut. b. Nilai kebenaran keanggotaannya ≥ 0. c. Berada di atas ambang α-cut yang berlaku. Untuk interval [a, b] dan [d, e], maka operasi aritmetik untuk bilangan fuzzy adalah: a. Penjumlahan : [a, b] + [d, e] = [a + d, b + e]
2.3
b. Perkalian
: [a, b] . [d, e] = [min(ad, ae, bd, be), max(ad, ae, bd, be)]
c. Pembagian
: [a, b] / [d, e] = [min(a/d, a/e, b/d, b/e), max(a/d, a/e, b/d, b/e)]
Fuzzy-Analytic Hierarchy Process (FAHP)
Pada dasarnya langkah-langkah dalam Metode fuzzy-AHP adalah hampir sama dengan Metode AHP. Penggunaan AHP dalam problem Multi Criteria Decision Making (MCDM) sering dikritisi sehubungan dengan kurang mampunya pendekatan ini untuk mengatasi faktor ketidakpresisian yang dialami oleh pengambil keputusan ketika harus memberikan nilai yang pasti dalam pairwise comparison. Untuk menangani ketidakpresisian ini diajukan dengan menggunakan teori fuzzy set. Tidak seperti dalam metode AHP orisinil yang menggunakan skala 1-9 dalam pairwise comparison, fuzzy
Universitas Sumatera Utara
19
AHP menggunakan fuzzy numbers. Dengan kata lain fuzzy-AHP adalah metode analisis yang dikembangkan dari Metode AHP orisinil. Dalam pendekatan fuzzy AHP digunakan Triangular Fuzzy Number (TFN) atau Bilangan Fuzzy Segitiga (BFS) untuk proses fuzzyfikasi dari matriks perbandingan yang bersifat crisp. Data yang kabur akan dipresentasikan dalam TFN. Setiap fungsi keanggotaan didefenisikan dalam 3 parameter yakni, l, m, dan u, dimana l adalah nilai kemungkinan terendah, m adalah nilai kemungkinan tengah dan u adalah nilai kemungkinan teratas pada interval putusan pengambil keputusan. Nilai l, m, dan u dapat juga ditentukan oleh pengambil keputusan itu sendiri. Tulisan ini mengajukan tiga parameter bilangan fuzzy untuk merepresentasikan skala Saaty (1-9) sesuai dengan tingkat kepentingannya, yakni (Alias, 2009):
Bilangan
kabur
segitiga
(TFN)
dapat
menunjukkan
kesubjektifan
perbandingan berpasangan atau dapat menunjukkan derajat yang pasti dari kekaburan (ketidakpastian). Dalam hal ini variabel linguistik dapat digunakan oleh pengambil keputusan untuk merepresentasikan kekaburan data seandainya ada ketidaknyamanan dengan TFN. TFN dan variabel linguistiknya sesuai dengan skala Saaty ditunjukkan pada tabel berikut (Alias, 2009):
Universitas Sumatera Utara
20
Tabel 2.5 Tabel Fungsi Keanggotaan Bilangan Fuzzy
Skala Saaty
TFN
1
(1, 1, 1)
3
(2, 3, 4)
5
(4, 5, 6)
7
(6, 7, 8)
9
(9, 9, 9)
Defenisi Equally important (sama penting) Moderately more important (sedikit lebih penting) Strongly more important (lebih penting) Very strongly more important (sangat penting) Extremely more important (mutlak lebih penting) Intermediate Values (nilai yang berdekatan)
2, 4, 6, 8
(1, 2, 3), (3, 4, 5), (5, 6,7) dan (7, 8, 9)
Untuk melakukan prioritas lokal dari matriks fuzzy pairwise comparison sudah banyak metode yang dikembangkan oleh para ahli sebelumnya. Dengan mengkombinasikan prosedur AHP dengan operasi aritmetik untuk bilangan fuzzy, prioritas lokal dapat diperoleh dengan menggunakan persamaan berikut (Febransyah, 2006):
Universitas Sumatera Utara
21
Dimana gi = goal set (i = 1, 2, 3, …, n) = bilangan kabur segitiga (j = 1, 2, 3, ... , m) Yang memuat persamaan-persamaan berikut:
Dan
Perhatikan urutan l, m, u, bahwa letak l selalu berada di bagian kiri, m berada di tengah dan u berada di bagian kanan. Dan l < m < u, sehingga persamaan (3) menjadi:
Sehingga persamaan (1) menjadi:
Untuk:
l = nilai batas bawah (kemungkinan terendah) m = nilai yang paling menjanjikan (kemungkinan tengah) u = nilai batas atas (kemungkinan teratas)
Dimana operasi aritmetik untuk bilangan fuzzy dapat dilihat dari persamaan berikut: 1. 2.
(6)
Universitas Sumatera Utara
22
3. Sedangkan prioritas global diperoleh dengan mengalikan bobot setiap kriteria wj dengan nilai evaluasi. Persamaan dapat dituliskan sebagai berikut: (7) Dimana vij adalah prioritas lokal untuk alternatif i relatif terhadap kriteria j. Nilai defuzzyfikasi diperoleh dengan cara defuzzifying terhadap prioritas global. Untuk TFN , nilai defuzzyfikasinya dapat diperoleh dari persamaan berikut:
Dimana: DPi = nilai defuzzyfikasi = bilangan fuzzy segitiga dari prioritas global Nilai defuzzyfikasi dinormalkan dengan membaginya dengan nilai penjumlahan semua nilai defuzzyfikasi.
2.4
Proses Pengembangan Produk
Kesuksesan ekonomi sebuah perusahaan tergantung pada kemampuan untuk mengidentifikasi kebutuhan pelanggan, kemudian secara tepat menciptakan produk yang dapat memenuhi kebutuhan tersebut dengan biaya yang rendah. Hal ini bukan merupakan tanggung jawab bagian pemasaran atau bagian desain, melainkan tanggung jawab yang melibatkan banyak fungsi dalam suatu perusahaan, sehingga membentuk suatu tim gabungan dari berbagai fungsi untuk bekerja sama dalam proses pengembangan produk. Pengembangan produk merupakan serangkaian aktivitas yang dimulai dari analisis persepsi dan peluang pasar, kemudian diakhiri dengan tahap produksi, penjualan dan pengiriman produk. Salah satu cara berpikir tentang pengembangan produk adalah sebagai kreasi pendahuluan dari sekumpulan alternatif konsep produk dan kemudian mempersempit
Universitas Sumatera Utara
23
alternatif-alternatif dan menambah spesifikasi produk sehingga produk dapat diandalkan dan diproduksi ulang dalam sistem produksi. Konsep adalah uraian dari bentuk, fungsi, dan tampilan suatu produk dan biasanya dibarengi dengan sekumpulan spesifikasi, analisis produk-produk pesaing serta pertimbangan ekonomis proyek. Konsep produk adalah perkiraan gambaran dari teknologi, prinsip kerja dan bentuk dari produk. Konsep produk yang dimaksud merupakan gambaran singkat bagaimana produk dapat memuaskan kebutuhan pelanggan yang biasanya diekspresikan sebagai sebuah sketsa/ model atau bentuk dari produk. Sebagai catatan, kebanyakan fase pengembangan didefenisikan berdasarkan keadaan produk, meskipun proses produksi dan rencana pemasaran, yang merupakan output-output berwujud yang lain, juga turut berproses
mengikuti
kemajuan
pengembangan.
Enam
fase
dalam
proses
pengembangan secara umum adalah: a. Fase 0: Perencanaan Produk Kegiatan perencanaan sering dirujuk sebagai “zerofase” karena kegiatan ini mendahului persetujuan proyek dan proses peluncuran pengembangan produk aktual. b. Fase 1: Pengembangan Konsep Pada fase pengembangan konsep, kebutuhan pasar target diidentifikasi, alternatif konsep-konsep produk dibangkitkan dan dievaluasi, dan satu atau lebih konsep dipilih untuk pengembangan dan percobaan lebih jauh. c. Fase 2: Perancangan Tingkatan Sistem Fase perancangan tingkatan sistem mencakup defenisi arsitektur produk dan uraian produk menjadi subsistem-subsistem serta komponen-komponen. d. Fase 3: Perancangan Detail Fase perancangan detail mencakup spesifikasi lengkap dari bentuk, material, dan toleransi-toleransi dari seluruh komponen unik pada produk dan identifikasi seluruh komponen standar yang dibeli dari pemasok. e. Fase 4: Pengujian dan Perbaikan Fase pengujian dan perbaikan melibatkan kontruksi dan evaluasi dari bermacam-macam versi produksi awal produk.
Universitas Sumatera Utara
24
f. Fase 5: Produksi Awal Pada fase produksi awal, produk dibuat dengan menggunakan sistem produksi yang sesungguhnya. Tujuan dari produksi awal ini adalah untuk melatih tenaga kerja dalam memecahkan permasalahan yang mungkin timbul pada proses produksi sesungguhnya. Peralihan dari produksi awal menjadi produksi sesungguhnya biasanya tahap demi tahap. Pada beberapa titik pada masa peralihan ini, produk diluncurkan dan mulai disediakan untuk didistribusikan. Inti dari pengembangan poduk adalah pengembangan konsep. Fase pengembangan konsep membutuhkan integrasi yang sangat baik di antara fungsifungsi yang berbeda pada tim pengembangan. Proses pengembangan konsep mencakup kegiatan-kegiatan sebagai berikut: a. Identifikasi kebutuhan pelanggan Sasaran kegiatan ini adalah untuk memahami kebutuhan konsumen dan mengkomunikasikannya secara efektif kepada tim pengembangan. Output dari langkah ini adalah sekumpulan pernyataan kebutuhan pelanggan yang tersusun rapi, diatur dalam hirarki, dengan bobot-bobot kepentingan untuk tiap kebutuhan. Tujuan identifikasi kebutuhan pelanggan adalah: 1. Meyakinkan bahwa produk telah difokuskan terhadap kebutuhan konsumen. 2. Mengidentifikasikan kebutuhan pelanggan yang tersembunyi dan tidak terucapkan (latent needs) seperti halnya kebutuhan yang eksplisit. 3. Menjadi basis untuk menyusun spesifikasi produk. 4. Menjamin tidak adanya kebutuhan konsumen penting yang terlupakan. 5. Menanamkan pemahaman yang sama mengenai kebutuhan pelanggan di antara anggota tim pengembangan. b. Penetapan spesifikasi target Spesifikasi memberikan uraian yang tepat mengenai bagaimana produk bekerja. Spesifikasi merupakan terjemahan dari kebutuhan pelanggan menjadi kebutuhan secara teknis. Output dari langkah ini adalah suatu daftar spesifikasi target yang terdiri dari suatu metrik (besaran), serta nilai-nilai batas dan ideal untuk besaran tersebut.
Universitas Sumatera Utara
25
c. Penyusunan konsep Sasaran penyusunan konsep adalah menggali lebih jauh area konsep-konsep produk yang mungkin sesuai dengan kebutuhan pelanggan. Penyusunan konsep mencakup gabungan dari penelitian eksternal, proses pemecahan masalah secara kreatif oleh tim dan penelitian sistematis dari bagian-bagian solusi yang dihasilkan oleh tim. Hasil dari kegiatan ini biasanya terdiri dari 10 sampai 20 konsep. d. Pemilihan konsep Pemilihan konsep merupakan kegiatan di mana berbagai konsep dianalisis dan secara berturut-turut dieliminasi untuk mengidentifikasi konsep yang paling menjanjikan. Proses ini biasanya membutuhkan beberapa iterasi dan mungkin diajukannya tambahan penyusunan dan perbaikan konsep. e. Pengujian konsep Satu atau lebih konsep diuji untuk mengetahui apakah kebutuhan pelanggan telah
terpenuhi,
memperkirakan
potensi
pasar
dari
produk,
dan
mengidentifikasi beberapa kelemahan yang harus diperbaiki selama proses pengembangan selanjutnya. f. Penentuan spesifikasi akhir Spesifikasi target yang telah ditentukan diawal proses ditinjau kembali setelah proses dipilih dan diuji. Pada tahap ini, tim harus konsisten dengan nilai-nilai besaran spesifik yang mencerminkan batasan-batasan pada konsep produk itu sendiri, batasan-batasan yang diidentifikasi melalui pemodelan secara teknis, serta pilihan antara biaya dan kinerja. g. Perencanaan proyek Pada kegiatan akhir pengembangan konsep ini, tim membuat suatu jadwal pengembangan secara rinci, menentukan strategi untuk meminimisasi waktu pengembangan, dan mengidentifikasi sumber daya yang digunakan untuk menyelesaikan proyek. h. Analisis ekonomi Tim pengembang sering didukung oleh analis keuangan untuk membuat model ekonomis untuk produk baru. Analisis ekonomi digunakan uuntuk memastikan kelanjutan program pengembangan menyeluruh dan memecahkan tawar-
Universitas Sumatera Utara
26
menawar
spesifik,
misalnya
antara
biaya
manufaktur
dan
biaya
penting
untuk
pengembangan. i. Analisa produk-produk pesaing Pemahaman
pengenai
produk-produk
pesaing
adalah
menentukan posisi produk baru yang berhasil dan dapat menjadi sumber ide yang kaya untuk rancangan produk dan proses produksi. j. Pemodelan dan pembuatan prototype Pemodelan dan pembuatan proptotipe mencakup model pembuktian konsep, yang akan membantu tim pengembangan dalam menunjukkan kelayakan model
“hanya
bentuk”
dapat
ditunjukkan
kepada
pelanggan
untuk
mengevaluasi keergonomisan dan gaya, sedangkan model lembar kerja adalah untuk pilihan teknis. (Ulrich, 2001)
2.5
Pemilihan
Konsep
Produk
Sebagai
Bagian
Penting
dari
Proses
Pengembangan Produk Setelah
mengidentifikasikan
serangkaian
kebutuhan
pelanggan,
lalu
tim
pengembangan produk menghasilkan konsep solusi alternatif sebagai respons terhadap kebutuhan tersebut. Pemilihan konsep merupakan proses menilai konsep dengan memperhatikan kebutuhan pelanggan dan kriteria lain, membandingkan kekuatan dan kelemahan relatif dari konsep, dan memilih satu atau lebih konsep untuk penyelidikan, pengujian dan pengembangan selanjutnya. Seleksi konsep merupakan proses berulang yang berhubungan erat dengan penyusunan dan pengujian konsep. Metode penyaringan dan penilaian konsep membantu tim menyaring dan memperbaiki konsep lalu menetapkan satu atau lebih konsep yang lebih menjanjikan yang akan menjadi fokus dalam pengujian lebih lanjut dalam kegiatan pengembangan. Metode pemilihan konsep sangat bervariasi dilihat dari efektivitasnya. Beberapa metode tersebut adalah: a. Keputusan eksternal, yakni konsep-konsep dikembalikan kepada pelanggan, klien, atau beberapa lingkup eksternal lainnya untuk diseleksi. b. Produk
juara,
yakni
seorang
anggota
yang
berpengaruh
dari
tim
pengembangan produk memilih sebuah konsep atas dasar pilihan pribadi.
Universitas Sumatera Utara
27
c. Intuisi, yakni konsep dipilih berdasarkan perasaan. Kriteria eksplisit atau analisis pertentangan tidak digunakan. Konsep yang dipilih semata-mata yang kelihatan lebih baik. d. Multivoting, yakni tiap anggota tim memilih beberapa konsep. Konsep yang paling banyak dipilih yang akan digunakan. e. Pro dan kontra, yakni tim mendaftar kekuatan dan kelemahan dari tiap konsep dan membuat sebuh pilihan berdasarkan pendapat konsep. f. Prototype dan pengujian, yakni organisasi membuat dan menguji prototype dari tiap konsep, lalu menyeleksi berdasarkan data pengujian. g. Matriks keputusan, yakni tim menilai masing-masing konsep berdasarkan kriteria penyeleksian yang yang telah ditetapkan sebelum yang dapat diberi bobot. Karena dalam pemilihan konsep produk banyak ditemukan ketidakpastian. Salah satu metode yang paling efektif selain metode-metode di atas untuk menangani masalah ketidakpastian ini adalah metode fuzzy-AHP. Dengan menggunakan metode ini diharapkan dapat memilih konsep produk mana yang layak untuk dikembangkan. Oleh karena itu, metode yang dipakai dalam tulisan ini adalah metode fuzzy-AHP. (Febransyah, 2006)
Universitas Sumatera Utara